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Abstract: The rapid adoption of the Industrial Internet of Things (IIoT) paradigm has left systems vulnerable due
to insufficient security measures. False data injection attacks (FDIAs) present a significant security concern in IIoT,
as they aim to deceive industrial platforms by manipulating sensor readings. Traditional threat detection methods
have proven inadequate in addressing FDIAs, and most existing countermeasures overlook the necessity of validating
data, particularly in the context of data clustering services. To address this issue, this study proposes an innovative
approach for FDIA detection using an optimized bidirectional gated recurrent unit (BiGRU) model, with the Sailfish
Optimization Algorithm (SOA) employed to select optimal weights. The proposed model exploits temporal and
spatial correlations in sensor data to identify fabricated information and subsequently cleanse the affected data.
Evaluation results demonstrate the effectiveness of the proposed method in detecting FDIAs, outperforming state-of-
the-art techniques in the same task. Furthermore, the data cleaning process showcased the ability to recover damaged
or corrupted data, providing an additional advantage.

Keywords: Industrial Internet of Things; Data clustering; False data injection attack; Bidirectional gated recurrent
unit; Sailfish optimization algorithm; Machine learning

1 Introduction

Internet of Things (IoT) is deeply ingrained in many dense and complicated domains, such as industrial operations,
logistics, public security, and smart cities [1, 2]. It is difficult to study the smart industry because of the complex
interconnectedness and heterogeneity of its many sub-domains. In particular, the IIoT paradigm is notable for the
ease of connecting and coordinating industrial equipment with one another. In addition, the IIoT is considered as
a component of Industry 4.0 or the 4th Industrial Revolution [3], since the cyber physical system (CPS) provides
the connection between the physical and digital environments. For example, the integration of logistics with the
production line feeds information to the control centre [4, 5], and autonomous robots have been used to manage
production in a fully linked factory. By having data at fingertips, manufacturing time is cut down and diagnoses are
offered in real time, boosting efficiency all around. Hence, IIoT is crucial for gathering, sharing, and managing the
quantity of data needed by various applications for making decisions [6]. IIoT services collect the huge amounts
of information they have produced from a wide range of sources, and then share the information and make it easy
to be accessed safely [7]. Thus, the industrial applicability and reliability expansion of the IIoT depends critically
on the security of its data dissemination service [8]. These applications rely on data to make decisions. If the
data are inconsistent or manipulated in any way, the complete industrial system may display unexpected outcomes.
Consequently, the IIoT is vulnerable to a variety of security threats [9] due to the challenges posed by managing and
distributing the massive amounts of data generated by interactions between many devices. Due to data attacker’s
unpredictability, the FDIA stands out as one of the most destructive intrusion networks in the IIoT [10]. As hostile
devices authorized in the networks carry out their usual data gathering tasks, detecting a FDIA becomes a non-trivial
effort due to the attack’s complexity. Nevertheless, the attack might occur at any time, causing chaos in the network
[11]. The FDIA occurs either when an outsider takes control of the device and modifies the data or when the device
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itself acts inappropriately and modifies the data, which makes it more challenging to detect the attack and lengthens
the network downtime [12, 13]. In addition, there are a number of additional attacks, such as concealment, suggestion,
and deduction, which function similarly to the FDIA but have their own quirks. As a result, when rogue devices in
the IIoT are quickly identified and isolated, extended durations of network failures, which might damage the data
dissemination service, are reduced, thus reducing the likelihood that the misbehaving devices continue to create
inconsistent sensed data [14]. The most popular methods include en-route filtering, detection, machine learning
(ML), and identification detection system (IDS). Most Wireless Sensor Networks (WSNs) use en route filtering
schemes, which rely on intermediate nodes’ reports on the integrity of packets en route to their final destinations
[15]. The reports are validated to ensure their veracity, but they don’t account for any shifts in the detected data. As
an alternate method of countering FDIAs, smart grids have used collaborative detection systems in which each device
serves as a detection agent. Training machines use ML techniques in general to detect many attacks simultaneously
and supply defensive measures tailored to each threat [16]. Finally, intrusion detection systems (IDSs) deal with
attacks using various systems in many situations and monitor them, which might lead to excessive resource usage
and fresh security holes. Hence, solutions that identify and isolate risks actively are required for the development
of IIoT, thus guaranteeing better resilience of the data gathering and dissemination services. In this study, BiGRU
was implemented as a classification strategy for spotting malicious data injection attacks. Unsupervised learning
allowed the model to uncover latent correlation patterns in the data, which then may be used to detect corrupted
data by measuring how differently it behaves from the ”learned” correlation structure. The autoencoder, proposed
in this study, learned correlation through two dimensions of time and space, which might reflect hidden layers of
the correlation model more accurately. The rest of the study was organized as follows: the technical context was
provided in Section II; the proposed system was described in detail in Section III; effectiveness of the proposed
model was assessed in Section IV.

