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Abstract: Dominant points, or control points, represent areas of high curvature on shape contours and are extensively
utilized in the representation of shape outlines. Herein, we introduce a novel, descriptor-based approach for the
efficient detection of these pivotal points. Each point on a shape contour is evaluated and mapped to an invariant
descriptor set, accomplished through the use of point-neighborhood. These descriptors are then harnessed to discern
whether a point qualifies as a dominant one. Our proposed methodology eliminates the need for costly computations
typically associated with evaluating candidate dominant points. Furthermore, our algorithm significantly outperforms
its predecessors in terms of speed, relying solely on integer operations and obviating the necessity for an optimization
phase. Experimental outcomes, derived from the widely used MPEG7 CE-Shape-1 Part B, denote a minimum
enhancement of 2.3 times in terms of running time. This implies that the proposed methodology is particularly
suitable for real-time applications or scenarios managing shapes comprising a substantial number of points.
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1 Introduction

Dominant points, also referred to as control points, are instrumental in delineating the contours of digital planar
shapes [1, 2]. When connected via straight lines, these points generate a sequence of line segments that approximate
an image’s outline. This form of approximation, known as polygonal approximation (illustrated in Figure 1), is
employed in various applications, including shape modeling [3] and recognition [4]. The primary rationale behind
utilizing this approximation-based modeling approach is its proficiency in effectively managing contour noise [3, 5].
Furthermore, polygonal approximation offers a more concise representation of the contour [1]. As a result, there
has been a considerable amount of research over several decades dedicated to developing efficient algorithms for
polygonal approximation [3, 5–19].

Figure 1. Illustration of dominant points extraction for a planar shape outline

Numerous polygonal approximation algorithms have been developed with the primary goal of identifying dominant
points situated along the contour of a shape. These dominant points subsequently function as vertices in the
construction of the approximating polygon [5, 10]. Typically, these approximation methodologies aim to minimize
specific error criteria, such as the weighted mean squared error [8, 14, 20].

A prevalent approach shared by these algorithms involves establishing a significance measure for each point
along the contour [18]. This measure is instrumental in guiding the selection of a subset of contour points,
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either by emphasizing the most significant ones [7, 17] or by systematically eliminating less significant, redundant
points [3, 5, 10].

The selection process necessitates a definition of the relative importance of contour points. This importance
level can be determined using a predefined threshold [10] or by optimizing error measurements. It is noteworthy
that research indicates optimization methods generally surpass threshold-based approaches in performance [3, 5].
The primary goal of these algorithms is to yield an accurate and efficient polygonal approximation that effectively
encapsulates the fundamental characteristics of the shape contour.

This study aims to advance the current state-of-the-art in dominant point detection. Rather than relying on
thresholds or costly optimization methods to select dominant points, it proposes employing intuitive, human-like
heuristics. Humans often examine a point and its neighborhood to determine whether it is a dominant point. We
aim to replicate this process algorithmically. Our method involves examining a point on a shape contour, using its
neighborhood to ascertain whether it is part of a curve or a straight line. If the point is identified as part of a curve,
it is retained for further investigation. If not, it is classified as a non-dominant point in a process we term ‘point
suppression’.

To this end, we have developed novel rotation-invariant shape descriptors that effectively encapsulate the shape
outline. These descriptors can be computed without recourse to expensive computational operations. As a result,
descriptor-based point suppression paves the way for a highly efficient dominant point detection algorithm, albeit at
the cost of slightly less optimized approximation. To the best of our knowledge, this is the first study to use descriptors
for dominant point detection in offline shapes.

The novelty of the proposed approach can be summarized as follows:
i. Innovative point suppression method using shape descriptors.
ii. Rapid algorithm that avoids costly optimizations compared to other methods.
iii. Utilization of adaptive local and global features for dominant point detection.
The paper is structured as follows: Section 2 gives an overview of the existing research on dominant point

detection. Section 3 details the proposed algorithm. Section 4 provides a comprehensive analysis of the experimental
results, and finally, Section 5 presents our conclusions.

