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Abstract: In the realm of facial expression recognition (FER), the identification and classification of seven universal
emotional states, surprise, disgust, fear, happiness, neutrality, anger, and contempt, are of paramount importance. This
research focuses on the application of convolutional neural networks (CNNs) for the extraction and categorization of
these expressions. Over the past decade, CNNs have emerged as a significant area of research in human-computer
interaction, surpassing previous methodologies with their superior feature learning capabilities. While current
models demonstrate exceptional accuracy in recognizing facial expressions within controlled laboratory datasets,
their performance significantly diminishes when applied to real-time, uncontrolled datasets. Challenges such as
degraded image quality, occlusions, variable lighting, and alterations in head pose are commonly encountered in
images sourced from unstructured environments like the internet. This study aims to enhance the recognition accuracy
of FER by employing deep learning techniques to process images captured in real-time, particularly those of lower
resolution. The objective is to augment the accuracy of FER in real-world datasets, which are inherently more
complex and collected under less controlled conditions, compared to laboratory-collected data. The effectiveness
of a deep learning-based approach to emotion detection in photographs is rigorously evaluated in this work. The
proposed method is exhaustively compared with manual techniques and other existing approaches to assess its efficacy.
This comparison forms the foundation for a subjective evaluation methodology, focusing on validation and end-user
satisfaction. The findings conclusively demonstrate the method’s proficiency in accurately recognizing emotions in
both laboratory and real-world scenarios, thereby underscoring the potential of deep learning in the domain of facial
emotion identification.
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1 Introduction

Over the past decade, the field of artificial intelligence (AI), which aims to emulate human cognitive processes,
has undergone significant advancements and encountered intriguing challenges. Among these, the analysis of subtle
facial expressions represents a complex task. It is observed that the manifestation of a single emotion can vary
considerably across individuals, influenced by factors such as ethnicity, age, or gender. Moreover, the interpretation
of an individual’s emotional state is subject to contextual variables including lighting, posture, and background. This
paper delves into the intricacies of facial expression analysis in the era of AI, exploring the multitude of aspects
impacting the accuracy of human emotion detection. Expression, encompassing a broad spectrum of behaviors,
actions, thoughts, and feelings, is ultimately a subjective and intimate mental and physical state. The foundational
work of Charles Darwin, particularly his book ”The Expression of the Emotions in Man and Animals,” laid the
groundwork for early emotion studies. Subsequent research, notably by Ekman and Friesen in 1969, identified

https://doi.org/10.56578/ataiml030103

24

https://www.acadlore.com/journals/ATAIML
https://crossmark.crossref.org/dialog/?doi=10.56578/ataiml030103&domain=pdf
https://orcid.org/0000-0003-3026-3728
https://orcid.org/0000-0003-2734-1844
https://orcid.org/0000-0003-1782-4658
https://orcid.org/0009-0006-1735-929X
https://orcid.org/0009-0006-8619-6666
https://doi.org/10.56578/ataiml030103
https://doi.org/10.56578/ataiml030103
https://doi.org/10.56578/ataiml030103


cross-cultural consistencies in emotional expressions, establishing six universal emotional states: happiness, sadness,
anger, contempt, surprise, and fear [1–3].

Conversely, facial expression, a non-verbal form of communication, is crucial to human perception, behavior,
and interaction. Facial expressions represent morphological alterations in the face [4], and it is estimated that only
about 7% of the information conveyed is through words, with vocal intonation accounting for 55% and body language
for 38%. The use and interpretation of body language and facial expressions often occur subconsciously, yet they
play a vital role in effective communication. The increasing relevance of emotions in human-robot interaction (HRI)
has sparked interest in equipping social robots with FER capabilities. HRI amalgamates disciplines such as social
sciences, robotics, AI, and natural language processing [5]. This interdisciplinary approach underlines the growing
need to understand and accurately interpret facial expressions, not only in human-to-human interactions but also in
the evolving domain of human-robot communication.

