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Abstract: Underwater image processing area has been a central point of interest to many people in many fields 

such as control of underwater vehicles, archaeology, marine biology research, etc. Underwater exploration is 

becoming a big part of our life such as underwater marine and creatures research, pipeline and communication 

logistics, military use, touristic and entertainment use. Underwater images are subject to poor visibility, distortion, 

poor quality, etc., due to several reasons such as light propagation. The real problem occurs when these images 

have to be taken at a depth which is more than 500 feet where artificial light needs to be introduced. This work 

tackles the underwater environment challenges such as as colour casts, lack of image sharpness, low contrast, low 

visibility, and blurry appearance in deep ocean images by proposing an end-to-end deep underwater image 

enhancement network (WGH-net) based on convolutional neural network (CNN) algorithm. Quantitative and 

qualitative metrics results proved that our method achieved competitive results with the previous work methods 

as it was experimentally tested on different images from several datasets. 
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1. Introduction

In the last decade, various techniques and algorithms were proposed to solve the problem of distorted underwater

images which is caused due to several reasons such as light attenuation, water type, depth of water level and 

different wavelengths of light rays. Light attenuation limits the visibility distance, at about five meters or less in 

turbid water. It is not only caused by absorption that removes light energy, but also by scattering which changes 

the direction of light path. Backscattering is one of the main challenges that face underwater images. It happens 

due to flash lighting up the small dust-like particles present between the lens of the camera and the object that has 

been photographed. It affects the images negatively and they appear as if they are taken in a dust storm.  

Several approaches were used to enhance the images taken underwater; however, none of these approaches were 

suitable. Some approaches did not yield accurate results and others were expensive to implement depending on 

the use of hardware such as professional cameras. Under water images are taken by different types of compact 

digital underwater cameras; however, to achieve a high-quality image very expensive cameras such as Sony 

RX100 V1, Olympus Tough TG-6 and many others should be used which are not a practical solution. Less 

expensive cameras can be used to take the images that have the enhancing algorithm integrated inside it. This 

provides an affordable solution; however, a very effective model should be designed to get high satisfying results. 

Improving the software side will decrease the dependencies on the hardware as a result expenses will be decreased. 

Images taken underwater participate in many fields such as oceanic engineering, discovering new creatures, etc. 

Marine biologists use underwater images for many uses such as fish classification, monitoring the health level of 

the marine system and identifying new species without the need to remove them. It also has a great economic 

impact in projects such as inspection for underwater pipelines and cables for gas and oil industry. Moreover, 

Marine snow is the continuous flow of particles that starts from the top levels of the ocean and accumulates at the 

seafloor. As a result, it introduces some sort of noise to the images taken under water and increases the negative 

effects of scattering. Underwater vehicle navigation is used in archaeological and geological needs. Moreover, it 
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is also useful for international telecommunications traffic. 

As illustrated in Figure 1, blue and green light have short wavelengths and as a result they have higher energy 

and can penetrate much more deeply than red light. The long wavelengths such as red can only penetrate to a very 

shallow depth that is not more than approximately 50 meters. This is the reason why underwater images appear 

bluish green unlike normal images taken above water [1]. It is known that different salinity levels of water, affects 

the amount of different wavelengths absorption. 

 

 
 

Figure 1. Underwater optical imaging in shallow water and deep sea [1] 

 

Several models with different techniques were introduced in the past decade to improve the appearance and 

quality of underwater images, trying to restore colors and details so that they are more useful. These methods can 

be categorized into three main categories, model-free, model-based, and data-driven network models. 

 

2. State of the Art Techniques 

 

Various methods were proposed by other researchers and these methods can be categorized into 3 categories: 

Model -free methods, Model-based methods (also known as Model-agnostic Methods) and Data-Driven methods. 