2 Related Works

Numerous algorithms have been proposed for the detection of dominant points in digital planar curves, falling
broadly into two main categories. The first category includes algorithms that strive to minimize the number of edges or
vertices required to approximate the curve, subject to defined error criteria [21–23]. The second category, by contrast,
comprises algorithms that pinpoint specific points along the curve as dominant points [3, 5, 7, 10–12, 14, 16, 17, 24].

Algorithms in the first category aim to achieve optimal digital curve approximations. However, these methodologies
are often parametric, necessitating the determination of parameters such as the initial vertex or the maximum allowable
error prior to generating an approximation. For instance, the method presented in the study [21] approximates a
contour using a polygon with the minimum number of vertices, ensuring a predefined acceptable approximation error
and an initial vertex. This algorithm iteratively identifies the smallest set of vertices for the polygonal approximation,
commencing with a preselected initial vertex [18].

In contrast, algorithms in the second category typically exhibit increased robustness when applied to a variety of
shapes. Given the plethora of dominant point detection algorithms chronicled in existing literature, our focus will be
directed towards the more recent and relevant approaches [18]. Comprehensive evaluations of various dominant point
detection algorithms can be found in the study [25].

A substantial number of dominant point detection algorithms initiate the process by applying filters to contour
points based on various criteria. These may include orientation-specific predefined masks [7] or the detection of
break-points [3, 10, 11]. Following this initial screening, each point on the contour, C, is allocated a significance
measure, and the points deemed less significant are subsequently discarded.

Researchers have leveraged a myriad of techniques to compute this measure. For example, Chau and Siu [7]
utilized cosine angles to define a significance measure for each potential dominant point. This measure was then
employed to suppress less critical dominant points. In contrast, Masood [11] introduced the Associated Error Value
(AEV) for each dominant point (DP), and an iterative process was applied to eliminate DPs with the lowest AEV.
This was followed by an optimization procedure aimed at enhancing the Integrated Squared Error (ISE) of the
resulting polygonal approximation. However, this scheme lacks a well-defined stopping criterion, which may limit its
effectiveness.

Some researchers introduced the concept of a support region for each point along contour C [3, 10, 13, 24]. This
support region for a point includes the points along C within a specific range defined by {pi−k, . . . , pi, . . . , pi+l} on
C for some k and l. Subsequently, the significance measure for pi is computed using mathematical operations that
consider the support region of pi. Consequently, less significant points can be removed from the set of dominant
points, using the process call point-suppression [3, 10, 24].
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The concept of point suppression was originally introduced by Marji and Siy [10]. Their approach, however, is
constrained by a fixed suppression threshold. Carmona-Poyato et al. [24] refined this method by incorporating an
optimization procedure to determine the threshold value for collinear-points suppression. Building upon their work,
Carmona-Poyato et al. [5] further improved their technique by iteratively removing dominant points until a specific
condition was met. Nonetheless, the performance of their algorithm can fluctuate significantly depending on the
chosen final condition [18].

Both algorithms presented in studies [5, 24] fall into the realm of global optimization techniques and employ
a single suppression parameter applicable to the entire contour. Conversely, the method presented in the study [3]
highlighted the advantages of a local optimization strategy. This approach involves using distinct, adaptively estimated
suppression thresholds for different segments of the contour, effectively taking into account the varying levels of
detail within the contour [18].

Most of the algorithms discussed above determine the significance of a point based on its distance to the
approximate straight line. This approach carries two primary disadvantages: firstly, the process of computing the
significance in this manner is computationally intensive; secondly, a threshold is required to establish the cut-off
distance. This study aims to circumvent these drawbacks by adopting a completely different approach: The significance
measure of a point is estimated based on the shape formed around the point under consideration. As demonstrated in
the experimental results section, this approach leads to a highly efficient dominant point detection algorithm.