Emotions are fundamental in HRI, rendering social robots an increasingly studied subject due to their potential in
FER. The exploration of HRI necessitates a multidisciplinary approach, incorporating fields such as AI, robotics,
natural language processing, design, and social sciences. Within this scope, facial recognition technologies are
crucial yet encounter several limitations including restricted processing capabilities, speed, duration, and accuracy.
Challenges in 2D, 3D, and temporal facial recognition methods are prevalent, primarily owing to spatial alterations,
occlusions, lighting variances, and the intensive demand for computational resources. Efforts to refine classification
accuracy have been observed, with some researchers opting to simplify methodologies by minimizing feature points
or adopting a more objective approach. In the realm of computer vision, traditional machine learning techniques
previously demonstrated efficacy but were hindered by their inability to process direct photo inputs. Contemporary
face recognition systems continue to face challenges due to varying lighting conditions, backgrounds, and postures,
which can significantly alter appearances and obstruct precise expression detection. The advent of deep learning
has been pivotal in addressing these challenges, enhancing the recognition performance of the six core emotional
expressions—sadness, disgust, anger, happiness, fear, and surprise. However, the application of deep learning models
to faces captured under divergent conditions from the training dataset remains a significant limitation. A comparative
analysis of traditional and deep learning techniques in facial recognition is presented in Figure 1.

Figure 1. Comparative analysis between traditional machine learning and the deep learning model

In this study, a novel deep learning-based framework is introduced, designed to surmount the challenges inherent
in real-time facial emotion recognition. The system employs deep learning algorithms for detection, coupled with
CNNs for the extraction of features, thereby recognizing a spectrum of seven emotional states: happiness, sadness,
anger, fear, surprise, disgust, and neutrality. The methodology incorporates current techniques while introducing
several key enhancements:

• Expanded recognition capability: The model is engineered to differentiate between seven emotional categories,
thereby broadening its scope to capture a more extensive range of human emotions. This expansion enables a more
precise and nuanced analysis of facial expressions.

• Streamlined and resilient architecture: The system is designed with simplicity and robustness, facilitating effective
real-time processing. This feature ensures the model’s applicability in real-world scenarios without excessively taxing
computational resources.

• Enhanced accuracy: By leveraging advanced deep learning techniques, the model achieves elevated levels of
accuracy in facial emotion detection. This improvement is critical for reliable outcomes, particularly in fields such as
human-computer interaction, market research, and mental health assessments.

• Rigorous evaluation and validation: The efficacy of the proposed model will be rigorously assessed using
predefined datasets. This evaluation process is aimed at empirically demonstrating the system’s proficiency and its
capacity to yield valuable insights across various applications. The methodology outlined in this research encompasses
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several critical steps, each contributing to the development of an advanced real-time facial expression detection
system:

• Data collection: Initially, a comprehensive and varied dataset of facial expressions is compiled. This dataset is
meticulously curated to ensure diversity and representativeness, laying a foundational basis for subsequent model
training.

• Model training and evaluation: Deep learning models are then rigorously trained on the assembled datasets. The
focus of this training is to enhance the models’ proficiency in accurately identifying the seven predefined emotional
categories. Subsequent extensive testing is conducted to refine and validate the models’ performance.

• Application in real-time detection: Designed for practical, real-time scenarios, the system operates by selecting
an image from the collected dataset as input. It then rapidly processes this image for emotion recognition, aiming to
deliver prompt and reliable results.

In summation, the approach proposed in this study marks a significant advancement in real-time FER. It
integrates innovative features, including simplicity, robustness, and high accuracy, making it a valuable asset in
diverse applications where understanding human emotions is essential. These applications range from enhancing
human-computer interaction to providing insights in market research and mental health assessments.

2 Literature Review

The implementation of facial recognition technology in smart devices has become increasingly prevalent, yet
it imposes significant demands on storage and processing capabilities. In response to these challenges, a range of
strategies and systems for expression recognition have been developed and are briefly reviewed herein:

Guo et al. [6] introduced an innovative approach utilizing DNNs with relativity learning (DNNRL). This method
aims to contract the distances in the embedding space between samples representing the same expression, while
concurrently expanding the gap between those of differing expressions. The training process involves the selection
of an anchor, a positive sample (bearing the same expression as the anchor), and a negative sample (exhibiting a
different expression). The core objective is to minimize the triplet loss, which effectively reduces the distance between
the anchor and the positive instance in the embedding space, ensuring that it remains narrower than that between
the anchor and the negative sample. DNNRL notably assigns greater weight to challenging instances based on the
network’s output, allowing for more nuanced learning. The efficacy of DNNRL has been validated using the SFEW
and FER2013 datasets.