 

2.1 Model-Free Methods 

 

At the beginning, researchers used model-free methods in enhancing underwater images. Model free methods 

are the simple enhancement techniques used in image processing. They can be further categorized into two 

subcategories that use either the spatial domain or the frequency domain. Spatial domain methods use simple 

algorithms to modify pixel values of an image without modelling the process of image formation. Some examples 

of this type of methods are histogram equalization, along with its different versions such as contrast limited 

adaptive histogram equalization (CLAHE) [2], white balancing and its versions for example automatic white 

balancing [3]. Moreover, in 2007, new color constancy method was proposed namely, Grey-Edge hypothesis based 

on using grey edge algorithms that assume that the average edge difference is achromatic. Color constancy is 

mainly the ability to measure object’s colors independent of the value of light source present in the image [4]. 

These methods improved the visual quality to some extent, but accentuated noise, introduced artifacts and caused 

some color distortions.  

Furthermore, transform (frequency) domain methods map image pixels into a specific domain where the 

physical properties are exploited to perform adjustments. Most used transformers include Fourier and wavelets [5]. 

It improved the quality of the images by amplifying the high frequency component and suppressing the low 

frequency ones. Underwater images suffer from the problem of having a small difference between the high 

frequency component of the edge and the low frequency component of the background. As a result, approaches 

such as holomorphic filter [6] were used. 

Later on, in 2016 and 2017, Khan et al. [7] and Vasamsetti et al. [8] proposed two methods that were wavelet 

based that can be used as a pre-processing step to increase the accuracy of high-level underwater computer vision 

tasks. Given the fact that these methods performed well in smearing noise, they introduced artefacts and made 
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noise more visible. Moreover, these methods suffered from low contrast, color deviations and loss of details [9]. 

Underwater environment conditions made these methods insufficient for enhancing underwater images as they 

cannot recover high quality underwater images.  

 

2.2 Model-Based Methods 

 

To overcome the drawbacks of model-free methods, model-based methods were used and proved to yield better 

outcomes. Model-based methods combines several model-free methods into a single image aiming to modify the 

image pixel values and as a result, improve the quality of the image. They can be divided into two subcategories 

which are physical and non-physical methods. One example of a non-physical model-based is two-step approach 

that was proposed in the research [10]. It contained both contrast enhancement and colour correction algorithms 

which generated promising outcomes and can be used in real-time applications. According to 8-bit images, the 

mean value is equal to 128. Based on this hypothesis, the colour correction technique used is based on piecewise 

linear transformation to spread the mean of the image until it reaches 128. A positive coefficient is used to ensure 

that the shifting range is logical to avoid overcorrection. Later, the objects and important details in the images 

should be highlighted and this is achieved by enhancing the contrast. This method proved to be suitable for real 

time applications. 

In Jan. 2018, a method was proposed that did not depend on information about the underwater conditions for 

the image captured [11]. The original degraded image passes by a sequence of steps, starting with white balancing 

which has a main purpose of removing the colour casts that were introduced by underwater light scattering. Once 

a white-balanced version is produced, the image is passed in parallel to two other techniques, gamma correction 

and sharpening. Sharpening technique uses un-sharp masking principle in which a version blurred of the original 

image is added to the original image itself. This results in an image that is less blurred. These two output images 

are merged based on a weight map of multistate fusion algorithm and finally an enhanced image is produced. The 

main drawbacks of this method are that some haze is still present and could not be removed particularly in images 

that are taken in regions very far from the camera and that the colours of the images could not always be fully 

restored [11]. Another line of research modified existing algorithms such as Dark Channel Prior (DCP) [12] were 

combined with algorithms such as wavelength dependent compensation [13] to restore underwater images. 

Underwater Dark Channel Prior (UDCP) was proposed given the fact that information of the red channel is 

undependable [14]. 

Retinex based models were also made good use of in the research proposed by Zhang et al. [15]. The 

enhancement method consisted of colour correction, layer decomposition and enhancement. Fu et al. [16] proposed 

an extended multi-scale retinex-based method that was used also for general reasons such as enhancing sandstorm 

images. Physical model-based methods usually follow same, specific procedure. It treats the enhancing problem 

as an inverse problem. The procedure starts with building the model and then estimating the unknown parameters 

and finally handling the inversed problem. The current techniques implemented using physical model-based 

methods suffer from unstable and visually unsatisfying outcomes because they are built on the assumption that the 

attenuation coefficients are uniform across as they are only properties of the water. 