3 Algorithm

The methodology proposed in this study is rooted in the use of invariant shape descriptors to characterize segments
of a shape contour. We first elucidate how a shape can be represented using these descriptors. Following this, we
discuss how these descriptors can be employed to suppress points along the shape outline.

3.1 Segment Descriptors

A shape contour (also known as an outline or stroke), C, is defined as an ordered sequence of n points (xi, yi),
i = 1, 2, . . . , n [19]. Here, point (xi, yi) has two neighbors: (xi−1, yi−1) and (xi+1, yi+1) , i = 2, 3, . . . , n− 1. In
the case where shape C represents an online stroke, it’s important to note that the endpoints in C will have only one
neighboring point. In this section, we focus only on a sub-set S of C, such that |S| = (m + 1) < n. That is, S
contains a set of consecutive points from C, where pj is the middle point in S. The value m = |S| − 1 is considered
as the region of support (as describe earlier) or strength for pj . We now describe how this segment S of contour C is
described by a shape descriptor.

Consider a set of descriptors, denoted as D, which characterizes the directional movement of points in S. Our
objective is to construct D in such a way that every descriptor, represented as d ∈ D, remains invariant to rotation,
translation, and scale changes. The specific descriptors employed in this study are outlined in Table 1. Consequently,
each segment S can be described using one of three descriptors: straight line, ccw curve, and cw curve.

Table 1. Rotation-invariant shape descriptors used in this work

Straight Line (straight line)

Counter-clock-wise Curve (ccw curve)

Clock-wise Curve (cw curve)

The procedure for associating a segment S with a descriptor is explained next. To illustrate this process, please
refer to Figure 2 and Figure 3. Subgraphs (a) and (b) as well as (c) and (d) of Figure 2 display a shape (referred to as
‘camel’ from the popular MPEG7 CE-Shape-1 Part B database [26]) and the corresponding contour that requires
modeling by a shape descriptor. Figure 3 demonstrates how a contour segment is mapped to a descriptor from Table 1.

As shown in the bottom-left corner of Figure 3, we partition the 2D planar space into eight regions. This division
serves a purpose akin to the well-known quantization technique, allowing us to quantize a shape trajectory into a
limited set of discrete descriptors [27]. Now, consider a segment S (extracted from subgraph (d) of Figure 2). Suppose
we aim to determine the descriptor for the segment with endpoints {epi, epi+1}, as depicted in Figure 3.

To determine the appropriate descriptor fromD that matches segment S, we introduce another point along S, which
we’ll call midi,i+1. This point represents the midpoint of the segment S. Now, given a tuple P =< epi,midi,i+1,
epi+1 >, corresponding to the segment S, we derive the descriptor d ∈ D as follows:

We start by translating the points in P so that midi,i+1 becomes the origin. Then, we estimate the positions of
epi and epi+1 within the 2D space, following the subdivision shown in Figure 3. Let’s denote these positions as
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pos (epi) and pos (epi+1) respectively. Additionally, we determine the parameter loc(midi,i+1), which specifies the
location of point midi,i+1 in relation to the directional line-segment stretching from epi to epi+1. It’s worth noting
that loc(midi,i+1) can take one of two values, ‘left’ or ‘right’, based on whether midi,i+1 resides to the left or right
of the directional line-segment between epi and epi+1.

With these parameters established, we map the stroke segment S to a descriptor d ∈ D using the guidelines
outlined in Table 2. To provide a clearer illustration, please refer to Figure 4, which presents an example of a stroke
with segments mapped to D [27].

Figure 2. Illustration of the process of modeling shape segment with descriptor
Note: Images taken from widely used MPEG7 CE-Shape-1 Part B database [26].

Figure 3. Illustration of space subdivision to identify the type of descriptor to which a segment match
Note: The segment matched is the one from subgraph (d) of Figure 2.