Feature extraction, a critical step following face detection in FER, is heavily dependent on the quality of the
features extracted. Subtle or pronounced deformations in facial features such as eyebrows, lips, eyes, and nose can
induce changes in facial expressions. Feature extraction methods are categorized into two types: non-geometric and
geometric-based features [7]. Geometric feature extraction focuses on quantifying the size and position of facial
features, including the nose, lips, forehead, chin, and eyes. These attributes are encapsulated within a facial geometry
feature vector. Geometric feature extraction employs various geometric interactions, such as points, stretches, and
angles, between these components to encode the features. In contrast, appearance-based feature extraction employs
either a single image filter or a combination of filters applied to the entire image or specific regions to discern changes
in texture and shape [8]. Furthermore, a range of computational models and methods for processing visual data
are employed in feature extraction. These include tools like fuzzy logic and neural networks. Feature extraction
strategies are broadly classified into four types: feature-based, appearance-based, template-based, and part-based
approaches [9].

Li et al. [10] have explored the application of the k-nearest neighbor (KNN) strategy, augmented by center loss and
locality-preserving loss (LP-loss), for clustering deep features and ensuring intra-class compactness. The employed
deep locality-preserving CNN (DLP-CNN) maintains the local representation of each sample in the embedding space.
During training, Euclidean distance is utilized to ascertain the KNN for each data point, aiming to minimize the
sample’s distance from the mean of its KNNs. The effectiveness of LP-loss has been evaluated using datasets such as
CK+, SFEW, MMI, and RAF-DB. Center loss, while promoting intra-class compactness and consequently aiding
in inter-class separation, may still permit overlap among feature regions in the embedding space. Building on this
concept, Cai et al. [11] enhanced center loss by integrating an additional objective function. This modified center
loss, termed as island loss, merges the original center loss with the pairwise cosine distance between class centers in
the embedding space. The approach aims to increase cosine distance, thereby angularly separating the class centers.
Island loss has been assessed using datasets including CK+, MMI, and Oulu-CASI. Recent advancements in facial
emotion recognition have been significantly influenced by deep learning algorithms. Jain et al. [12] introduced single
deep neural network (DNN) incorporating convolution layers and deep residual blocks. Lopes et al. [13], in a similar
vein, presented a multiple CNN framework, complemented by a specialized image pre-processing stage for emotion
recognition.

The application of FER in dynamic environments was addressed by Jain et al. [14] through the deployment of
a hybrid convolution-recurrent neural network technique. A comparative analysis was conducted by Sajjanhar et
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al. [15] on the performance of pre-trained facial recognition algorithms, Visual Geometry Group (VGG)-facial and
Inception, both initially developed for object detection. Wen et al. [16] employed a convolutional rectified linear layer
as the initial layer in their CNN aggregate for facial emotion recognition, incorporating multiple hidden maxout layers
to modify the architecture of each CNN. Despite notable advancements in the field of FER, research predominantly
focuses on devising strategies to enhance outcomes presented in one or more datasets independently. The investigation
into the impact of cross-dataset fine-tuning on performance was conducted by Zavarez et al. [17]. For this purpose, the
VGG face deep CNN model was adapted for facial emotion recognition. Cross-dataset experiments were meticulously
designed, utilizing one dataset as the test set while employing others for training, to ensure the reliability of the results.
Wang et al. [18] proposed an innovative approach integrating FER technology with online course platforms. In
this method, student facial expressions were captured using device cameras during an online course and processed
through a FER algorithm (CNN model), categorizing them into eight emotional states: anger, disgust, fear, happiness,
sadness, surprise, contempt, and neutral. This approach was tested in an online course using Tencent Meeting with 27
students, demonstrating consistent performance across diverse scenarios. The applicability of this concept extends
beyond online educational settings, suggesting potential in various interactive environments.

