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Abstract: Osteoporosis is a common systemic bone disease with insidious onset and low treatment efficiency. 

Once it occurs, it will increase bone fragility and lead to fractures. Computed tomography (CT) is a non-invasive 

medical examination method that can identify the bone condition of patients. In this paper, we propose a novel 

channel attention module, which is subsequently integrated into the supervised deep convolutional neural network 

(DCNN) termed DSNet, which can perform feature fusion from two different scales, and use the method of 

quadratic weight calculation to enhance the interconnection among feature map channels and improve the detection 

and classification performance for the bone condition in lumbar spine CT images. To train and test the proposed 

framework, we retrospectively collect 4805 CT images of 133 patients, using DXA as the gold standard. According 

to the T-value diagnostic criteria defined by WHO, the vertebral bodies of L1 - L4 in CT images are labeled and 

classified into osteoporosis, osteopenia and normal bone mineral density. Meanwhile, the training set and test set 

are constructed in the ratio of 4:1. As a result, the DSNet achieves a prediction accuracy of 83.4% and a recall rate 

of 90.0% on the test set, indicating that the proposed model has the potential to assist clinicians in diagnosing 

individuals with abnormal BMD and may alert patients at high risk of osteoporosis for timely treatment. 

Keywords: Deep convolutional neural network (DCNN); DSNet; Dual-selective channel attention; CT image; 

Osteoporosis 

1. Introduction

Osteoporosis is a common and systemic bone disease, and its early symptoms are not obvious. Most patients

with osteoporosis undergo relevant examinations when complications arise, which are usually in the late stage and 

bring a lot of inconveniences and even death [1]. Therefore, early screening is crucial for the timely prevention 

and treatment of osteoporosis fractures [2]. Meanwhile, all kinds of orthopedic surgery need to refer to a bone 

status evaluation to formulate a better surgical plan. As the gold standard for bone mass measurement, DXA testing 

is expensive. Even in many developed countries, the opportunity to use DXA is still insufficient. CT image 

examination has a large number and clear images, which is of great significance in early screening for the 

prevention and treatment of osteoporotic fractures [3].  

In order to reduce this preventable injury and subsequent complications, more and more researchers are focusing 

on methods that combine computer-aided detection and machine learning with radionics to assist clinicians with 

osteoporosis prediction. For example, Aouache et al. [4] designed a fuzzy decision tree (FDT) model to identify 

osteoporosis by identifying patients' cervical spine images. Devikanniga and Raj [5] proposed an artificial neural 
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network optimized for monarch butterflies, which identified osteoporosis and normal subjects by recognizing hip 

X-ray images of patients and combining them with demographic attributes. However, their algorithms were based 

on small data sets and required complex data processing before feature extraction, causing inaccuracy in medical 

image processing. 

In recent years, convolutional neural networks (CNNs) have achieved high performance in visual recognition 

tasks. Instead, this technique can automatically locate the region of interest (ROI) and extract features, avoiding 

empirical errors in manual feature extraction [6]. Therefore, the application of deep learning in medical imaging 

diagnosis has received extensive attention for osteoporosis classification [7-10] and bone mineral density (BMD) 

prediction [11-13]. For instance, Pan et al. [14] developed a deep learning-based system for bone mineral density 

(BMD) classification in chest CT images. To extract the density information of trabecular bone more accurately, 

they firstly segmented and labeled all vertebral bodies, then their system can automatically extract the rectangular 

area in the center of the trabecular bone as the ROI, thereby realizing automatic measure BMD and make two 

classifications predictions of osteoporosis and osteopenia. Yasaka et al. [15] used an improved CNN model to 

extract the features of the manually labeled central circular region of trabecular bone from unenhanced abdominal 

CT images, achieving a correlation of 0.840 between the CNN network and the corresponding DXA results. Lee 

et al. [16] proposed a method based on the combination of the VGG network and random forest to classify of 

normal and abnormal BMD in spinal X-ray images. To extract features more accurately, they selected the central 

region of the fourth lumbar spine as ROI and achieved a 71% accuracy for the two-category classification. 