Table 2. Fitting criteria for the three rotation-invariant shape descriptors [27]

Descriptor Symbol Fitting Criteria
straight line S pos (epi+1) = pos (epi) + 4,mod8

cw curve C ¬S ∧ loc(midi,i+1) = ‘left′

ccw curve V ¬S ∧ loc(midi,i+1) = ‘right′

3.2 Point Suppression

In this section, we discuss the concept of point-suppression and how point-suppression is used in this work.
Our discussion of point-suppression is more general than the concept of collinear–points suppression used in
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studies [3, 5, 10]. Collinear-points suppression was used successfully for smoothing the contour (boundary of a
curve) in 2-dimension [28]. We will used collinear-points suppression as post-processing phase in our dominant
point detection method, as discussed later. The Idea of point-suppression is to decide whether a point P on the shape
contour C should be retained as a dominant point or not. For this purpose, we need to define a significance value for
P . This significance value of P can be defined in numerous ways. In this work, we define this significance value of P
in two different ways, that lead to two different ways of point suppression:

• Point suppression by distance thresholding and
• Point suppression by descriptor modeling.
Point suppression by distance thresholding. Let Pj , Pj+1, and Pj+2 be three points on C in sequence (not

necessarily consecutive). In point suppression by distance thresholding, Pj+1 is suppressed if the distance δ from
Pj+1 to the line joining Pj and Pj+2 is less than some predefined threshold τ . Several researchers have used the
perpendicular distance from Pj+1 to the line joining Pj and Pj+2 as the distance δ [5, 10]. Parvez and Mahmoud [3]
showed that using δ as the minimum distance from Pj+1 to the line-segment joining Pj and Pj+2 can have superior
performance in preserving shape of the curve C.

Figure 5 illustrates the concept of points suppression by distance thresholding. Here, δ is taken as the perpendicular
distance from Pj+1 to the line joining Pj and Pj+2. The point Pj+1 will be removed as the distance δ is greater than
the threshold τ . The new piecewise linear curve C ′ resulted due this suppression will have one segment less than C.

Figure 4. A stroke composed of five segments, with each segment corresponding to an invariant descriptor

Figure 5. Illustration of points suppression by distance threshold

This concept of suppression of points can be applied to all the points on C and thus the ‘redundant’ points on C
can be deleted. The number of segments and the shape of the resulting curve C ’ will depend on the threshold τ and
the order in which the points on C are considered in the removal process.

There are several ways to determine the value of the threshold τ . Some researchers have used a fixed value for
τ [10], others have determined the value of τ adaptively [3, 5, 22]. These adaptive schemes use some optimization
techniques to compute the threshold that optimize some performance measures (like weighted sum square error).
These schemes are more robust and can be applied to curves of different dimensions and resolutions.

The following procedure SuppressionByThresholding summarizes the concept of point suppression by distance
thresholding. The results of applying SuppressionByThresholding are illustrated in subgraphs (b) and (c) of Figure 5.

Procedure SuppressionByThresholding
Input: P = {(xi, yi)} , i = 1, 2, . . . , n, a sequence of n points on contour C.

A threshold τ .
Output: P ′, a subset of P .
Start

146



P ′ ← P
Iterate until points cannot be suppressed anymore

For each point pi from P ′

◦ → Suppress pi if δ < τ.

· → P ′ ← P ′ − {pi}

End
Point suppression by descriptor modeling. Here, we also consider three points on C in sequence: Pj , Pj+1,

and Pj+2. However, instead of measuring the distance from Pj+1 to the line segment connecting Pj and Pj+2, we
consider the shape formed at point Pj+1. For this purpose, refer again to Figure 3. If we map Pj , Pj+1, and Pj+2 to
epi,midi,i+1, and epi+1 respectively, then the curve segment bounded by Pj and Pj+2 can be mapped to one of the
descriptors from Table 2. In point suppression by descriptor modeling, point Pj+1 will be suppressed if the curve
segment bounded by Pj and Pj+2 is mapped to the descriptor ‘straight line’.