Pise et al. [19] have applied contemporary deep learning models to the evolving field of automated emotion
recognition within computational intelligence. This research demonstrates the integration of deep learning-based FER
with architectural methods and databases, yielding highly accurate results. A diverse array of machine learning and
deep learning methodologies are employed in this investigation. Saeed et al. [20] discussed a technique to enhance
accuracy in facial recognition. Their proposed CNN method (fall detection-CNN), incorporating two hidden layers
and four convolutional layers, serves as an automated framework. Utilizing the expanded Cohn-Kanade (CK+)
dataset, which includes images portraying a range of emotions from various individuals, the process encompasses
pre-processing, feature extraction, and categorization. The model’s effectiveness is evaluated through metrics such
as F1-score, recall, and precision, with respective values of 84.07%, 78.22%, and 94.09%. Additionally, numerous
studies employing machine learning methods have contributed to this field [21–27]. Despite advancements, certain
facial recognition approaches encounter challenges, including poor lighting, shadows, partial facial visibility, camera
orientation issues, and lower recognition rates. This project aims to develop a CNN-based FER system enhanced with
data augmentation. The proposed system is designed to classify the seven principal emotions, anger, contempt, fear,
happiness, neutrality, sadness, and surprise, from visual data.

3 Proposed Methodology

Figure 2 delineates the architecture of the proposed emotion recognition model. The methodology comprises the
following principal components:

(a) Data collection: This phase involves the accumulation of a diverse dataset, encompassing images that represent
a range of emotions.

(b) Data preprocessing: The dataset undergoes classification, categorizing images into seven emotional states:
anger, happiness, fear, disgust, neutrality, sadness, and surprise.

(c) Emotion prediction: Utilizing a deep learning model, emotion predictions are executed on the images.
(d) Performance evaluation: The final stage involves assessing the model’s performance in accurately predicting

emotions.

3.1 Data Collection

The data collection process was facilitated by a data acquisition layer, responsible for aggregating data from various
online sources. This research utilized information gathered from links, data repositories, and additional internet
resources. Figure 3 presents a selection of the data samples amassed for this study. The methodology incorporated
two primary datasets: the FER-2013 [28] and a Random dataset [29]. The FER-2013 dataset comprises grayscale
images, each measuring 48×48 pixels. It encompasses a training set of 28,000 labeled images, a development set
consisting of 3,500 labeled images, and a test set with another 3,500 labeled images. This dataset encapsulates seven
emotional states: happiness, sadness, anger, fear, surprise, disgust, and neutral. In contrast, the Random dataset
includes a compilation of 350 images, both in color and grayscale, further categorized into six emotional categories:
happiness, sadness, anger, fear, surprise, disgust, and neutral. Figure 3 showcases representative images from both
datasets, illustrating the diversity and range of emotions covered.

3.2 Proposed Model

In this phase of the research, the focus is on the utilization of deep learning models, specifically MobileNet, for
real-time prediction of seven emotional categories: happiness, sadness, anger, fear, surprise, disgust, and neutrality.
The MobileNet architecture is leveraged due to its efficiency in processing and reduced parameter count compared to
conventional convolutional networks. Bounding boxes are employed to highlight the facial regions where emotions are
detected. MobileNet, a variant of CNNs developed by Google, employs depth-separable convolutions, significantly
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reducing the number of parameters required. This reduction enables the deployment of DNNs on portable devices,
making MobileNet an ideal foundation for compact and rapid classifiers. The architecture of MobileNet comprises
several depth-separable convolutional layers, each consisting of a depth-wise convolution followed by a point-wise
convolution. In total, a MobileNet architecture contains 28 layers when depth-wise and point-wise convolutions are
considered separately. Furthermore, the adaptability of MobileNet is enhanced by the width multiplier hyperparameter,
which allows for the adjustment of the network’s complexity. Typically, a standard MobileNet comprises approximately
4.2 million parameters, with input dimensions of 224×224×3. Figure 4 presents the architectural diagram of MobileNet,
highlighting its structural components [30, 31].

Figure 2. Architectural diagram of the proposed model

Figure 3. Sample images from the collected datasets

3.3 Speed Comparison Between MobileNet and Other Models

In the evaluation of object detection models, MobileNet is distinguished by its exceptional speed performance.
Contrasting with its counterparts, which typically operate at a frame rate of 5 frames per second, MobileNet excels by
achieving a remarkable 22 frames per second. This rapid processing capability significantly elevates MobileNet above
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other models in terms of efficiency. To illustrate this, consider the comparison with models such as regions with CNN
features (R-CNN) and its enhanced version, Fast R-CNN. While these models exhibit higher accuracy rates, capturing
more detailed information than MobileNet, they lag in processing speed. The defining advantage of MobileNet lies in
its speed, making it a preferred option for applications where prompt and efficient object detection is crucial. This
aspect is particularly vital in real-world scenarios where time-sensitive detection is paramount [32]. Figure 5 provides
a comparative analysis of MobileNet against various object detection techniques, emphasizing the speed differential.