2 Literature Review

Wei et al. [17] offered a forecasting-aided state estimation (FASE) method, which provided more accurate
estimations using an unscented Kalman filter (UKF). The projection statistics may be used to successfully detect
and suppress random outliers by transforming the filtering step of the projection statistics (PS). The gathered state
estimation (SE) findings were then used to develop a generalized likelihood ratio test (GLRT) for identifying FDIAs
across successive snapshots. The GLRT used a low false alarm rate to evaluate the distance between two innovation
sequences using the Dynamic Time Warping (DTW) method. Extensive numerical simulations verified the viability
of the projected FDIA and the efficacy of the proposed detection approach. Vincent et al. [18] presented a graph
convolutional network (GCN) framework to find FDIAs. This method observed FDIAs graphically, analyzed the
changing state estimate values based on the scheme architecture and pinpointing the exact position of any FDIA. Then
the method was applied to the 2848-bus systems to measure its performance. In computer simulations, the suggested
method effectively identified FDIAs in both small and large systems with reasonable accuracy and detection time
when taking into account varying disturbance magnitudes and attack sparsity. In addition to comparing Distribution
System State Estimation (DSSE) findings with the Weighted Least Squares (WLS) algorithm, a standard model-
based method, Radhoush et al. [19] offered an alternative to the conventional methodology of detecting FDIAs and
performing SE calculations independently. In the case of inaccurate measurements, the DSSE performance of the
projected technique was superior to that of the WLS method and the independent DSSE/FDIA method, and the
suggested method also ran more quickly. Two case studies, with one utilizing a modified distribution scheme with
distributed generations (DG), were used to verify the efficacy of the proposed technique using two FDIA methods.
The outcomes demonstrated that the suggested strategy outperformed binary classification alone in terms of accuracy
and F1-score. For every phasor measurement unit (PMU) measurement, the suggested approach correctly identified
the FDIAs. In addition, the suggested strategy outperformed the regression-only and WLS approaches when dealing
with imperfect data, as measured by the DSSE. Miao et al. [20] created a nonlinear CPS to solve the problem of
adaptive security control against FDIAs on the sensor and actuator. The feedback control scheme could not reach
the classical error surface because the sensor and actuator were destroyed. The first step against sensor attacks was
building a state observer. Then the nonlinear term was approximated using neural networks, which dampened state-
dependent actuator attacks. In addition, a unique time-varying symmetry barrier function design was constructed that
may accomplish individualized output signal limitations while protecting against FDIAs. The aforementioned control
technique provided a solution to the output problem faced by CPSs when subjected to FDIAs. Finally, an example
of numerical simulation was provided to show how the suggested controller worked. Hua and Hao [21] studied the
security issue in CPS by using a multi-sensory paradigm. Each sensor sent data in packets to a distant estimator
across wireless channels, where spoofed information might be introduced. To address this, a modified multi-sensor
Kalman filter fusion technique was presented, based on the information from trustworthy sensors and the correlation
between trustworthy and untrustworthy sensors. With the help of the suggested technique, a generalized linear
FDIA approach was proposed, with a Gaussian distribution centred on any arbitrary mean. An anticipated State-
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Action-Reward-State-Action (SARSA)-based attack detection method was developed to further enhance the detection
performance. Finally, Unmanned Aerial Vehicle (UAV)-based simulation results were presented to demonstrate the
practicality and efficiency of the solutions.

3 Proposed System

This section described the existing issue, the accepted model, the types of attacks, and the recommended detection
method.

3.1 System Setup

Hydraulic system was used as an example in this study. In order to track the status of the hydraulic system, a
dataset of a small amount of sensor signals was collected, which was not a simulation result but rather the actual
hydraulic testing result. The system quantitatively varied the state of four hydraulic components by cyclical repetition
of constant load cycles and measurement of process parameters. The dataset included data of temperature, pressure,
flow rate, and power of all 15 sensors, as well as raw process sensor data (i.e., without feature extraction). About
132,100 to 132,300 data points were collected from each sensor. The fewest possible measurements were used in
order to prevent useless input vectors.