 

2.3 Data-Driven Methods 

 

Over the last ten years, deep learning was made good use of in low-level vision problems. However, the 

performance and the amount of deep learning-based enhancement techniques for underwater images does not 

match the success of recent deep learning based low level vision problems. This is because trained proposed CNN 

models on synthetic underwater images does not always generalize to real world cases. In 2017, Perez et al. [17] 

proposed a method based on CNN that trains an end-to-end transformation model between the distorted images 

and its corresponding clear images. Another method was proposed by Wang et al. [18] named UIEnet (Underwater 

Image Enhancement-net) that aimed to correct colours and remove the haze. It adopted a pixel disrupting strategy 

to extract the inherent features of local patches available in the images. This helped to fasten the model 

convergence and improved its accuracy. Later, in 2018, Anwar et al. [19] proposed a model named Underwater 

Convolutional Network (UWCNN) and used it to reconstruct the clear underwater latent images. It was trained on 

images from different databases covering images from different scenes and conditions. This method was able to 

tackle the problem of colour casts; however, due to the limitation of training images, the output images produced 

suffered from low dynamic range and appeared too hazy. To solve these problems extra post processing was 

required. However, this method did not yield best results with all testing images. A model named Underwater 

Resnet (UResnet) is introduced in the research [20]. This model improved the visual appearance of the images; 

however, one of the main drawbacks of using residual blocks in models is the network gets deeper, it takes a lot 

of time to train the model that can reach to several weeks and months. In this case, a special process GPU is 

required to speed up the training.  

Moreover, Generative Adversarial Network (GANs) are recently made use of in many fields such as image 
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generation, video generation and voice recognition. Some researchers used GANs in their proposed solution to 

enhance underwater images. Fabbri et al. [21] used CycleGAN to reconstruct distorted images based on the 

undistorted images. These pairs were fed to train an underwater-GAN which can transform hazed underwater 

images to clear enhanced images. Li et al. [22] proposed a weakly supervised underwater colour correction model 

and weak supervision means that the model relaxes the need of paired underwater images for training. As discussed 

earlier, many researchers started using GAN-based models and some of them yielded good results; however, GANs 

are usually prone to training instability and are time consuming [23]. Moreover, the generated images tend to 

contain inconsistent stylizations with undesirable artifacts. As a result, it is found that using end-to-end networks 

yields much better results and is selected for the task. 

 

3. Methodology 

 

Neural networks have proven to be successful in solving many problems from different fields such as 

classification, clustering, compression and many more. A simple architecture of a neural network consists of 

neurons or nodes that make up the layers of the network. The proposed solution is based on an end-to-end CNN 

model which is based on machine learning as illustrated in Figure 2. It is assumed that our proposed methodology 

would outperform the existing state of the art techniques. 

 

 
 

Figure 2. Proposed model architecture 

 

End-to-end means that the network takes the input image from one end and produces the output image at the 

other end of the model. The model uses a gated fusion network to learn three confidence maps. As we discussed 

earlier, there are two types of algorithms, spatial domain, and frequency domain techniques. The model takes a 

single input image and performs three enhancing algorithms. Two of these algorithms work on the spatial domain 

whereas the third algorithm on the frequency domain. The methods are Gamma Correction (GC), White Balancing 

(WB) and High Frequency Emphasis Filtering (HEF). Techniques from both categories are used to make the most 

benefit of the enhancing algorithms. Spatial domain techniques deal with the image as it is and enhances the overall 

contrast of the image. On the other side, frequency domain techniques give us the control over the whole image 

and allows us to observe various characteristics that were not visible in the spatial domain. Each algorithm tackles 

a specific problem from the issues mentioned earlier. These three enhanced versions along with the raw image are 

fed into the model. This step produces three derived images (IGC, IWB, IHEF). The derived images along with the 

raw image are fed to the network. As it is not possible to feed multiple input images to the network in parallel, the 

4 input images were concatenated into one single numpy array. The output of the layers are three confidence maps 

namely, (CGC, CHEF, CWB). Multiplication of the refined inputs with their corresponding confidence maps produces 

the final enhanced output as seen in Eq. (1).  