It should be noted here that, to suppress points by descriptors, we need to bound a segment by end points (that is,
Pj and Pj+2 need to be fixed). Since the mapping of the segment to a descriptor can vary based on the locations of
Pj and Pj+2, we use the following iterative process to suppress points using descriptors. For that purpose, let us
define width of a segment S of C be the number of points in S. For example, the width of the segment in Figure 3 is
17. Based on this definition of width of S, the following SuppressionByDescriptors procedure captures the process of
point suppression using descriptors discussed earlier.

Procedure SuppressionByDescriptors
Input: P = {(xi, yi)} , i = 1, 2, . . . , n, the sequence of n points on contour C.

Set of descriptors from Table 2
Output: P ′, a subset of P .
Start

P ′ ← P

Iterate until points cannot be suppressed anymore
For w = 1 to maxwidth //max Width to be determined experimentally
For each point pi from P ′

◦ → Consider the segment S of width = w+1, where pi is the middle point of S
◦ → if S is mapped to straight line.

-→ Suppress pi
P ′ ← P
End For

End For
End

3.3 Dominant Point Detection

Equipped with the invariant descriptors and the concept of point suppression, we are now in a position to develop
a fast and effective dominant point detection algorithm. The proposed algorithm is illustrated with a block diagram
(along with an example) in Figure 6. In the following discussion, we delve into the details of each block represented
in Figure 6.

Once the contour C of a planar shape is extracted (Block-1), contour C is passed to SuppressionByDescriptors
procedure to extract the initial set of dominant points (Block-2). This phase of SuppressionByDescriptors is run in
uniform division mode. This means, when we consider three points on C in sequence < Pj , Pj+1, and Pj+2 >,
the number of points between Pj and Pj+1 and number of points between Pj+1, Pj+2 is same (that is, Pj+1 falls
exactly at the middle of the segment being mapped to a descriptor). These initial set of dominant points from Block-2
are then suppressed by SuppressionByDescriptors procedure with a fixed threshold of 1 (Block-3). This phase of
suppression of points with fixed threshold is needed to suppress any collinear points that may remain from the previous
phase (Block-2). Using a fixed threshold at this phase avoid estimating the optimal threshold values, unlike other
methods [3].

In the next phase (Block-4), the current set of dominant points once again go through SuppressionByDescriptors
procedure, but in non-uniform division mode. This mode differs from the previous phase (Block-2) of uniform
division in a number of ways. Again, suppose we consider three points on C in sequence < Pj , Pj+1, and Pj+2 >.
In non-uniform division, all points from Pj , Pj+1, and Pj+2 are from the set of dominant points retained by Block-3.
In addition, the number of points between Pj and Pj+1 and number of points between Pj+1, Pj+2 is not necessarily
the same (that is, Pj+1 doesn’t necessarily fall at the middle of the segment being mapped to a descriptor). Moreover,
in the segment defined by Pj and Pj+2, Pj+1 is the only other dominant point retained by Block-3.
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Quality measures of the approximations produced by our method can be enhanced by an optional efficient
optimization phase. This optimization is called shift optimization. Shift optimization is a simple optimization process
where we try to move a dominant point in its neighborhood along contour C, such that some quality measures
(discussed in the next section) are optimized. Experimental results show that shift optimization phase adds very little
overhead to the running time, compared to the significant improvements obtained by the optimization.

Figure 6. Block diagram of dominant point detection algorithm with an illustrated example
Notes: The original image (‘spoon’) with 518 contour points is approximated with 26 dominant points.