Gonzalez et al. [17] selected chest CT images as input data, proving that deep neural network has an excellent 

performance in osteoporosis identification.  

Despite the above studies yielded exciting results in identifying osteoporosis, they still left significant limitations 

on the diagnostic ability of clinical osteoporosis recognition. Firstly, those designed network models were limited 

to two classifications: Osteoporosis and osteopenia, which could not meet the clinical requirements of various 

conditions of bone condition. Moreover, these studies mostly selected the trabecular structure as ROI, while 

ignoring the cortical bone thickness which plays an important role in the real discrimination scenarios of bone by 

clinical experts. Finally, the methods proposed in these studies were not effective in bone image texture recognition 

due to the insufficient ability of feature extraction, which affected the prediction accuracy.  

In view of the limitations of CNN-based methods for accurate osteoporosis prediction, we proposed an improved 

network based on Faster R-CNN, in which a new channel attention module was integrated to enhance the texture, 

shape and other features of vertebral trabecular bone in CT images. The specific analysis is as follows: 1) We have 

achieved a three-category classification of osteoporosis, osteopenia and normal bone mineral density, which brings 

greater applicability to professional doctors in clinical diagnosis; 2) According to the actual clinical needs, the 

whole vertebral body including cortical bone and cancellous bone was tested for the region of interest; and 3) We 

adopt an improved channel attention mechanism, named DS module, to improve the interrelation among feature 

map channels and deepen the learning of extracted feature information. 
 

2. Methodology 
 

This paper aims to improve the osteoporosis detection performance for the lumbar spine CT images based on 

an improved Faster R-CNN network. 

 

2.1 Faster R-CNN 
 

The general framework of the proposed DSNet is based on the mainstream detection network of Faster R-CNN 

due to the high performance in many visual detection tasks [18]. In Faster R-CNN, the backbone network extracts 

feature from input images using ResNet [19], LeNet5 [20], AlexNet [21] or GoogLeNet [22]. The backbone 

network loads the officially trained model parameters to extract features, which can reduce the amount of model 

training data and speed up the training speed. Afterward, the target proposal boxes generated by the region proposal 

network (RPN) are projected to the feature map through the region of interest pooling layer (ROI pooling). Finally, 

the features are calculated by classification and bounding regression to achieve end-end detection. The framework 

of Faster R-CNN is shown in Figure 1. 

 

 
 

Figure 1. Faster R-CNN 
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In clinical practice, radiologists commonly distinguish normal, osteoporosis, and osteopenia BMD from the 

thickness of cortical bone and the sparsity of cancellous bone. For the automatic osteoporosis detection task, the 

network needs to pay more attention to the texture details of the whole vertebral body. With respect to these aspects, 

we pronounce a novel attention module and subsequently integrate it into the backbone of ResNet50 to improve 

the interconnection among feature map channels and deepen the learning of the extracted texture feature 

information. As a result, the proposed DSNet extracts more texture features of the entire vertebral body than the 

traditional ResNet50. 

 

2.2 Channel Attention Module 

 

Channel attention is one of the most widely used attention mechanisms in various fields such as natural language 

processing (NLP), computer vision (CV) and speech recognition. The representative ones are SENet [23], SKNet 

[24], ECANet [25], etc. As channel attention modules, they can be easily embedded in the deep learning network 

to achieve improved performance. As shown in subgraph (a) of Figure 2, the input feature map with the size of 

H*W*C is mapped to the feature map with the size of H1*W1*C1 through a transformation of a 3*3 convolution. 

Then the SE attention mechanism establishes the inter-dependence between feature channels through a global 

pooling and a full convolution. Its mechanism is that each channel’s feature map is assigned a weight, which 

represents the correlation between the channel and the key information. The larger the weight, the higher the 

correlation. In this way, it simulates the brain signal processing mechanism of human vision and filters useful 

channel information through the weight. The SK attention mechanism introduces a 5*5 spatial dimension on the 

basis of SE to fuse feature channels, as shown in subgraph (b) of Figure 2. The fusion feature map from two 

different scales captures attention through a global pooling and a full convolution. Then it assigns weights by 

introducing a softmax calculation to select adaptively different spatial scales of information without sacrificing 

the amount of computation. Although SKNet captures target features at different scales, it fuses feature maps 

before weight assignment and allocates the same attention weight to the feature map after the global pooling and 

the full convolution, thereby losing the interactive feature information from different scales and not adequately 

condensing the model's attention ability. 

