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Abstract: An estimated 9.6 million deaths, or one in every six deaths, were attributed to cancer in 2018, making it the second highest cause of death worldwide. Men are more likely to develop lung, prostate, colorectal, stomach, and liver cancer than women, who are more likely to develop breast, colorectal, lung, cervical, and thyroid cancer. 

The primary goals of medical image segmentation include studying anatomical structure, identifying regions of interest (RoI), and measuring tissue volume to track tumor growth. It is crucial to diagnose and treat liver lesions quickly  in  order  to  stop  the  tumor  from  spreading  further.  Deep  learning  model-based  liver  segmentation  has become very popular in the field of medical image analysis. This study explores various deep learning-based liver lesion segmentation algorithms and methodologies. Based on the developed models, the performance, and their limitations of these methodologies are contrasted. In the end, it was concluded that small size lesion segmentation, in particular, is still an open research subject for computer-aided systems of liver lesion segmentation, for there are still a number of technical issues that need to be resolved. 
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1. Introduction

One of the most prevalent cancers in the world with a high mortality rate is liver cancer. The gold standard for diagnosing liver diseases such cirrhosis, liver cancer, and fulminant hepatic failure is a medical imaging modality like computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) [1]. 

Among  them,  CT  scans,  which  have  a  good  signal-to-noise  ratio  and  excellent  resolution,  are  currently  the modality most frequently employed for diagnosing and treating liver lesions or tumors. The accurate identification of liver cancer by doctors, together with knowledge of the shape, volume, and location of the lesion, can lead to more effective patient care. Clinicians must manually segment liver lesions on a slice-by-slice basis, which takes time and is error-prone. As a result, the accurate and automatic segmentation of the liver and hepatic lesions is required for computer assisted diagnosis of liver illness and for creating a plan for liver transplant surgery. 

For volumetric or morphological analysis, segmentation is the technique of clearly defining an organ of interest on a multi-planar computed tomography (CT) or magnetic resonance imaging (MRI) image [2]. Although many deep learning-based models have been created, segmenting liver lesions is still a popular field of research. Several survey papers on the segmentation of the liver have been published [1-3]. But to the best of our knowledge, there are not many survey publications on the segmentation of liver lesions. 

This study carries out a critical analysis of some of the published works related to liver lesion segmentation using deep learning models. The authors compared various deep learning models based on the models proposed, datasets, performance, and disadvantages of each model, and presented some major challenges encountered while segmenting liver lesions. Finally, it was concluded that computer aided liver lesion segmentation is still an open research problem, especially facing small size lesions, for the available techniques have many limitations to be addressed. 

2. Liver Lesion Segmentation Models

This study summarizes the recent studies on medical image analysis for the segmentation of liver lesions or https://doi.org/10.56578/ataiml010108 
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tumors. The majority of the research is built on supervised learning algorithms that train a model for a particular task, like liver or liver lesion segmentation, using labeled inputs. The deep learning techniques are an addition to these  strategies  [4].  The  authors  would  discuss  a  variety  of  deep  learning  models  that  have  been  created  for segmenting liver lesions or tumors. 

A model for automatically segmenting the liver and lesions in abdominal CT images was created by Christ et al.  [5]  using  cascaded  fully  convolutional  neural  networks  (CFCNs)  and  dense  3D  conditional  random  fields (CRFs). Cascaded FCNs were trained in two steps: first, an FCN was trained to segment the liver as a region of interest (ROI), which was then used as input by a second FCN. The second FCN is responsible for segmenting lesions from the anticipated liver ROI from the previous stage. The segmentation results generated by CFCN are then greatly improved in quality using a dense 3D conditional random field, as a step of post processing. Using the dataset 3DIRCAD, CFCN models were trained through two-fold cross-validations on CT scans of the abdomen. 

The results show that CFCN-based semantic liver and lesion segmentation achieved Dice scores of 94.3% for liver segmentation. 

A fully convolutional neural network-based model, known as multi-channel FCN, was put forth by Sun et al. 

