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Abstract: In Sub-Saharan Africa, particularly in Nigeria, Lassa fever poses a significant infectious disease threat. This
investigation employed count regression and machine learning techniques to model mortality rates associated with
confirmed Lassa fever cases. Utilizing weekly data from January 7, 2018, to April 2, 2023, provided by the Nigeria
Centre for Disease Control (NCDC), an analytical comparison between these methods was conducted. Overdispersion
was indicated (p<0.01), prompting the exclusive use of negative binomial and generalized negative binomial regression
models. Machine learning algorithms, specifically medium Gaussian support vector machine (MGSVM), ensemble
boosted trees, ensemble bagged trees, and exponential Gaussian Process Regression (GPR), were applied, with 80%
of the data allocated for training and the remaining 20% for testing. The efficacy of these methods was evaluated
using the coefficients of determination (R²) and the root mean square error (RMSE). Descriptive statistics revealed
a total of 30,461 confirmed cases, 4,745 suspected cases, and 772 confirmed fatalities attributable to Lassa fever
during the study period. The negative binomial regression model demonstrated superior performance (R²=0.1864,
RMSE=4.33) relative to the generalized negative binomial model (R²=0.1915, RMSE=18.2425). However, machine
learning algorithms surpassed the count regression models in predictive capability, with ensemble boosted trees
emerging as the most effective (R²=0.85, RMSE=1.5994). Analysis also identified the number of confirmed cases
as having a significant positive correlation with mortality rates (r=0.885, p<0.01). The findings underscore the
importance of promoting community hygiene practices, such as preventing rodent intrusion and securing food storage,
to mitigate the transmission and consequent fatalities of Lassa fever.

Keywords: Lassa fever; Negative binomial regression; Generalized negative binomial regression; Machine learning;
Mortality modeling

1 Introduction

Lassa fever, a viral haemorrhagic fever induced by the Lassa virus, represents a significant public health challenge
within West Africa, with Nigeria experiencing a substantial burden of the disease. Transmission of this virus is
typically initiated through exposure to the urine or faeces of infected rodents, with secondary human-to-human
transmission occurring, particularly in healthcare settings where infection control measures are suboptimal [1]. World
Health Organization (WHO) estimates suggest an annual incidence of 100,000 to 300,000 Lassa fever cases across
West Africa, culminating in approximately 5,000 deaths [2].

The onset of Lassa fever within Nigeria was first documented in 1969, with subsequent outbreaks resulting in tens
of thousands of cases and hundreds of fatalities annually. Despite concerted efforts to contain the disease, the NCDC
reported a staggering 2,070 confirmed cases and 397 deaths in 2020 alone. Manifestations of the illness range from
fever, sore throat, and muscle aches to severe complications such as haemorrhagic fever. The significant morbidity
associated with Lassa fever, primarily affecting young adults, exerts profound socioeconomic impacts [1, 2]. As of
April 2, 2023, it has been reported that the confirmed fatalities due to Lassa fever amount to 772 [3].

In the context of Nigeria, where Lassa fever is endemic, efforts to forecast and mitigate the disease’s impact are of
paramount importance. Accordingly, the application of count regression models and machine learning algorithms
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has been explored to predict Lassa fever mortality. This methodological approach, though novel, offers a promising
avenue to understand disease dynamics and identify correlates of disease incidence and mortality. Such correlates
include suspected and confirmed cases, temporal factors (week and year), and other potential predictors. The present
study was conducted with the aim of modeling mortality associated with Lassa fever using these analytical methods,
offering a comparative assessment of their predictive accuracies.

The persistent rise in Lassa fever cases and deaths, particularly in resource-constrained rural settings, highlights
the inadequacies in current control measures [4]. Previous studies have predominantly relied on questionnaire-based
assessments or mathematical modeling, with limited exploration of count regression models in the context of Lassa
fever. The application of machine learning in this domain is emergent, thus underscoring the originality and relevance
of the present work.

This investigation endeavors to provide a robust model for Lassa fever mortality within the Nigerian context by
employing both count regression and machine learning methodologies. Given the endemic nature of Lassa fever,
an empirical analysis of this kind is crucial for the formulation of health policies aimed at reducing mortality rates.
Thus, this study conducts a comparative analysis of the efficacy of count regression models and machine learning
algorithms in modeling Lassa fever mortality in Nigeria.