4 Experimental Results

The proposed method has been extensively evaluated to estimate the quality of approximations and the efficiency
of the algorithm. The results have proven to be very promising, especially considering the significant reduction in
running time for the MPEG7 CE-Shape-1 Part B database [24]. In the subsequent sections, we first describe some
quality measures commonly used by researchers to estimate the quality of detected dominant points. Following that,
we present our experimental results.

4.1 Quality Measures

Evaluating the quality of an approximation is of utmost importance to assess performance, and researchers have
introduced various measures for this purpose [6, 9, 10, 22, 29]. These measures are briefly outlined below.

The compression ratio is used to quantify the normalized compression rate of an approximation. It is denoted
as CR = n/nd, where n is the number of contour points and nd is the number of dominant points. However, it
doesn’t consider the approximation error. An alternative is the integral sum of squared error, ISE =

∑n
i=1 e

2
i . ISE

measures the error of an approximation as the distance ei from a contour point pi to the resultant approximating line
segment. Nonetheless, ISE can always be minimized by increasing the count of dominant points. This issue with
ISE leads us to the use of the weighted sum of square error, WE = ISE/CR. Many researchers have adopted this
measurement, which merges both the compression ratio and the sum of squared errors [18].

Rosin [20] recognized an imbalance in the two constituents of the WE measure, leading to a bias in favor of
approximations with lower ISE (achieved by increasing the number of detected dominant points). This characteristic
makes it less suitable for comparing contours with varying numbers of dominant points. Rosin introduced two
components, namely fidelity and efficiency. Fidelity evaluates how well the polygonal approximation aligns with the
contour in comparison to the optimal polygon in terms of approximation error [20]: Fidelity = (Eopt /Eapprox )× 100.
Here, Eapprox represents the error of the polygonal approximation, and Eopt signifies the error associated with the
optimal algorithm, both adjusted to yield the same number of lines. The optimal polygon achieves the lowest possible
error for a given dominant point count.

To achieve a more balanced measure, WE (Weighted Efficiency) has been adjusted by various researchers,
resulting in a modified version denoted as WEx = ISE/CRx, where x is a parameter that regulates the influence of
the denominator, thus mitigating the imbalance between the two terms. Common choices for x include 1, 2, and 3
[5, 9, 11, 12]. Carmona-Poyato et al. [5] notably showed that WE2 outperforms WE. In line with this, we have
adopted the WEx measures to assess the results produced by our algorithm.

To better understand the effects of various measures, consider the example shown in Figure 7. As can be seen in
subgraphs (b) and (c) of Figure 7, the ISE is lower in the approximation in subgraph (b) of Figure 7, albeit, with
more and sometimes unnecessary dominant points. In contrast, the approximation in in subgraph (c) of Figure 7 uses
less number of dominant points, resulting in higher ISE compared to the subgraph (b) of Figure 7. However, the
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approximation in subgraph (b) of Figure 7 is preferred over the approximation in subgraph (b) of Figure 7, as the
approximation in in subgraph (c) of Figure 7 has lower WE3 value.

Figure 7. Illustration of the effects of the number of dominant points on WEx measures

4.2 Results on Basic Shapes

Table 3. Comparative approximation results for basic shapes

Shape Method nd CR ISE WE WE2 WE3

Chromosome
(n=60) Marji and Siy [10] 10 6.00 10.01 1.66 0.277 0.046

Carmona-Poyato et a1. [24] 11 5.36 9.60 1.79 0.334 0.062
Masood [11] 15 4.00 3.88 0.97 0.243 0.061

Carmona-Poyato et al. [5] 15 4.00 4.27 1.07 0.267 0.067
Parvez and Mahmoud [4] 10 6.00 14.34 2.39 0.398 0.066

Nguyen and Debled-Rennesson [13] 18 3.33 4.06 1.22 0.366 0.110
Parvez [18] 11 5.46 7.09 1.30 0.238 0.044
Parvez [19] 10 6.10 33.54 5.50 0.901 0.148
Proposed 10 6.10 15.70 2.57 0.422 0.069

Leaf (n=120)