 

 
 

Figure 2. Schema of different attention modules 

 

2.3 The Improved Dual-Selective Attention Module 

 

This paper proposes a new attention mechanism module named dual-selective, as shown in subgraph (c) of 

Figure 2. The feature map extracted by Backbone is taken as the input. Our attention mechanism module performs 

feature fusion from two different scales of kernel sizes 3 and 5. The global pooling layer and the full convolution 

layer are used to fuse the weights of each channel. Then the two fused branches are superimposed. In order to 

adaptively adjust the multi-scale feature information and capture more accurate information from the target objects 

with different scales, we adopt a dilated convolution with a 3×3 kernel and a dilation size of 2 to fuse the output 

features. Therefore, our DS module can fuse more resolution information in the convolutional feature map from 

different attention weights, and deepen the texture information of the feature map from different scales by the 
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secondary weight calculation. It is conducive to paying more accurate attention to the feature information of the 

image texture. 

In subgraph (c) of Figure 2, the computational steps can be mathematically expressed as follows. The input of 

the channel attention block is a feature map 𝑥 ∈ 𝑅𝑊∗𝐻∗𝐶, in which W, H and C are the width, the height and the 

channel, respectively [26]. The feature map 𝑥 is conducted with two transformations with kernel sizes 3 and 5, 

whose results are represented as xc. The xc is embed the global information by a global pooling. The global pooling 

𝐹𝑃(𝑥𝑐) is calculated as: 

 

𝐹𝑃(𝑥𝑐) =
1

𝐻 ×𝑊
𝛴ⅈ=1
𝑊 𝛴𝑗=1

𝐻 𝑥ⅈ𝑗 (1) 

 

Further, the output feature map 𝑥𝑜𝜖𝑅
1∗1∗𝐶 after the global pooling is the one-dimensional vector. The feature 

map x0 achieves precise and adaptive selections by a full convolution. The full convolution 𝐹𝑐(𝑥𝑜) is calculated 

is: 

 

𝐹𝑐(𝑥𝑜) = 𝑥𝑜𝑊ⅈ𝑗 + 𝐵ⅈ  (2) 

 

where, 𝑊ⅈ𝑗𝜖𝑅
ⅈ∗𝑗 is the weight matrix and 𝐵 ∈ 𝑅ⅈ∗1 is the one-dimensional bias [27]. 

 

2.4 Dual-Selective Channel Attention Network  

 

Dual-selective channel attention network (DSNet) serves as the backbone of the improved Faster R-CNN, which 

is a fusion network of ResNet50 and DS module. As shown in Figure 3, the first stage has a relatively simple 

structure, consisting of a 7*7 convolutional kernel and a 3*3 max pooling layer. The second stage consists of a DS 

module and a residual layer. Stages 3 and 4 consist of one residual layer, respectively. The last stage consists of a 

residual layer and a subsequent DS module. Each residual layer is composed of 1*1, 3*1, and 1*1 convolution 

kernels in sequence. In this way, DSNet improves the network's ability to extract texture features and can use 

transfer learning to improve the stability and training speed of the model. 

 

 
 

Figure 3. Pipeline of the proposed DSNet 

 

3. Experiments 

 

We used axial unenhanced lumbar spine CT images (L1 - L4) as input data and the DXA report of each lumbar 

spine as reference data. All data were manually annotated for the entire lumbar vertebrae and labeled with the bone 

condition category of osteoporosis, osteopenia and normal. The training set and test set were divided at a ratio of 

4:1. The training set is used to train the network model. The performance of the network model is evaluated by the 

test set. 