 

𝐼𝑒𝑛 = 𝐼𝐺𝐶∗𝐶𝐺𝐶 + 𝐼𝑊𝐵∗𝐶𝑊𝐵 + 𝐼𝐻𝐸𝐹∗𝐶𝐻𝐸𝐹   (1) 

 

The model architecture includes three Feature Transformation Units (FTU) as shown in Figure 3 which has a 

main purpose of reducing the colour casts and artefacts introduced by the enhancing techniques mentioned earlier. 

Filter sizes of the layers are chosen to be (7*7) then decreases to (5*5) and finally to (3*3) to be more specific to 
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features in the images fed. Batch normalization layers were added to the main model and the FTUs as it makes 

training faster and more stable. It helps to solve Internal Covariate Shift problem that occurs due to the change of 

parameters in each layer which leads to change in the distribution of the inputs to subsequent layers. As a result, 

the learning process is faster, stabilized and the number of training epochs are reduced. Moreover, to make the 

model even more efficient max pooling layers are added to reduce the computational costs. This is done by 

reducing the number of parameters that the model has to learn. It is a standard benchmarking technique that is 

implemented to make benefit from the feature as it selects the brighter pixels from the image, and this is useful 

when the background is dark, and this is usually the case in underwater images. 
 

 
 

Figure 3. FTU model 
 

The perceptual loss function is a fucntion for comparing two images that are very similar to one another in terms 

of content and style discrepancies. In this work it is based on the implementation of the Manhathan distance. It is 

the distance between the feature represntations of both the enhanced (which is represented by (Ien)) and the 

reference (which is represented by (IRAW)) image. The Manhathan distance is a method of calculating the absolute 

difference distance between two points and is normally used in the case of high dimensional data. It is better than 

Euclidean distance which takes the square root of the sum of square values of differences between two points 

because it gives more robust results.  
 

𝑑(𝑝, 𝑞) = √∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

 (2) 

 

Manhathan distance shown in Eq. (3) has (Cj Hj Wj) which is the dimensions of the feature map; number, height 

and width respectively. Additionally, N is the number of each batch in the training process whereas ∅ is the 

number of layers in the network and j are iterations over the layers. The equation is performed at each layer and 

the sum of all results is calculated. Only 8 layers were used to ensure that no overfitting occurs. In other words, if 

many layers are used, the model will learn the training data more than it should be and will negatively affect the 

performance of the model. The model will not be able to generalize when new data are introduced during the 

testing phase. 

 

𝐿𝑗 
∅ =

1

𝐶𝑖𝐻𝑗𝑊𝑗

 ∑ ‖∅𝑗(𝐼𝑒𝑛
𝑖 ) − ∅𝑗(𝐼𝑅𝐴𝑊

𝑖 ) 
‖

𝑁

𝑖=1

 (3) 

 

3.1 Gamma Correction 

 

The GC technique is used to lighten up the dark areas in the images and its gamma value varies according to 

the purpose of using the technique. For example, in this work the gamma value γ is chosen to be 0.7. When the 

gamma value is less than 1, the process is named encoding gamma correction. Eq. (4) is used to calculate the 

corrected output represented by g(x) [24], x is every single pixel value and γ represents gamma value.  

 

𝑔(𝑥) = 255(
𝑥

255
)

(
1
𝛾

)
 (4) 

 

3.2 White Balancing  

 

The WB technique is used to correct the color casts which is unwanted tint of a particular color in the image by 

discarding the unwanted ones as a result of various illuminations. Due to very poor light propagation in underwater 
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scenes, there seems to be a lack of contrast. However, at water levels deeper than 30 feet, white balancing technique 

is not very efficient as it is very difficult to restore colors that were absorbed [25]. 
 

3.3 High Frequency Emphasis Filtering (HEF) 

 

One of the mentioned problems in underwater images was the lack of image sharpness and images seem to have 

blurry appearance. High frequency emphasis filtering (HEF) technique [26] is used with a modification of using 

contrast limited adaptive histogram equalization (CLAHE) instead of histogram equalization. It consists of a 

sequence of steps and are represented in Figure 4. 
 