Marji and Siy [10] 17 7.06 28.67 4.06 0.575 0.081
Carmona-Poyato et al. [24] 17 7.00 37.36 5.33 0.761 0.109

Masood [11] 23 5.22 9.46 1.81 0.347 0.067
Carmona-Poyato et al. [5] 23 5.22 10.68 2.05 0.391 0.075
Parvez and Mahmoud [4] 21 5.71 13.82 2.42 0.423 0.074

Nguyen and Debled-Rennesson [13] 33 3.64 5.56 1.53 0.419 0.115
Parvez [18] 21 5.71 11.98 2.10 0.367 0.064
Parvez [19] 23 5.26 32.50 6.17 1.174 0.223
Proposed 19 6.36 20.07 3.15 0.495 0.078

Semicircles
(n=102) Marji and Siy [10] 15 6.80 22.70 3.34 0.491 0.072

Carmona-Poyato et al. [24] 11 9.18 59.06 6.03 0.700 0.076
Masood [11] 26 3.92 4.05 1.03 0.263 0.067

Carmona-Poyato et a1. [5] 26 3.92 4.91 1.25 0.319 0.082
Parvez and Mahmoud [4] 17 6.00 19.02 3.17 0.528 0.088

Nguyen and Debled-Rennesson [13] 25 4.12 5.42 1.32 0.319 0.078
Parvez [18] 15 6.80 18.22 2.24 0.329 0.048
Parvez [19] 21 4.91 24.47 4.99 1.017 0.207
Proposed 19 5.42 20.22 3.73 0.688 0.127

Infinity
(n=45) Carmona-Poyato et a1. [24] 9 4.89 7.34 1.50 0.306 0.063

Masood [11] 11 4.09 2.90 0.71 0.173 0.042
Carmona-Poyato et a1. [5] 10 4.50 5.29 1.18 0.261 0.058
Parvez and Mahmoud [4] 9 5.00 7.35 1.47 0.294 0.059

Parvez [18] 7 6.43 7.69 1.20 0.186 0.029
Parvez [19] 9 5.00 14.60 2.92 0.584 0.117
Proposed 11 4.18 4.40 1.05 0.252 0.060

Note: The best results for WEx measures are marked as bold.
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Initially, the proposed algorithm is applied to four widely recognized shapes: chromosome, leaf, semicircles, and
infinity. These shapes have commonly been used as benchmarks for evaluating dominant point detection algorithms
in prior research [3, 5, 7, 10–12, 16, 17, 24]. The results obtained by our algorithm for these four shapes are depicted
in Figure 8 [19]. Furthermore, we present a comparative evaluation of the current algorithm against other reported
methods in Table 3.

Figure 8. Polygonal approximations by the proposed method for four popular shapes

As can be seen in Table 3, the outputs from the proposed method are very much comparable with other methods,
especially the WE3 measure. Note that, the proposed method achieves excellent WE3 measures, although the method
only employs a simple shift optimization at the end of the algorithm.

4.3 Results on Large Dataset

While the four basic shapes are simple and provide some insights into the performance of a dominant point
detection algorithm, they do not provide extensive information, particularly if we want to evaluate the running time.
For this purpose, we experiment with the popular shape database MPEG7 CE-Shape-1 Part B [26], which is widely
used by researchers for testing shape analysis and recognition related works. This dataset contains images with a large
number of contour points, making it suitable for testing dominant point detection algorithms. Figure 9 illustrates
some outputs of the proposed method for some shapes from the MPEG7 CE-Shape-1 Part B dataset.

Table 4 shows the statistics of the MPEG7 CE-Shape-1 Part B dataset and the average number of dominant points
for different algorithms for the same dataset. As can be observed from Table 4, our algorithm is comparable to other
methods in terms of the average number of dominant points. However, for a more thorough comparison with detailed
statistics, please refer to Table 5.