[6] for the segmentation of liver lesions from CT scans. The model is trained for each CT scan slice and coupled with its high-level features, for each slice of a contrast-enhanced CT image gives some kind of information. Two datasets based on CT images, 3Dircadb and JDRD, were used to evaluate the model. Compared to the earlier model

[5],  the  suggested  MC-FCN  delivers  improved  values  for  VOE,  RVD,  ASD,  and  MSD,  according  to  model performance data. 

Given the restricted GPU capacity and training data, Xiao [7] suggested a 2.5D Deep CNN model that accepts a stack of neighboring slices as input and produces a 2D segmentation map corresponding to the center slice. They created a deep CNN model with 32 layers by utilizing both the long-distance skip connections of UNet [8] and the short-distance residual connections of ResNet [9]. The proposed Deep CNN model was trained and validated using the LiTS dataset. The intensity values of the input image were reduced to the range of [200, 200] HU in order to remove  the  unnecessary  image  features,  but  no  further  specific  pre-processing  was  performed.  To  reduce  the overall calculation time, two Deep CNN models were trained. The first was used to construct a rapid but coarse segmentation of the liver, and the second was applied to create a more detailed segmentation map of the liver and liver  lesion.  The  suggested  model's  residual  connections  aid  in  information  flow  both  forward  and  backward through the network and improve model performance. Using the LiTS dataset, two networks with the same design were  trained.  The  Dice  score  for  this  approach  was  0.67.  Lesion  segmentation  accuracy  might  still  be  better, therefore more advancements are obviously needed. 

Due to limitations on the addition of additional layers, fully convolutional networks with VGG-16 architecture find it challenging to learn more discriminative features associated with various classes. Convolutional filters' wide receptive fields in FCNs cause them to provide coarse outputs at lesion edges. ResNet is used by Bi et al. [10] to accomplish the liver lesion segmentation task, and to get over these limitations. Thanks to the ResNet's residual skip connections between convolutional layers, the issue of training accuracy decay in deeper networks was solved, enabling the insertion of additional layers to learn more discriminative features. In addition, the model was able to define  boundaries  more  precisely  by  using  a  unique  cascaded-ResNet  architecture  with  multi-scale  fusion  to gradually learn and infer the borders of the liver as well as liver lesions. The suggested model is trained and tested on the LiTS dataset. To minimize the overall per-pixel loss, the network's weight parameters are iteratively updated via stochastic gradient descent (SGD). The segmentation results were greatest when cascaded-ResNet with multi-scale fusion was used. The Dice score for liver segmentation and the segmentation of liver lesions is improved by 3.94% and 20.13%, respectively, suggesting that the proposed model is more accurate than the VGG-Net-based FCN architecture. 

For the ISBI 2017 Liver Tumor Segmentation Challenge, Chlebus et al. [11] submitted a strategy that uses a 2D 

U-Net [8] network and a random forest classifier to automatically segment liver lesions (LiTS). Here, the liver segmentation task is first carried out to focus the network just on ROIs that may contain liver tumors. A trained neural network identifies the lesion candidates from within the liver ROIs, and then a random forest classifier is adopted to further refine them, producing the final lesion segmentation result. Typically, there are two steps: The liver mask is refined in the first step using an ensemble of three orthogonal 2D neural networks built on the U-Net architecture,  and  in  the  second  step  using  a 3D  U-Net.  Using  the  LiTS  dataset  for  evaluation  and  training,  the suggested architecture obtains a Dice score of 0.65. To convert the numbers to Hounsfield units, DICOM rescale parameters are adopted. As a result, the convolutional networks' padding needed a fill value of  -1000HU. After adding a threshold value of 0.5 to the soft-max output of the 3D U-net output, the researchers employed the biggest connected component to obtain the final liver mask. 

Vorontsov et al. [12] put forward a model for the joint segmentation of the liver and liver tumor in CT images. 