 

3.1 Subjects and Dataset Description 

 

This study was approved by the ethical board of the affiliated hospital of Hebei university. We retrospectively 

collected personal data of lumbar spine CT scan (full bone window) and DXA examination between May 2016 

and April 2020 from the Department of Orthopedics, Affiliated Hospital of Hebei University, with a total of 50,296 

lumbar spine CT images and corresponding DXA detection results of 1,132 patients. Moreover, we conducted 

screening and disorientation processing for patient privacy. All patients underwent single-photon emission 

computed tomography (CT) scans of the lumbar spine (from L1 to L4). Their gender, height, and weight were 

recorded, and the original images of the cases were in DICOM format. For all data, we performed rigorous data 
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cleaning by learning from medical professionals: (1) Exclude images of poor quality, such as artifacts produced 

by spinal implants (instruments) implanted during surgery; (2) Exclude non-lumbar regions or images showing 

lumbar L1-L4 insufficiency, leaving only the lumbar cones Complete images; (3) Image data that has undergone 

lumbar spine surgery, such as bone nails and bone cement filling; (4) Individuals with a history of fractures, history 

of spinal surgery, primary or metastatic tumors, bone hyperplasia, or vertebral bodies are excluded. Finally, we 

achieved 4805 images (including any of L1, L2, L3 or L4 for the training dataset; including all L1, L2, L3 and L4 

for the test dataset) of 133 patients (men, n=29, women, n=104). The whole vertebral body (including cortical 

bone and cancellous bone) was manually annotated by experienced physicians.  

According to the criteria for diagnosis of osteoporosis defined by WHO [28]. We divided the subjects into three 

groups, namely the normal group with T value ≥ -1.0 SD, the osteopenia group with -2.5 SD < T value < -1.0 SD, 

and the osteoporosis group with T value ≤ -2.5 SD. Finally, we divide all the data at a ratio of 4:1, one part is used 

for the training of network parameters, namely the training set, which includes 3,844 CT images, and the other 

part is used to evaluate the generalization performance of the network, namely the test set, which includes 961 CT 

images. 

 

3.2 Experimental Details 

 

A new convolutional neural network should be firstly initialized the weights. Otherwise, the activation layer 

function will fail to output during the training of deep neural networks, which will result in an explosion of the 

loss gradient and a prolonged convergence of the network. Therefore, we use the weight parameters learned from 

the COCO dataset as the initial network parameters, which can avoid effectively the problem of overfitting during 

the training process and improve the stability and training speed of the model. 

Deep learning model training was performed on a computer equipped with a core I7-7800x 3.5-GHz central 

processing unit, 256 GB memory, and a 2080 Ti graphics processing unit. We used the programming language of 

python 3.7 and the deep learning framework of PyTorch. The loss function of the model was the dice loss, SGD 

was used as the optimizer of the model, the learning rate was set to 0.01, the batch size was 9, and the training 

epoch was 100.  

 

3.3 Evaluation Indicators 

 

To evaluate the performance of the proposed model, the metrics of mean average precision (Map), recall, 

accuracy, and frame per second (Fps) are adopted for object detection. The vertebral bodies of the lumbar CT 

images (IOU ≥ 0.5) are detected and classified correctly as correct predictions, otherwise, it is considered incorrect 

predictions.  

Mean average precision (Map) is the proportion of the predictions for all categories that successfully predicted 

the true target, which is defined as: 

 

𝑀𝑎𝑝 =
𝑇𝑃

𝑁(𝑇𝑃 + 𝐹𝑃)
 (3) 

 

Recall rate (Recall) represents the ability of the model to find all relevant targets, which is the number of true 

targets in the results predicted by the model. It is calculated as follows: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 

Accuracy (Acc) represents the proportion of all predictions that the model predicts correctly. 

 

𝐴𝑐𝑐 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁
 (5) 

 

Frame per second (Fps) is defined as the number of pictures processed by the model per second. The higher the 

frame per second, the faster the model processing speed, and vice versa. 