3.2 FDIA Description

This study intended to uncover FDIA. Based on the attack model given in the study of Wang et al. [22], application
of the method of this study was tailored to the requirements and characteristics of IIoT systems. In this paradigm,
an attacker tampered with and/or falsely injected data from a single sensor or several sensors at any moment, and
the tampered data still fell within the acceptable range of legitimate measurements. An attack on the integrity of
measured data was defined. Let za be a set of potentially inaccurate values. Due to z = [z1, . . . , zm], za was written
as za = z+ a. Let T be clean measurements, a = [a1, . . . , am], and T be a new data vector created. As the attacker
faked the i-th reading and replaced the corresponding authentic value with a false value, the vector a represented the
attack vector when ai, which is the i-th element of a, was nonzero.

3.3 Proposed Attack Detection Algorithm

The BiGRU model was used to categorize the attack. Weights were updated in primary deep learning (DL)
networks and their derivative models like convolutional neural network (CNN) throughout the backpropagation
process, which led to problems of inflating and disappearing gradients. Recurrent neural networks (RNN), such as
Long Short-Term Memory (LSTM) and gated recurrent unit (GRU), were developed to address these problems. In
contrast to GRU, LSTM was not a good and acceptable model because it had large temporal complexity and many
parameters. Compared with more traditional DL techniques, such as Multi-Layer Perceptron (MLP), CNN, and
LSTM, the GRU proved to be a superior classification method. In addition, GRU extracted useful characteristics
to identify energy theft. Update and reset gates were available on the GRU. On the one hand, the GRU algorithm
relied on the former gate to determine what information from the past should be forwarded. On the other hand, the
model made use of the latter gate to decide how much of the past evidence to discard. Eqns. (1)-(4) provide full
calculations for the update gate, reset gate, potential hidden state, and final hidden state.

vt = { sigmoid ∗ (Wvxt +Wvht−1 + bv)} (1)

rt = { sigmoid ∗ (Wrxt +Wrht−1 + br)} (2)

h′
t = {tanh ∗ (Wxt

+Wrt ⊙ ht−1)} (3)

ht = {vt ⊙ ht−1 + (1− vt)⊙ h′
t} (4)

where, vt is the update gate, rt is the reset gate, h′
t is the applicant hidden state, ht is the new hidden state, W

is the weight, ht−1 is the hidden State, b is the bias, tanh is the hyperbolic activation function, and the icon is
the Hadamard product. Compared with unidirectional models, the bidirectional ones used both past and future
data to make predictions about the present. BiGRU was improved based on the original GRU. Apart from optics,
telecommunications, and computer networking, Natural Language Processing (NLP) was also used in language
study and detection of structural damage. Unfortunately, it had limited value outside of engineering, particularly the
detection of attacks. As a result, the BiGRU was used in Stochastic gradient (SG) in this study. Figure 1 depicts
the BiGRU generic architecture. BiGRU was the grouping of two unidirectional GRUs in opposite directions.
The first GRU, designated as GRU 1 (sometimes referred to as “forward GRU”), moved from the left to the right,
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whereas the second GRU, designated as GRU 2 (sometimes referred to as ”backward GRU”), moved in the opposite
direction. Based on the past knowledge and future situations, the final prediction of the present facts and observations
necessitated a left and back movement again. The incoming data sequence was first processed using backward and
forward neural networks, which was the core operating mechanism of BiGRU. Finally, the two sets of data were
mixed in the final output layer. The five-layer model for theft categorization used two BiGRU layers, a flatten layer,
a dropout layer, and a dense layer. Both BiGRU layers had 50 neurons, and the dropout probability of the dropout
layer was set at 0.2. A single neuron with a sigmoid activation function was used in the dense layer to finally get the
desired output. In addition, BiGRU learned and remembered the long-term temporal connections between the traits
through its memory. Mathematical modelling of the BiGRU model was accomplished through Eqns. (5)-(7) [23].