They created a model utilizing two cascaded FCNs and trained it in an end-to-end manner, with 2D axial slices as input. The FCNs in use have short- and long-range skip connections and a U-Net-like structure. Using the LiTS 

dataset, the suggested model was assessed. Rather than preprocess the dataset, the researchers only performed the minimal post-processing on the predicted results. The suggested model is a one stage model trained in an end-to-62

end manner. An axial slice serves as the first FCN's input, and the output is sent to a linear classifier to produce a probability map for each pixel containing the liver. Axial slices from the output of the first FCN are imported to the second FCN. The proposed model ended up with a DICE score of 0.661 for tumor segmentation and 0.951 for liver segmentation. However, the segmentation performance can be further enhanced by modifying the model to process the complete CT volume as opposed to only slices. 

The majority of the models that have been created for the segmentation of liver tumors use FCNs (2D and 3D) as  their  main  building  blocks.  But  these  models  have  the  drawback  of  not  being  able  to  fully  utilize  spatial information along the third dimension. Besides that, 3D convolutions require high computational costs and GPU 

memory usage, but the high memory consumption limits the network depth as well as the filter's field of view. A hybrid densely connected UNet (H-DenseUNet) was created by Li et al. [13] to circumvent the drawbacks of 2D 

and 3D convolutions. H-DenseUNet is made up of a 2D DenseUNet for precisely determining intra-slice features and a 3D part for incorporating volumetric context in a hierarchical manner for segmenting the liver and tumors. 

The learning process for H-DenseUNet was designed end to end by the researchers, who used a hybrid feature fusion layer to maximize both the inter- and intra-slice representations. The model achieved a global DICE score of 82.4% on the LiTS dataset and a Dice per case score of 72.2% when tested on the 3DIRCAD dataset. 

To  segment  liver  lesions,  Chen  et  al.  introduced  a  2D  segmentation  architecture  known  as  Feature  Fusion Encoder-Decoder network [14]. The technique employs an attention procedure in which low-level features holding image details are coupled with high-level features conveying semantic information. Furthermore, to make up for the lost details during the up-sampling process, a dense up-sampling convolution is used instead of typical up-sampling  procedures.  Additionally,  residual  convolutional  blocks  are  included  to  further  improve  the  target boundary information. The Dice score for their strategy was 0.766 generally and 0.650 per case. In comparison to 2.5D and 3D models, the proposed architecture shows highly promising results. It is also lightweight and simple to install, with good generalization properties that make it easily transferable to other disciplines. 

A pipeline made up of 2D U-Nets with dense connections and a Tversky loss function was suggested by Karsten et  al.  [15].  Prior  to  training  a  densely  linked  U-Net  with  a  Tversky  loss  function  to  segment  liver  tumors,  the researchers trained a regular U-Net model to segment the liver. They employed a cascaded pipeline to shorten the training period.  The  LiTS  dataset  was  employed  for data  segmentation.  In  the  LiTS  competition,  the  proposed architecture  outperformed  the  competitors  in  terms  of  relative  volume  difference  (RVD),  average  symmetric surface distance (ASSD), maximum symmetric surface distance (MSSD), and volume overlap error (VOE). This suggests that when tumors are reliably diagnosed, the proposed architecture for segmenting liver lesions functions effectively.  If  some  of  the  issues,  such  as  high  false  positive  predictions,  are  fixed,  this  architecture  can  be improved even further. 

Jiang et al. [16] created an attention-based hybrid network that incorporates long and short skip connections as well  as  soft  and  hard  attention  mechanisms.  The  researchers  also  suggested  a  cascaded  network  based  on segmenting liver lesions, segmenting the liver, and localizing the liver. Additionally, they developed a focal binary cross entropy loss function to fine-tune the lesion segmentation network and a joint dice loss function to train the liver localization network, producing accurate 3D bounding boxes for the liver. The suggested architecture trained a network by removing 110 examples from the LiTS dataset before comparing it to 117 cases from the clinical dataset and the 3DIRCADb dataset. The results on the test dataset show that, the suggested network is able to segment liver lesions with a Dice score of 0.620.07 and faster convergence. 