2 Related Works

Endemicity of Lassa fever within Nigeria persists as a critical public health issue. Research conducted by Buba
et al. [5] identified certain occupations, notably farming and hunting, as significant risk factors contributing to the
heightened susceptibility to Lassa fever. Olayemi et al. [6] reported a marked seasonality in the prevalence of Lassa
fever in West Africa, with a peak during the dry season spanning November to April, coinciding with increased rodent
activity and food supply. These findings underscore the imperative for enhanced surveillance and the implementation
of more effective prevention and control measures to mitigate the incidence and mortality of the disease.

In a novel approach, Alile [7] utilised a supervised machine learning technique for the diagnosis of Lassa fever,
employing clinical signs such as sore throat and headache as diagnostic features. The study revealed that the developed
machine learning algorithm exhibited high accuracy, presenting a potential adjunct to support clinical decision-making
in the diagnosis of Lassa fever.

The work of Oluwole and Nkonyana [8] involved the application of k-nearest neighbors (kNN) and decision tree
algorithms to model weekly cases of Lassa fever, juxtaposing their efficacy with that of the Seasonal Autoregressive
Integrated Moving Average (SARIMA) model. The study demonstrated that machine learning models yielded
robust performance despite the complexities inherent in confirmed case data, with the kNN algorithm showing
superior performance compared to the other models examined. Nnebe et al. [9] proposed the use of fuzzy logic as a
supplementary diagnostic method for Lassa fever, offering an alternative to traditional laboratory techniques. The
model developed was concluded to provide reliable diagnostics, which could aid medical practitioners in making
informed decisions.

Further research by Shoaib et al. [10] explored the use of artificial neural networks (ANNs) to understand the
dynamics of Lassa fever in Nigeria. Concurrently, Tahmo et al. [11] investigated the application of SARIMA and
poisson regression models to forecast the trajectory of Lassa fever outbreaks. Steur and Mueller [12] successfully
employed neural networks for the classification of viral haemorrhagic fevers, with a focus on Lassa fever, illustrating
the models’ efficiency as a prospective tool against future outbreaks. The versatility of decision support systems
was exhibited by Olabiyisi et al. [13], who employed fuzzy logic in the diagnosis of a spectrum of tropical diseases,
including Lassa fever, highlighting the broader applicability of such models in disease diagnostics.

In an analysis focusing on environmental correlates, Clark et al. [14] applied negative binomial and poisson
regression models to identify domestic factors associated with increased rodent abundance in regions of rural upper
Guinea endemic for Lassa fever. Complementing this environmental perspective, Redding et al. [15] leveraged poisson
regression to elucidate geographical and climatic determinants linked to the spatial distribution of confirmed Lassa
fever cases in Nigeria.

3 Methods

Secondary data comprising weekly confirmed new cases of Lassa fever in Nigeria for the period from January 7,
2018, to April 2, 2023, served as the basis for this study. These data were sourced from the NCDC and provided a
platform for subsequent analyses. The dependent variable of interest was the confirmed fatalities attributed to Lassa
fever, while independent variables included temporal factors (year, month, week) and epidemiological measures
(suspected and confirmed cases of Lassa fever). Selection of count regression models, specifically negative binomial
regression, poisson regression, and generalized negative binomial regression, was predicated on their ability to handle
count data. In parallel, machine learning algorithms were deployed, capitalizing on their advanced capacity to learn
from data and yield reliable predictions.
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Prior to analysis, data underwent preprocessing, which included cleansing and transformation to ensure com-
patibility with the requirements of the chosen statistical and machine learning methodologies. Feature scaling was
conducted, and the dataset was partitioned into a training set (80%) and a testing set (20%).

3.1 Count Regression Models

The mathematical representation of the poisson regression is encapsulated by the following equation:

ln (Yi) = β0 + β1x1 + β2x2 + . . .+ β5x5 + ei (1)

where, ln (Yi) denotes the natural logarithm of the expected count of the dependent variable (confirmed fatalities due
to Lassa fever), with β0, β1, β2, . . . , β5 representing coefficients estimated for independent variables X1, X2, . . . , X5.

Incorporating a parameter to account for overdispersion, the negative binomial regression extends the poisson
model as follows:

ln (Yi) = β0 + β1x1 + β2x2 + . . .+ β5x5 + ln(α) + ei (2)

where, ln (Yi) symbolizes the natural logarithm of the expected count of the dependent variable. Coefficients
β0, β1, β2, . . . , β5 are estimated for the independent variables X1, X2, . . . , Xk, while α represents the dispersion
parameter, a quantifier of data overdispersion. In alignment with the methodologies adopted by poisson regression,
negative binomial regression is utilized, employing a logarithmic link function. Diverging from poisson regres-
sion’s limitations, the negative binomial model incorporates a dispersion parameter. This addition facilitates the
accommodation of overdispersion inherent in count data, thus enabling a more robust modelling framework.