Figure 1. Generic framework of BiGRU

h⃗t = GRU1

(
xt,
−−→
ht−1

)
(5)

←−
ht = GRU2

(
xt,
←−−
ht+1

)
(6)

hut =
−→
ht ⊕

←−
ht (7)

where, h⃗ut, h⃗t,
−−→
ht−1 and

←−−
ht+1 are the current and revised GRU 1 and GRU 2 states. Two vectors were joined together

with this symbol. Sailfish optimization, as explained below, was used to choose the ideal weight of the BiGRU.
3.3.1 SOA

The sailfish algorithm [24] simulated the behaviour of a school of sailfish as they seek prey in waves. The sardine
and sailfish inhabitants were seeded first with a random number generator. Second, the sailfish employed alternating
attacks to weaken the sardines’ group defense. Finally, the sailfish completed the position optimization by searching
and capturing appropriate sardines. 1) Sailfish location update Sailfish used the attack replacement tactic during
hunting, and learned to work together during attacks by coordinating their movements. This was the updated position
formula:

Xi
newSF = Xi

eliteSF − λi × (rand(0, 1))×

(
Xi

eliteSF +Xi
injureds

2

)
−Xi

oldSF (8)

where, Xi
oldSF is the current location of the sailfish, XnewSF

i is Sailfish’s current locations have been updated, i is
the most fit elite sailfish, XiinjuredS is the most fit damaged sardine, and rand(0,1) is a random sum between 0 and
1. In the following formula, i is the iteration coefficient of the i-th iteration, and PD is the prey density: There was:

PD = 1−
(

NSF

NSF +NS

)
(9)

where, NSF and NS are the statistics. The number of sailfish was expressed as:

NSF = N ∗ Percent (10)
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where, N is the total number of sardine inhabitants, and Percent is the share of total number. 2) Sardine location
update When the sardine was observed, its position information formula was:

Xi
newS = r ∗

(
Xi

eliteSF −Xi
oldS +AP

)
(11)

where, Xi
olds is the current position of the sardine, Xi

news is the new position that the sardine has moved to recently,
AP is the best attack power of sailfish, and r is a random value between 0 and 1. The attack power of sailfish
decreased as the iteration count increased as follows:

AP = A ∗ (1− 2 ∗ t ∗ e) (12)

where, t is the current iteration number, A is the attack power conversion control, and e is the energy efficiency.
Convergence was hastened by reducing the sailfish’s attack strength, which varied linearly from A to 0. All positions
of sardine should be updated when AP was greater than 0.5, and their partial positions should be updated when AP
was less than 0.5. Their positions were shown as follows:

a = NS ∗AP (13)

β = di ∗AP (14)

where, di is the number of dimensions, di the number of independent variables, and d is the number of items to be
updated. 3) Predation stage In the last hunting phase, the sailfish was updated to the position of any sardine it had
killed, including any sardine hurt during an earlier iteration. The following equation was used to adjust the position:

Xi
SF = Xi

S if f (Si) < f (SFi) (15)

where, Xi
SF and Xi

S are the current positions of sailfish and sardine, and f (SFi) and f (Si) are the fitness of sailfish
and sardine.

4 Results and Discussion
4.1 Simulation Setup and Parameters

The dataset from the study of Helwig et al. [25] was used for simulation. In the proposed method, 60% of the
data was initially used for teaching, then 20% for validation, and finally the remaining 20% for testing. As discussed
before, the Mean Squared Error (MSE) was reduced by setting the goal values identical to the input values and
then updating the weights one epoch at a time. There was no predetermined expected outcome during testing and
validation. Once the weights were adjusted in training, the output was computed, and the MSE was determined.
There were two functions for the validation error. Overfitting was first prevented by constant monitoring. Second,
it’s employed to determine the cutoff point at which an alarm (a detected attack) was generated if the MSE was found
to have been surpassed. Whether the input data were attacked or not was based on the testing error relative to the
threshold (for each input). It’s important to note that the proposed method required access to neither the fake data nor
the labels for the input training data during the training phase. The configured input to the BiGRU included several
readings from each sensor at each iteration rather than a sensor, thus using the autocorrelation of domain readings
among the sensors. The BiGRU was trained and evaluated for Nt=1, 2, 3, 4, 5, and 10, where Nt is the number of
sensors to be supplied to the BiGRU every epoch, in order to determine the optimal number of time instants to be
considered. When Nt=2, the training loss was 3.99e-7, the validation loss was 4.37e-7, and the lowest loss value
was evident. Both training and validation losses tended to decrease as Nt increased. The data of all 15 sensors were
sent to the BiGRU simultaneously. During each iteration, the BiGRU received Nt values from each sensor, which
yielded an input layer size of 15Nt neurons. The input and output layers were identical. Five secret layers were used.
When an encoder and decoder were used, the compression factor was set to 3, which was the ratio of the number of
inputs to the depth of the hidden layer that sat directly between the two. The size of the intermediate layers between
the input layer and the deepest layer was shrinked linearly by increasing compression. It’s important to note that
the compression factor and the number of hidden layers were major determined factors after lots of tests. Table 1
summarizes the BiGRU simulation setting.