A cascaded Res-UNet that simultaneously segments the liver and liver lesion was created by Xi et al. [17]. With the proposed cascaded ResUNet, the researchers assessed  five distinct loss functions:  Weighted Cross Entropy (WCE), Dice Loss (DL), Weighted Dice Loss (WDL), Tversky Loss (TL), and Weighted Tversky Loss (WTL). 

To segment the liver and liver lesions simultaneously on the CT volume, they then ensembled all of the cascaded ResUNet  models  that  had  been  trained  with  five  different  loss  functions.  The  proposed  ensembled  model  was trained  and  tested  on  the  LiTS  dataset.  The  proposed  ensembled  model  outperforms  the  individual  model  for segmenting the liver and lesions, as per experimental results. For liver segmentation and liver lesion segmentation, it obtained Dice scores of 94.9% and 75.2%, respectively. 

To address the problems with traditional UNet, Seo et al. [18] modified it by introducing object dependent up sampling and altering the residual path and skip connections. The improved UNet [18] uses an optimal number of pooling operations to draw higher level global features for smaller objects, remove high level features of high-resolution edge information for larger objects, and cease the replication of low-resolution data of features. Using the LiTS dataset, the generated model's performance was evaluated. The model outperformed all others with a Dice  score  of  89.72%.  As  compared  to  traditional  UNet,  the  proposed  modified-UNet  can  operate  on  edge information and morphologic information of the objects more successfully. 

3. Major Challenges

There is a strong demand for precise and automatic liver and tumor segmentation to aid clinicians in diagnosis and treatment planning as liver cancer is one of the leading causes of cancer mortality today. 
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The majority of researchers noted the following difficulties in segmenting the liver and lesions: a) Low intensity contrast between the liver and other nearby organs. 

b) It is challenging to segment liver tumors since they might vary in size, shape, location, and quantity within a patient. 

c) Some tumors lack distinct borders, which limits the effectiveness of segmentation approaches. 

d) The  majority  of  CT  images  have  anisotropic  dimensions  with  significant  fluctuations  along  the  z-axis direction, which makes segmentation approaches even more difficult. 

Figure 1 gives the examples of contrast-enhanced CT scans demonstrating vast dissimilarity of size, shape and position of liver lesion. Note that red regions represent liver and green regions represent liver lesions [13]. 

Figure 1. Examples of CT scans of liver 

In medical imaging, a major challenge to lesion segmentation is the imbalance between lesion class and non-lesion class, and the imbalance in tumor size, i.e., bigger size tumors dominate smaller ones when multiple tumors appear in a single modality. The class imbalance problem has been addressed by a number of strategies, but the tumor size imbalance problem has not received as much attention. As a result, many of these techniques either fail to  partition  smaller  size  tumors  or  produce  less  than  ideal  results.  To  overcome  the  challenge  of  minor  lesion segmentation,  Li  et  al. [19]  devised  a  three-layer  curriculum  learning  technique  for  deep  neural  networks.  To effectively segment hepatic lesions, Dey and Hong [20] suggested a cascaded network that incorporates both 2D 

and 3D CNNs. In this network, a 3D network detects minor lesions that are frequently missed by a 2D segmentation model,  while  a  2D  network  segments  the  liver  on  a  slice-by-slice  basis  and  detects  larger  lesions.  The  model receives a Dice score of 68.1% on the LiTS dataset. A loss reweighting strategy was presented by Shirokikh et al. 

[21] to improve the capacity of the deep learning network to detect tiny size lesions. Further research is required concerning the segmentation of tiny liver lesions using the proposed networks. It is necessary to build a network that will concentrate on both small and large lesions at the same time and enhance the model's overall performance. 

4. Conclusions

In medical imaging modalities, the anatomy or region that is of interest typically only takes up a small amount of the modality. Given this, the learning process frequently becomes stuck in local minima of the cost function, resulting in a model with outcomes that are heavily biased towards the background rather than the foreground. 

Foreground zones are hence frequently overlooked or only partially noticed [22]. The efficacy of the segmentation models is impacted when there are several lesions per modality and large size lesions  predominate smaller size lesions. As a result, smaller size lesions are frequently ignored. 