 

𝐹𝑝𝑠 =
𝐹𝑛

𝑆
 (6) 

 

where, TP is the number of predicted bounding boxes with correct classification and correct bounding box 

coordinates. FP is the number of predicted bounding box classification errors or bounding box coordinates that do 
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not meet the standard. FN is the number of ground truths falsely detected. Number (N) represents the number of 

categories for classification. Fn is the number of picture frames processed by the network. S represents the time. 

 

4. Results 

 

In this study, we use 1,605 CT images of osteoporosis, 1,600 CT images of osteopenia, and 1,600 CT images 

of normal bone density for analysis. To estimate the detection performance of the proposed attention mechanism 

and the novel DSNet, we compared the effects of ResNet50, VGG16, and MobileNet as the backbone under 

different attention mechanisms. 

 

4.1 Comparison of Different Attention Modules Based on ResNet50 

 

We adopted Faster R-CNN as the main framework and used the backbone with different attentional mechanisms 

to extract features. We performed an ablation experiment using the modules of SK, SE, and our DS based on the 

traditional ResNet50 without the integration of the channel attention algorithm. The metrics of Map, Recall, Acc 

with the IOU of 0.5, and Fps were used to evaluate and compare the detection performances among different 

methods. As shown in Table 1, ResNet50 integrated with the attention module achieved increased Map and Recall, 

indicating that the attention module can improve the network’s performance. The integration of DS attention into 

ResNet50 achieved the best performance and the detection speed is the closest to the ResNet50, reaching a Map 

of 83.4%, a Recall of 90.0%, an Acc of 75.9%, and a Fps of 0.1846, indicating that our DS module has better 

performance on network feature extraction. Meanwhile, our DS module improved the shortcomings of other 

attention mechanisms on Acc, with a 1.8% improvement over Resnet50. Therefore, our model was effective at 

fusing multiscale attention weights. 

 

Table 1. Detection results of the resnet50 with different attention modules 

 
Method Backbone Map (%) Recall (%) Acc (%) Fps (f/s) 

 ResNet50 78.2 88.1 74.1 0.1849 

Faster R-CNN ResNet50+SE 80.4 88.5 73.7 0.1834 

 ResNet50+SK 81.4 89.2 73.8 0.1829 

 ResNet50+DS (ours) 83.4 90.0 75.9 0.1846 

 

 
 

Figure 4. The visual detection results of different backbone networks 

 

35



To evaluate the detection performance of the network more intuitively, we performed a visual analysis to 

compare the results of different modules. Figure 4 shows the detection results of different backbone networks with 

the vertebrae’s boundary and a single probability value. The first column is the ground truth of normal bone density, 

osteopenia, and osteoporosis. The remaining columns are the visual detection results of different backbone 

networks, followed by Resnet50, Resnet50+SE, Resnet50+SK, and Resnet50+DS. All backbone networks 

accurately identified the normal class. But because the texture feature of osteopenia is more difficult to distinguish 

than another two classes, the Resnet50 and Resnet50+SE mistakenly identified osteopenia as normal. Meanwhile, 

the Resnet50 mistakenly identified osteoporosis as osteopenia, indicating that the attention module can improve 

the network’s detection performance. This can seriously affect the clinician's diagnosis and delay the patient's 

treatment. For the three categories, our Resnet50+DS module can accurately identify with the highest confidence. 

It can be seen that the ResNet50+DS has a higher detection efficiency for improving the network’s attention ability. 

 

4.2 Comparison of Our Module Network with Other Backbone Networks 

 

To verify the applicability of the proposed DS attention module, we tested the performance of different 

backbone networks with and without the fusion DS attention module. To be fair, these three sets of comparative 

experiments were tested under the same training conditions and the same data set (4,805 images of 133 patients). 

As shown in Table 2, ResNet50 with the DS attention module has improvements of 0.54%, 0.19%, and 0.18% in 

Map, Recall, and Acc with a 0.0003f/s decrease in Fps. We further compared the performance with or without the 

DS attention module on VGG [29], and MobileNet [30] and found that the integration of the DS attention module 

would also reduce their speed. The VGG16 integrated with the DS attention module achieved increased Map, 

Recall, and Acc. The integration of DS attention into MobileNet achieved better performance on Map and Recall 

with a 0.3% reduction in Acc. Among ResNet50 with the integration DS module has the best improvement. In 

general, our proposed DS module is also applicable to other backbones and the fusion method of ResNet50 had 

the best effect, which can effectively improve the feature extraction ability of the network. 