A more adaptable variant, the generalized negative binomial regression, allows for the independent variables to
influence both the mean and the dispersion parameters. The corresponding equations are:

ln (Yi) = β0 + β1x1 + β2x2 + . . .+ β5x5 + ei + ln (αi) (3)

ln (αi) = γ0 + γ1x1 + γ2x2 + . . .+ γ5x5 + eg (4)

where, ln (αg) symbolizes the natural logarithm of the dispersion parameter. Coefficients γ0, γ1, γ2, . . . , γ5 are
estimated for the dispersion model, and eg denotes the error term associated with the dispersion model in Eq. (3).

3.2 Machine Learning Algorithms

In the investigation of predictive models for the incidence of Lassa fever, a selection of supervised machine
learning algorithms was examined: MGSVM, ensemble boosted trees, ensemble bagged trees, and exponential GPR.
3.2.1 MGSVM

The MGSVM, synonymous with the medium radial basis function (RBF) SVM, utilizes a Gaussian kernel to
measure the similarity between pairs of data points in a transformed feature space. It replaces the inner product
kernel function with a nonlinear mapping to a higher dimensional space, facilitating the identification of an optimal
hyperplane for feature space division. The MGSVM has demonstrated utility in a diverse array of applications,
including image classification and speech recognition.
3.2.2 Ensemble boosted trees

Ensemble boosted trees, a robust algorithm in machine learning, are constructed iteratively to ameliorate the
inaccuracies of preceding trees in the sequence. Comprising a collection of decision trees, each individual tree within
the ensemble is trained to strengthen the performance of the collective model. The methodology allows for the
conversion of weaker individual trees into a robust predictive mechanism, with new trees compensating for prior
errors.
3.2.3 Ensemble bagged trees

Known also as random forest, the ensemble bagged trees are employed to enhance prediction accuracy and mitigate
the risk of overfitting. The technique involves the training of multiple iterations of a base learning algorithm on varied
subsets of the training data, blending ensemble learning with decision tree algorithms. Through the amalgamation
of multiple decision trees, each drawn at random from the data, a more potent composite tree is forged, yielding
improved predictions.
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3.2.4 Exponential GPR
The exponential GPR represents a non-parametric Bayesian approach to regression. Optimal for smaller datasets,

this variant of GPR differs from its squared exponential counterpart by the application of the Euclidean distance,
which, in this instance, is not squared. While exponential GPR demonstrates a proficiency in smoothing functions
with minimal error, it is less adept at managing discontinuities. Employing a probabilistic framework, the GPR
synthesizes likelihood with prior distributions, inferring predictions that furnish both a mean and a standard deviation.

3.3 Model Selection Criteria

For the evaluation of model performance, R² and RMSE were employed as comparative metrics. The model
exhibiting the highest R² was deemed superior in terms of fitness, indicating a greater proportion of variance accounted
for by the model. Conversely, the model manifesting the lowest RMSE was identified as optimal for forecasting
purposes, denoting minimal discrepancy between observed and predicted mortality due to Lassa fever.

RMSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5)

where, n is the number of observations, yi represents the actual instances of Lassa fever mortality, and ŷi denotes the
predicted values.

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)
2 (6)

4 Results and Discussion
4.1 Descriptive Statistics

The analysis of the descriptive statistics revealed that, during the study period, a total of 30,461 confirmed cases
of Lassa fever were recorded, alongside 4,745 suspected cases. Furthermore, there were 772 confirmed fatalities
attributed to Lassa fever, with an average mortality rate of 3.04, indicating approximately three confirmed cases per
recorded fatality. Positive skewness was observed for both confirmed cases and confirmed deaths (Table 1).

Table 1. Descriptive statistics for the variables

Variables Minimum Maximum Sum Mean SD Skewness
Suspected cases 11.00 560.00 30461.00 119.93 104.44 1.99
Confirmed cases 0.00 137.00 4745.00 18.68 25.41 2.34
Confirmed deaths 0.00 21.00 772.00 3.04 4.11 2.09

4.2 Test of Overdispersion

Subsequent to the preliminary statistical analysis, an examination for overdispersion was conducted to ascertain
the suitability of the Poisson regression model.