For the purpose of early cancer stage diagnosis, clinical disease progression tracking, and treatment response evaluation,  segmentation  of  smaller  size  lesions  is  crucial.  Medical  professionals  will  not  be  able  to  correctly diagnose a disease or they may completely miss the diagnosis when the disease is in its early stages if smaller size lesions go untreated. The various liver lesion segmentation methods covered in preceding sections are summarized in Table 1, along with the models suggested, their performance, the datasets used, and any drawbacks. 

This work thoroughly analyzes the various deep learning models for segmenting liver lesions, and notes some significant difficulties encountered when segmenting liver lesions. Future research will focus on finding ways to get around the drawbacks of segmenting liver lesions of different sizes. 
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Table 1.  Deep learning-based liver lesion segmentation methods Paper 

Dataset 

Model 

Performance 

Limitation/s 

The method is complex and 

Cascaded CFNs 

time-consuming, as it 

DICE (%) for liver=94.3; VOE 

with dense 3D 

requires an additional post 

Christ et al. [5] 

3DIRCAD 

(%)=10.7; RVD (%) =-1.4; ASD 

conditional random 

processing step using 

(mm) =1.5; MSD (mm) =24.0

field (CRFs) 

CRFs, and adopts two 

CFNs. 

3DIRCAD:

Multi-channel FCN 

 

VOE (%)=15.6 ± 4.3; RVD 

to segment liver 

(%)=5.8±3.5; ASD= 2.0 ± 0.9%

3DIRCAD 

lesions from 



Sun et al. [6] 

JDRD:

and JDRD

 

 

multiphase 

VOE=8.1±4.5%; RVD=1.7 ± 

contrast-enhanced 

1.0%; 

CT scans





ASD=1.5 ± 0.7% 

The accuracy of lesion 

Deep CNN model 

Dice=0.67; VOE=0.45; 

segmentation needs further 

Xiao [7] 

LiTS 

with 32 layers that 

RVD=0.040; ASSD=6.660; 

improvement, and the 

operates in 2.5D 

MSSD=57.93 

training time is too long. 

Cascaded deep 

The method excels in liver 

Liver Dice=95.90; Lesion 

residual network 

segmentation but does not 

Bi et al. [10] 

LiTS 

Dice=50.01; Liver Jaccard=92.19; 

with ability to add 

achieve the ideal effect in 

Lesion Jaccard=38.79

more layers

 



segmenting liver lesions. 

2D U-Net network 

Chlebus et al. 

LiTS

with random forest 

Accuracy=90%; Dice score =0.65

[11]





 

classifier 

Two cascaded 

FCNs with U-Net-

Dice (liver segmentation) =0.951; 

The model must process 

Vorontsov et al. 

like structure, 

LiTS

Dice (liver lesion segmentation) 

input slice by slice, which 

[12]



 

having short- and 

=0.661

degrades the performance. 

long-range skip 



 

connections 

LiTS: 

Dice Score=82.4 

3DIRCAD: 

The model cannot segment 

LiTS and 

Hybrid densely 



Li et al. [13] 

Dice Score=0.937 ± 0.02; VOE 

small size liver tumors 

3DIRCAD 

connected UNet 

(%) =11.68 ± 4.33; RVD (%) =-

effectively. 

0.01 ± 0.05; ASD (mm) =0.58 ± 

0.46; RMSD (mm) =1.87 ± 2.33 

Feature fusion 

encoder decoder 

Dice per case=0.650; 

Chen et al. [14] 

LiTS 

network with 

Dice global=0.766 

residual blocks 

2D Tiramisu 

Dice Avg=0.57; Dice global=0.66; 

Karsten et al. 

network with 

VOE=0.34; RVD=0.02; 

The false prediction rate is 

LiTS



[15]





Tversky loss 

ASSD=0.95; MSSD=6.81; 

very high. 

function 

RMSD=1.60 

3DIRCADb Dataset: 

Dice Score=0.62±0.07; VOE (%) 

LiTS and 

Attention-based 

The liver lesion 

Jiang et al. [16] 

=1.354; RVD (%) =0.129; ASSD 

3DIRCAD 

hybrid network 

segmentation is inefficient. 