 
 

Figure 4. HEF algorithm 
 

The first step in HEF is to convert the image into its frequency domain representation. Then the filter function 

is applied and in this case Gaussian high-pass filter is used to accentuate and emphasize the edges. Eq. (5) 

represents the filter function where Do is the cut off distance.  
 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝐹𝑖𝑙𝑡𝑒𝑟 =  1 −  𝑒
−

𝐷2(𝑖,𝑗)

2𝐷0
2

 
(5) 

 

The 2D Fourier transform of F(x, y) and inverse Fourier transform of F(i, j) are denoted by Eqns. (6) and (7) 

respectively where x and i takes value starting from 0, 1, 2 till M−1 and y and j=0, 1, 2 till N–1. 
 

𝐹(𝑖, 𝑗) =  ∑ ∑ 𝑓(𝑥, 𝑦) 𝑒−𝑗2𝜋(
𝑖𝑥
𝑀

+
𝑗𝑦
𝑁

)

𝑁−1

𝑦=0

𝑀−1

𝑋=0

 (6) 

 

𝐹(𝑥, 𝑦) =
1

𝑀
 ∑ ∑ 𝑓(𝑖, 𝑗) 𝑒−𝑗2𝜋(

𝑖𝑥
𝑀

+
𝑗𝑦
𝑁

)

𝑁−1

𝑗=0

𝑀−1

𝑖=0

 (7) 

 

In the high frequency spectrum, the expressed edges have more significant changes in frequencies. As a result, 

a low contrast image is produced and that is the reason why (CLAHE) is used in the last step, to increase sharpness 

and contrast. The HE technique is used to adjust image intensities to enhance the contrast of the image. In this 

work a special type of histogram equalization is used named contrast limited adaptive histogram equalization 

(CLAHE) [27] and it is illustrated in Figure 5. Subgraph (a) of Figure 5 shows the original histogram of the image 

whereas Subgraph (b) of Figure 5 shows the pixels distribution after the histogram has been clipped. It performs 

histogram equalization technique in small patches achieving high accuracy and contrast limited. A threshold is set, 

and any pixel value exceeds this threshold is cut by a clipper before computing the cumulative distribution 

function. The part clipped is then equally distributed upon all histogram bins. The selected threshold is 2.0 in 

CLAHE which helps limit the height of the histogram [28]. This means that the slope of the cumulative distribution 

function curve will be reduced. In other words, contrast enhancement is reduced to limit not only noise 

amplification, but also local over enhancement. 
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Figure 5. CLAHE algorithm 
 

4. Results 
 

The model was implemented using keras and trained on Google Pro colab. Adaptive moment estimation 

(ADAM); a first order gradient based was used for optimization. It is considered as one of the most optimal 

optimizers as it requires minimal memory requirements and is straightforward to implement [29]. It combines the 

heuristics of momentum and RMSProp optimizers which makes it more optimal, and able to handle sparse 

gradients on noisy problems. It is used in models that has more than one hidden layer by using the squared gradients 

to scale the learning rate which is one of the four hyperparameters it has. Assigning the learning rate to a small 

number is good approach as it would allow the weights to reach a minimum during training which leads to better 

accuracy. To achieve good reliable results and improve the data model prediction accuracy, data augmentation 

was applied as a pre-processing step on the dataset. It helps expose our model to different versions of the data 

which increases its generalizing ability and decreases the chance of overfitting occurring. 

 

4.1 Experiments  

 

There are several underwater images datasets available for different research purposes such as image 

enhancement, object detection, etc. Enhancement of Underwater Visual Perception dataset (EUVP) has a 

collection of 890 underwater images that were collected at various conditions such as oceanic explorations and 

human-robot collaborative experiments [30]. HICRD dataset consists of 6665 unpaired images collected from 

several sample locations around Heron Reef that is located in the Southern Great Barrier Reef [31]. For training 

our model we used the dataset called UIEB (Underwater Image Enhancement Benchmark) [32]. This dataset was 

also used by other state-of-the-art techniques, so we decided to stick to it to have a fair comparison. Another reason 

for choosing the UIEB dataset is that it has corresponding ground truth images which are needed while training 

the model. 12 filtering methods were performed on the raw images to produce 12 reference images and only one 

is selected based on the most choice selected by 50 participants. The dataset contains images taken at various 

diverse scenes that has different objects such as corals, rocks, sculptures, etc as seen in Figure 6. The images have 

various image quality degradation characteristics. Figure 7 has subjective comparisons on two images from the 

dataset.  
 