Table 2. Testing for overdispersion in the poisson regression model

Test Statistics Statistic P-Value Remark
Deviance goodness-of-fit 429.3775 0.0000∗∗ Significant
Pearson goodness-of-fit 419.2726 0.0000∗∗ Significant

**P-value<0.05 denotes significant evidence of overdispersion.

The results outlined in Table 2 indicate a substantiation of overdispersion within the data, as evidenced by the
reported deviance goodness-of-fit statistic of 429.3775 (p=0.000, p<0.05) and the Pearson goodness-of-fit statistic
of 419.2726 (p=0.000, p<0.01). The results, indicating significant overdispersion, suggested the inadequacy of
the Poisson regression model. Therefore, negative binomial and generalized negative binomial regressions were
implemented as corrective measures for overdispersion. The decision to utilize these models is justified by their
capability to encompass overdispersed data, a property not shared by the standard Poisson regression model, which
assumes equidispersion. To address the complexity of the data, four machine learning algorithms were selected
based on their ability to model target variables through experiential learning from the dataset. These algorithms were
specifically chosen to adequately cover the breadth of the study’s scope.
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4.3 Comparative Analysis of the Performance of Count Regression Models

Table 3 presents the criteria for optimal model selection based on fitness and forecasting accuracy.

Table 3. Selection of optimal count regression models

Fitness Performance Forecasting Accuracy
Count regression models R² adj. BIC MSE RMSE

Negative binomial 0.1864 968.9921 18.76 4.33
Generalized negative

binomial 0.1915 977.855 332.79 18.2425
The value in bold indicates the lowest RMSE value.

The results displayed in Table 3, with adjusted R² values of 0.1864 (18.64%) for the negative binomial model
and 0.1915 (19.15%) for the generalized negative binomial model, reveal the superiority of the generalized negative
binomial model in terms of fitness, as indicated by the marginally higher adjusted R² value. However, the comparative
Akaike Information Criterion (AIC) values (not shown in the table) suggest a more nuanced interpretation. The lower
AIC for the generalized negative binomial model (935.4407) compared to the negative binomial model (944.3207)
implies a better trade-off between fit and complexity for the former. However, the Bayes Information Criterion (BIC)
for the negative binomial model (968.9921) is less than that of the generalized negative binomial model (977.855),
indicating lower model complexity. With respect to error metrics, the negative binomial regression yielded a RMSE
of 4.33 and a mean square error (MSE) of 18.76, while the generalized negative binomial regression presented an
RMSE of 18.2425 with an MSE of 332.79. Thus, the negative binomial regression emerges as the more suitable
model for modeling Lassa fever fatalities in Nigeria, given its lower RMSE and MSE.

4.4 Comparative Analysis of the Performance of Machine Learning Algorithms

Table 4 evaluates the performance of four machine learning algorithms.

Table 4. Selection of optimal count regression models

Model Type R2 adj. MSE RMSE
MGSVM 0.84 2.6188 1.6183

Ensemble boosted trees 0.85 2.4006 1.5994
Ensemble bagged trees 0.82 2.8155 1.6779

Exponential GPR 0.82 2.9528 1.7184
Values in bold represent the highest adjusted R² and the lowest RMSE and MSE values.

Figure 1. Actual and predicted new cases of Lassa fever deaths in Nigeria for ensemble boosted trees

The analyses detailed in Table 4 yield an adjusted R² value of 0.84 for the MGSVM, 0.85 for the ensemble boosted
trees, 0.82 for the ensemble bagged trees and the exponential GPR. RMSE values were recorded as 1.6183 for the
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MGSVM, 1.5994 for the ensemble boosted trees, 1.6779 for the ensemble bagged trees, and 1.7184 for the exponential
GPR. Correspondingly, MSE values were found to be 2.6188, 2.4006, 2.8155, and 2.9528 for the aforementioned
models, respectively.

It is observed that the ensemble boosted trees algorithm not only exhibits the highest adjusted R² value but also
the lowest RMSE and MSE, indicating superior predictive performance in comparison to the other evaluated machine
learning algorithms. These findings suggest that, within the context of Lassa fever mortality prediction in Nigeria,
machine learning models, and specifically the ensemble boosted trees, offer more precise forecasting capabilities than
their counterparts.