 

Table 2. Detection results of the faster R-CNN with different backbones 

 
Method Backbone DS Map (%) Recall (%) Acc (%) Fps (f/s) 

 
ResNet50 

 78.2 88.1 74.1 0.1849 

 √ 83.4 90.0 75.9 0.1846 

Faster 

R-CNN VGG16 
 80.0 88.5 71.1 0.1873 

 √ 80.2 89.9 71.8 0.1870 

 
MobileNet 

 80.9 86.4 73.0 0.1856 

 √ 83.0 88.1 72.7 0.1846 

 

4.3 Comparison of Our Method with Other Methods 

 

Table 3 illustrated the comparative results between our improved network method and the other osteoporosis 

prediction networks. Our method produced remarkable recall and detection categories on the biggest number of 

images. The traditional osteoporosis prediction methods had the results of the two classifications. Our method 

added a detection category of osteopenia to alert patients before they reach the severity of osteoporosis. As we all 

know, as the detection category increases, the detection effect of the network decreases. Therefore, the Acc of our 

proposed method was reduced than the other two-classification tasks. But our proposed method achieved the 

highest Recall of 89.2% with a tri-classification identification of osteoporosis, osteopenia, and normal. (We have 

no the results of AUC due to the tri-classification detection task.) Thus, the overall detection and classification 

effect of our method achieved better performance and provide value for the prediction of three categories of bone 

status in the future [31]. 

 

Table 3. Comparative result of the proposed method with other methods 

 
Methods Number of images Category Acc (%) AUC (%) Recall (%) 

Machine learning [32] 120 2 - 83.0 - 

LeNet [33] 4000  2 88.4 - - 

3D U-net [14] 200  2 - 92.7 85.7 

VGGnet16+BCR [16] 334 2 71.0 74.0 - 

ENSEMBLE [31] 247 2 92.0 - 88.0 

Faster R-CNN+ResNet50+DS (Ours) 4805  3 75.9 - 90.0 
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5. Conclusions 

 

This study proposes a new deep-learning method for the automatic detection of lumbar vertebrae and 

classification of bone status using 4,805 lumbar CT images of 133 patients. We train the network model with a 

large amount of clinical data and compare the test results with DXA diagnosis results. Meanwhile, the network 

model has been improved and optimized. At present, the prediction of osteoporosis is based on the measurement 

of bone density. However, bone density can only reflect about 70% of the degree of osteoporosis. The geometric 

characteristics of bone microstructure and the heterogeneity of density structure also have a certain impact on the 

diagnosis of osteoporosis. Therefore, the thickness of cortical bone and the thinning of cancellous bone are the 

basis for doctors to judge whether there is osteoporosis. Different from previous studies, our model is highly close 

to the doctor's diagnostic level. The entire lumbar vertebral body including cortical and cancellous bones is 

annotated as regions of interest, as the dataset for model training. 

In this paper, we propose a new backbone integrating ResNet50 and DS module based on Faster R-CNN. In this 

network, the lumbar vertebral body is identified and detected first, and the detection results are marked in the form 

of rectangular boxes with predicted confidence. Then the vertebral body structure is extracted to class the 

categories of osteoporosis, osteopenia, and normal. The proposed module improves the performance of feature 

extraction and pays more attention to the texture features of cortical and cancellous bones. Compared with other 

attention mechanisms, our module achieves an improvement on Map, Recall, and Acc reaching 83.4% and 90.0%, 

and 75.9% respectively. The feasibility, effectiveness, and compatibility of the model are also verified. 

This paper can expand the application of artificial intelligence-assisted diagnosis systems and contribute to the 

clinical identification of osteoporosis. To a certain extent, it can solve the problem that fracture osteoporosis cannot 

be detected in time to improve the treatment rate of osteoporosis so that it has important theoretical value and 

clinical significance. 
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