 
 

Figure 6. UIEB dataset sample 
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Figure 7. Results comparisons 

 

4.2 Metrics 

 

There are several image quality metrics that can be used to measure and determine the quality of images after 

they have been enhanced using various enhancing techniques. These metrics could be divided into categories 

namely, full reference metrics and non-reference metrics that will be explained in the next sub section [33]. 
 

4.2.1 Full reference metrics 

Full reference metrics techniques perform a direct comparison between the enhanced image and the raw image 

fed to the model. In this work, two full reference techniques were namely Structural Similarity Index (SSIM) [34] 

and Peak Signal to Noise Ratio (PSNR) [35]. In SSIM the two images are represented by windows x and y. Eq. (8) 

is the formulae of SSIM where μx is the average of values in x, μy is the average of values in y, 𝜎𝑥
2 is the variance 

in window x, 𝜎𝑦
2 is the variance in window y, σxy represents the covariance of both x and y, c1 and c2 are variables 

used to stabilize the division in the equation using a weak denominator. The value ranges between: [-1, +1] and 

will be equal to 1 if the two images are identical.  

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 (8) 

 
PSNR is calculated as shown in Eq. (9) and Eq. (10). MSE stands for mean squared error which simply 

represents the mean of the squares of errors between the enhanced image and the distorted one and The error is the 

diferrence in pixel values of both images. Y is the observed vector, whereas �̂� is the predicted vector produced as 

an output from the model. The rule for MAXf is 2(n)-1 which is 255 because the images are 8 bits where n is the 

number of bits. If we assume that the value for MSE is 1 then this means that 20 log10 (255) is 48. In other words, 

the ideal highest value is 48 for a 8 bit image.  
 

𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝑓

√𝑀𝑆𝐸
) (9) 

 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 − Ŷ𝑖 )

2

𝑛

𝑖=1

  (10) 

 

Table 1 shows the results of the previous state of the art techniques along with the results of our proposed model 

using the testing dataset UIEB mentioned earlier. Given the fact that SSIM and PSNR are quantitative metrics, 

they have a major drawback when it comes to the case of evaluating underwater image enhancement techniques 

which they do not consider any of the essential biological factors concerned with the human vision system. As a 

result, qualitative metrics should also be used which will be discussed in the next sub-section. 

 

Table 1. Full-reference evaluation results 

 

Method SSIM PSNR 

Fusion-based [11] 0.8162 18.7461 

UDCP [14] 0.4999 11.0296 

Two-step based [10] 0.7199 18.7461 

Retinex-based [15] 0.6233 16.8757 

Water-Net [32] 0.7971 19.1130 

Ours  0.8995 22.9865 
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4.2.2 Non reference metrics 

Usually, it is easy to obtain ground truth images for image processing problems such as image super resolution. 

However, in underwater image enhancement problem it is challenging to achieve large number of paired images. 

Due to this reason non-reference metrics were proposed. In this work we evaluate our results using two of these 

techniques named, Underwater Colour Image Quality Evaluation (UCIQE) [36] and Underwater Image Quality 

Measure (UIQM) [37]. In UCIQE metric the blurring effect, low contrast and non-uniform color casts are linearly 

combined. In this technique the deviation of saturation is not used unlike other previous proposed method because 

it emphasizes the dark areas which are simply the result of images taken in limited lighting. In Eq. (11) the σc 

represents the standard deviation value of Chroma and ranges from (-∞, +∞), con1 represents the contrast of 

luminance which ranges from [0, +∞), and represents the global grey scale distribution of the given image. The 

𝜇𝑆 represents the average saturation and ranges from (-∞, +∞). Chroma is one of the properties in an image and 

represents the degree of color clarity and purity. The variables c1, c2, c3 represent weighted coefficients. Several 

coefficient values were experimented according to several experiments made in the research [36] and the following 

values proved to yield best results: c1 = 0.4680, c2 = 0.2745, c3 = 0.2576. 