Table 4. Some statistics and approximation results for MPEG7 CE-Shape-1 Part B database

Dataset Sample
Count

Average # of
Contour Points

Average Number of Dominant Points
Marji and
Siy [10]

Parvez and
Mahmoud [3]

Parvez
[18]

Proposed

MPEG7 CE-Shape
-1 Part B [26]

1402 1272.7 98.6 53.5 81.34 90.61

Table 5 compares the proposed method with three other methods based on four parameters. Table 5 gives us a lot
of insights. First, results from other reported methods in Table 5 give us a clue to measure the maxWidth parameter in
SuppressionByDescriptors procedure. The average CR for other reported methods is around 20, which means, on
average, each segment of a shape contour in MPEG7 CE-Shape-1 Part B dataset is of length of around n/20, where
n is the number of contour points of a shape. Thus, we set maxWidth to n/20. However, to make things general,
maxWidth can be always set to n/2.

As can be seen in Table 5, the proposed method has very much similar CR compared to other methods. However,
the average ISE is slightly higher for the proposed method. This is expected, as the proposed method is not based on
optimizations, except that our method uses a simple optimization process as a post-processing step. Higher average
ISE of the proposed method leads to higher average WE3 measure, although the difference with other methods in
terms of WE3 is tolerable.

However, the biggest gain of the proposed method is in terms of running time. All the methods reported in Table 5
have been implemented by MATLAB and run on a MacbookPro (M1-Pro) with 16 GB of RAM. As can be seen in
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Table 5, the proposed method runs a minimum of 2.56 times faster compared to other methods. When compared with
the most optimal algorithm [18], the proposed method is 13 times faster! This huge gain in running time is due to the
simple descriptor-based suppression technique of the proposed method, as opposed to costly operations used in other
methods. This indicates that the proposed method can be very suitable for real time applications or for processing
shapes with large number of points.

Table 5. Comparisons of the current method with other reported works for MPEG7 CE-Shape-1 Part B database

Algorithm Statistics
Average CR Average ISE Average WE3 Running Time (sec)

Marji and Siy [10] 20.52 285.41 0.229 112.08
Parvez and Mahmoud [3] 29.24 1783.71 0.154 180.70

Parvez [18] 24.26 280.30 0.126 569.46
Proposed

[with all phases] 23.35 2095.59 0.681 43.64

Proposed
[w/o phase 4] 17.95 457.39 0.513 43.35

Proposed
[w/o phase 5 (optimization)] 23.35 2891.36 0.932 41.47

Proposed
[w/o phase 4 and phase 5] 17.95 782.29 0.678 42.27

The proposed method is primarily tailored for offline planar shapes. However, the method discussed in this work
can also be applied to online strokes, wherein the algorithm is executed after the user completes the stroke. To
illustrate the results of the proposed method for online strokes, please refer to Figure 10. In Figure 10, we showcase
a few examples from the Online-KHATT database [30] for online Arabic handwritten text, along with the results
obtained from our algorithm.

Figure 9. Polygonal approximations by the proposed method for shapes from MPEG7 CE-Shape-1 Part B dataset

Figure 10. Application of our algorithm for online shapes (data taken from Online-KHATT database [30])
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5 Conclusions

In this study, we introduce a novel dominant point detection algorithm based on descriptors. Our innovative
algorithm evaluates each point along a shape contour, assigning it a set of invariant descriptors relative to its
neighboring points. These descriptors dynamically determine whether a given point qualifies as a dominant point.
Notably, our approach circumvents the need for resource-intensive computations typically required to classify a
point as a potential dominant point. In addition, our technique demonstrates remarkable speed when compared to
other existing methodologies, owing to its reliance on integer operations and its independence from optimization
phases. However, the approximations resulting from the current method exhibit higher ISE, as no optimizations are
performed while producing the approximations. The presented method could be improved by investigating strategies
to reduce the ISE of the estimated approximations.
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