Figure 1 illustrates the actual versus predicted new cases of Lassa fever deaths in Nigeria, as forecasted by the
ensemble boosted trees model.

4.5 Comparison of Optimal Count Regression Models and Machine Learning Algorithms

A comparative analysis between optimal count regression models and machine learning algorithms was con-
ducted.Table 5 shows the results.

Table 5. Comparative results of optimal count regression models and machine learning algorithms

Models Type RMSE
Count regression Negative binomial 4.3300
Machine learning Ensemble boosted trees 1.5994

The value in bold indicates the lowest RMSE value.

Table 6 presents a correlation matrix, elucidating the relationships between temporal variables (week, year),
clinical incidences (suspected and confirmed cases), and Lassa fever mortality.

Table 6. Relationships between the features and the target variable (Lassa fever mortality)

1. Week 1 2 3 4 5
2. Year −0.134∗ 1

3. Suspected Cases −0.495∗∗ 0.427∗∗ 1
4. Confirmed Cases −0.566∗∗ 0.279∗∗ 0.885∗∗ 1

5. Lassa Fever Mortality 0.537∗∗ 0.186∗∗ 0.756∗∗ 0.868∗∗ 1
**Significant at 1% (p<0.01), *significant at 5% (p<0.05).

The results, encapsulated in Table 5, demonstrate a lower RMSE for the ensemble boosted trees algorithm (1.5994)
relative to the negative binomial count regression model (4.3300), highlighting the former’s superior predictive
capability for modeling Lassa fever mortality in Nigeria.

It was observed in Table 6 that Lassa fever mortality correlates significantly and positively with year progression,
and the number of suspected and confirmed cases. These associations suggest an ongoing endemic presence of Lassa
fever in Nigeria.

The investigation’s findings affirm that Lassa fever persists as a significant health threat in Nigeria. Within the
count regression model category, the negative binomial model exhibited superior forecasting prowess, as indicated by
its RMSE value of 4.33. However, even the least performing machine learning algorithm (Exponential GPR) with an
RMSE of 1.7184 surpassed the most proficient count regression model. The ensemble boosted trees algorithm, with
the lowest RMSE of 1.5994, was deemed the most effective across both predictive model categories. This reinforces
the advantage of machine learning algorithms in pattern recognition within datasets, as opposed to count regression
models that rely on estimation of predefined models.

The comparative efficacy of machine learning algorithms is supported by existing literature. Oluwole and
Nkonyana [8] observed superior performance of these algorithms against the SARIMA model, a time-series statistical
model. Similarly, Busari and Samson [16] documented the preeminence of machine learning in predicting infectious
diseases within Nigeria. A potential explanation for the enhanced performance of machine learning models is their
capacity to discern patterns in data, enabling more accurate predictions than the more rigid count regression approach.
Additionally, the relative robustness of Machine Learning algorithms to statistical assumptions may contribute to their
observed superiority.

5 Conclusions and Recommendations

In the culmination of the presented analysis, the efficacies of count regression models, specifically negative
binomial regression and its generalized counterpart, were juxtaposed with those of various machine learning
algorithms, including MGSVM, ensemble boosted trees, ensemble bagged trees, and exponential GPR. The corpus of
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data scrutinized herein comprised weekly reports of Lassa fever mortality, spanning from January 7, 2018, to April 2,
2023, as procured from the NCDC.

It was discerned that machine learning algorithms surpassed count regression models in modelling the mortality
rates associated with Lassa fever in Nigeria. Notably, the ensemble boosted trees algorithm emerged as the most
proficient among the machine learning contenders. However, the superiority of machine learning algorithms delineated
in this study warrants further investigation, incorporating a broader array of algorithms and more contemporaneous
data. Such endeavors would potentially refine the understanding of Lassa fever mortality trends and inform the
formulation of robust health promotion policies.

In light of these findings, it is recommended that:
(i) The ensemble boosted trees algorithm be employed for future modelling of Lassa fever mortality in Nigeria,

owing to its demonstrated predictive accuracy.
(ii) The Federal Government of Nigeria is urged to ensure rigorous adherence to public health directives and

preventive strategies to mitigate the spread of the virus.
(iii) An appeal is extended to residents and visitors within Nigeria and other West African nations to actively

participate in stemming the tide of Lassa fever. Measures advocated include immediate reporting of symptomatic
manifestations to medical facilities, bolstering community hygiene practices, deterring rodent infestations, and
safeguarding food sources from contamination.
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