(mm) =1.074; MSSD (mm)



=6.271; RMSD (mm) =1.412

Liver Segmentation: 

VOE=0.095; RVD=0.021; 

Ensembled model 



Xi et al. [17] 

Dice=94.9%

LiTS





with cascaded 

Liver Lesion Segmentation:

ResUNet





VOE=0.379; RVD=-0.159; 

Dice=75.2% 

Modified UNet 

LiTS: 

with residual path 

Dice Score=89.72%; 

The loss function, MSE, 

LiTS and 

Seo et al. [18] 

and object 

VOE=21.93%; RVD=-0.49%

does not adequately capture 

3DIRCAD





dependent up-

3DIRCAD: 

structure similarity. 

sampling   

Dice Score=68.14% 

VOE= Volumetric Overlap Error, RVD= Relative Volume Difference, ASD= Average Symmetric Surface Distance, MSD= Maximum Surface Distance, RMSD= Root Mean Square Symmetric Surface Distance. 
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Abstract: An estimated 9.6 million deaths, or one in every six deaths, were attributed to cancer in 2018, making
it the second highest cause of death worldwide. Men are more likely to develop lung, prostate, colorectal, stomach,
and liver cancer than women, who are more likely to develop breast, colorectal, lung, cervical, and thyroid cancer.
The primary goals of medical image segmentation include studying anatomical structure, identifying regions of
interest (Rol), and measuring tissue volume to track tumor growth. It is crucial to diagnose and treat liver lesions
quickly in order to stop the tumor from spreading further. Deep learning model-based liver segmentation has
become very popular in the field of medical image analysis. This study explores various deep learning-based liver
lesion segmentation algorithms and methodologies. Based on the developed models, the performance, and their
limitations of these methodologies are contrasted. In the end, it was concluded that small size lesion segmentation,
in particular, is still an open research subject for computer-aided systems of liver lesion segmentation, for there
are still a number of technical issues that need to be resolved.

Keywords: Lesion segmentation; Computed Tomography (CT); Magnetic Resonance Imaging (MRI); Deep
learning

1. Introduction

One of the most prevalent cancers in the world with a high mortality rate is liver cancer. The gold standard for
diagnosing liver diseases such cirrhosis, liver cancer, and fulminant hepatic failure is a medical imaging modality
like computed tomography (CT), magnetic resonance imaging (MRI), or positron emi n tomography (PET) [1].
Among them, CT scans, which have a good signal-to-noise ratio and excellent resolution, are currently the
modality most frequently employed for diagnosing and treating liver lesions or tumors. The accurate identification
of liver cancer by doctors, together with knowledge of the shape, volume, and location of the lesion, can lead to
more effective patient care. Clinicians must manually segment liver lesions on a slice-by-slice basis, which takes
time and is error-prone. As a result, the accurate and automatic segmentation of the liver and hepatic lesions is
required for computer assisted diagnosis of liver illness and for creating a plan for liver transplant surgery.

For volumetric or morphological analysis, segmentation is the technique of clearly defining an organ of interest
on a multi-planar computed tomography (CT) or magnetic resonance imaging (MRI) image [2]. Although many
deep learning-based models have been created, segmenting liver lesions is still a popular field of research. Several
survey papers on the segmentation of the liver have been published [1-3]. But to the best of our knowledge, there
are not many survey publications on the segmentation of liver lesions.

This study carries out a critical analysis of some of the published works related to liver lesion segmentation
using deep learning models. The authors compared various deep learning models based on the models proposed,
datasets, performance, and disadvantages of each model, and presented some major challenges encountered while
segmenting liver lesions. Finally, it was concluded that computer aided liver lesion segmentation is still an open
research problem, especially facing small size lesions, for the available techniques have many limitations to be
addressed.

2. Liver Lesion Segmentation Models

This study summarizes the recent studies on medical image analysis for the segmentation of liver lesions or
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