4.2 Performance Metrics

To assess the effectiveness of the proposed approach, several measures were considered, including the confusion,
accuracy, recall, and accuracy (ACC) matrix and F1 score. The measurements were determined based on the
confounding matrix used to measure BiGRU performance.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (16)
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Table 1. BiGRU simulation parameters

Value Parameter
20 (Determined by the early stopping standard) Number of training epochs

Mean of validation error Threshold
[1 2 3 4 5 10] Number of readings per sensor (Nt)

Nt * 15 Number of neurons in input layer
Nt * 15 Number of neurons in output layer

3 Density factor
5 Number of hidden layers

Decrease linearly rendering to the density factor Number of neurons per hidden layer
Unsupervised learning applying backpropagation Learning algorithm

SOA Optimizer
0.001 Learning rate

60% of whole set Training data
20% of whole set Validation data

20% of whole set + equal number of false data Testing data

Recall =T P /(T P+F N) (17)

Precision = TP/(TP + FP ) (18)

F1− measure = 2× ( Precision × Recall )/( Precision + Recall ) (19)

Accuracy and recall were important metrics (i.e., F-score) when combined with unbalanced data. Accuracy
referred to the accuracy of the measured outcome and the proximity to the expected solution, while recall was a
measure of the number of relevant outcomes. A high recall score represented a low FN, while a high resolution
reflected a low FP. Table 2 shows the analysis of various classifiers.

Table 2. Analysis of various classifiers

Method Accuracy(%) Recall(%) Precision(%) F1-measure(%)
CNN 96.85 11.01 80.15 15.3
RNN 97.34 16.95 84.58 18.72

LSTM 97.9 21.07 90.21 11.14
BiGRU 97.79 35.47 93.22 36.43

BiGRU-SOA 98.5 40.59 96.34 57.95

Table 3. Computational model complexity of various classifiers

Method Training
time (h)

Testing
time (m)

Model
size (MB)

CNN 28.532 1.32 16
RNN 29.453 1.45 14

LSTM 20.13 1.13 12
BiGRU 21.631 1.25 12.89

BiGRU-SOA 18.145 0.58 11.5

The detection rate increased and the false alarm rate decreased. In addition, the proposed technique had 98%
detection percentage. The proposed model had a constant false alarm rate across all scenarios, because the same
machine was used for all instances, and was exposed to original (clean) data only during training. However, a freshly
trained machine was used for each case, because fraudulent data should be used to train the current models. BiGRU
was not taught to categorize any “particular” attack, the proposed technique had the additional benefit of identifying
different types of attacks. An attack detector was developed, which identified any attack significantly altering the
correlation model of the data. There was no assurance that a CNN, trained to categorize a certain attack, would be
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able to identify other attacks. The machine had to be trained with labeled data for every potential attack in order to
effectively categorize the attack. Figure 2 and Figure 3 show graphical representation of analysis of the proposed
model.

Figure 2. Graphical analysis of the proposed model

Figure 3. Validation analysis

Table 3 shows the computational complexity of various classifiers. When the models were tested for memory
consumption, the consumption was 16MB for CNN, 14MB for RNN, 12MB for LSTM, 12.89MB for BiGRU,
and only 11.5MB for the proposed model. This analysis clearly proved that the proposed model achieved better
performance than existing models, because its weight was optimally selected by SOA. When training all the input
data, the training time was 28hrs for CNN, 29hrs for RNN, 20hrs for LSTM, 21hrs for BiGRU, and only 18hrs for
the proposed model.

5 Conclusion

This study proposed a new method to find FDIAs against a complex sensor-based hydraulic system using
BiGRU. Furthermore, this method obtained the lowest possible false positive rate (FPR) score since its long-term
memory recognized the attack easily. The SOA was applied to the weight selection process of the BiGRU model
for maximum efficiency. In addition, training BiGRU was less difficult because labeled data was not needed. Last
but not least, BiGRU identified various attacks because it uncovered concealed and complicated correlation patterns
in the data. The BiGRU-based attack detection method identified any attack, which significantly altered these
correlation structures. Other classifiers, such as CNN, identified only the attack for which they were trained with
labeled data, instead of a “particular” attack. In experimental circumstances, the proposed method outperformed
the competition in terms of attack detection likelihood, false alarm rate, and runtime. It was also demonstrated how
various pre-existing DL models were used to help restore data that was lost in the attack. The findings showed that
the proposed BiGRU was quite effective in restoring the data to their original condition with small mean square
errors. Hyperparameters can be used to implement the model in the future.
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