Minimum value for UCIQE is 0 and as the value increases, this means that the model has better performance.  

 

𝑈𝐶𝐼𝑄𝐸 =  𝑐1 ∗  𝜎𝑐 +  𝑐2 ∗ 𝑐𝑜𝑛 1 +  𝑐3 ∗  𝜇𝑆  (11) 

 

The underwater image quality measure (UIQM) metric uses three measures: which are the underwater image 

colorfulness measure (UICM), the underwater image contrast measure (UIConM) and the underwater image 

sharpness measure (UISM). Sharpness is a property of images that describes the clarity of edges and important 

fine details. In UISM, the Sobel edge detector algorithm is used on every channel of RGB. This yields three edge 

maps which are then multiplied with the original channel values to produce the grey scale edge maps. This 

preserves only the pixels representing the edges in an underwater image. UICM is used to remove the effect of 

bright regions due to heavy noise in underwater images. The three measures are linearly combined as shown in Eq. 

(12). The values given to the weights are dependent on the type of application that the underwater image is used 

into. Several coefficients values were experimented according to several experiments made in the research [37] 

and the following values proved to yield best results: c1 = 0.0282, c2 = 0.2953, c3 = 3.5753. 

 
𝑈𝐼𝑄𝑀 = 𝑐1  ∗ 𝑈𝐼𝐶𝑀 + 𝑐2  ∗ 𝑈𝐼𝑆𝑀 + 𝑐3  ∗ 𝑈𝐼𝐶𝑜𝑛𝑀 (12) 

 

As both metrics UCIQE and UIQM use Chroma of the image as one of their variables, this makes it essential to 

convert colour space from red, green and blue Red-Green-Blue (RGB) to LAB. Representation of a LAB image is 

l*a*b where l stands for lightness of the image and ranges from[0, 100] that is from black to white, a stands for 

red/green component and ranges [-120, +120] and 𝑏 stands for yellow/blue component and has the same range of 

component a [-120, +120]. In LAB colour space, a change in numerical values usually corresponds to 

approximately the same amount of change in how it is visually perceived [38]. As shown in Figure 8, neither a 

cannot be both red and green at the same time, nor b can be blue and yellow at the same time. This is made clear 

by the coordinate axes which represents valu es running from positive to neagtive values. For example, positive a 

values indicate red colour, whereas a negative value repesents green colour. The same concept implies for b where 

a negative value indicates blue colour whereas a positive value indicates yellow colour. Table 2 represents the 

results when the previous enhancing approaches namely fusion-based and two-step-based were tested with 

evaluation metrics; UCIQE and UIQM. Both methods are used to rank under water image enhancing algorithms 

performance. A higher score achieved by the UCIQE [36] metric indicates better balance among saturation, 

contrast, and Chroma whereas a higher result of UIQM [37] indicates that the output is much more consistent with 

the human visual perception. 

 

 
 

Figure 8. CIELAB color space representation [38] 
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Table 2. Non-reference evaluation results 

 

Method UCIQE (↑) UIQM (↑) 

Fusion-based [11] 0.6414 1.5310 

UDCP [14] 0.5852 1.6297 

Two-step based [10] 0.5776 1.4002 

Retinex-based [15] 0.6062 1.4338 

Water-Net [32] 0.6983 1.7216 

Ours  0.7851 1.9867 

 

5. Conclusions 

 

In this work, we have discussed the importance of underwater images in different aspects of life such as marine 

engineering, control of underwater vehicles, etc. Moreover, main challenges that face underwater images and their 

corresponding effects on the images were also discussed. The main effects were low contrast, colour casts and 

blurry appearance. We presented a simple and efficient model that is based on the use of CNN to enhance 

underwater images that are taken at different environmental conditions. Results of our model were presented and 

compared to previous state of the art methods using both full-reference and non-reference metrics. Our model 

scored better results in both types of metrics that were used for evaluation. In the future work, we aim to extend 

investigating our model’s feasibility on real-time videos. 
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