Figure 4. MobileNet architecture [31]

Figure 5. Speed comparison of deep learning models

3.4 Experimental Analysis and Results

The experimental evaluation was conducted on a computer equipped with an Intel Core i5-6200U CPU, operating
at 2.4 GHz and supported by 8 gigabytes of RAM. Python, chosen for its versatility and efficiency, served as the
programming language for the implementation of the models. To assess the accuracy of the developed models, a
comprehensive evaluation was performed using a test dataset with well-established target features. The model outputs
were systematically compared against these known ground truths, facilitating a detailed analysis of their performance.
A key instrument in this evaluation was the utilization of a confusion matrix. This matrix provided both a visual
and numerical representation of the model’s performance, indicating not only the predicted instances for each class
but also the accuracy of these predictions. Moreover, various assessment parameters were calculated using specific
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mathematical formulae, further elucidating the models’ effectiveness. These calculations and their corresponding
formulae are detailed in Eq. (1), which offers a comprehensive view of the analytical methods employed in this study.

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

(1)

In this research, the model’s performance was evaluated using a subjective assessment approach, wherein manually
created images and frames depicting emotions were compared individually. The datasets utilized for testing and
training encompassed the following emotional classes: happiness, sadness, anger, fear, surprise, disgust, and neutrality.
Table 1 provides an extensive description of the dataset.

Table 1. Dataset composition for testing/training

Classes FER-2013 Dataset Random Dataset
Happiness 879 50
Sadness 594 50
Anger 491 50
Fear 528 50

Surprise 416 50
Disgust 55 50

Neutrality 626 50

For the experimental analysis, images were sourced from online platforms, system directories, and those specifically
collected for this study. While some images from the training data were used preliminarily to check for duplicates,
the primary focus was on images not included in the training set. The proposed model’s efficacy was tested across
a range of image resolutions. A unique aspect of the assessment involved contrasting the proposed model with a
manual approach, where an individual subjectively classified images into respective emotional categories. This
method entailed manual predictions which, despite initial accuracy, exhibited uncertainty in certain cases due to
behavioral similarities, such as mistaking an image of a newborn for fear when it might also be interpreted as surprise.
Subsequently, these images were processed through the proposed model, and the outcomes from both methods were
compared. This process constituted an image-level comparison. Figure 6 illustrates this comparison, showcasing how
each method categorized images across the seven emotional classes: happiness, sadness, anger, fear, surprise, disgust,
and neutrality.

As depicted in Figure 7, it was observed that the proposed model did not accurately identify certain emotional
states. This limitation was primarily due to the visual similarities between different emotions. For instance, an image
that predominantly exhibited characteristics of fear was erroneously classified under the category of surprise by the
model. Similarly, another image, which ideally belonged to the disgust category, was incorrectly identified as sadness.
This misclassification stemmed from the visual resemblance of the image to those typically associated with sadness, as
perceived by the unaided eye. Figure 7 presents a selection of instances where the model’s predictions were impeded
by such behavioral similarities. These examples highlight the challenges faced in accurately distinguishing between
emotions that share common visual traits.
3.4.1 Results

The results of the proposed model, as depicted in Figure 8, demonstrated a remarkable accuracy of 100% during
validation and 97.9% during training. These statistics indicate the model’s successful generalization from the training
dataset to the validation dataset. However, challenges arose when the model was applied to real-world images
sourced from various platforms such as online resources, system directories, and captured photographs. These images
encompassed a spectrum of emotional states: happiness, sadness, anger, fear, surprise, disgust, and neutrality.

The manual assessment method, which relied on human judgment to classify images, also faced difficulties in
accurately identifying emotions, especially in instances where images exhibited similar emotional traits. For example,
an image of a baby, which might appear fearful, could also be interpreted as showing surprise due to the ambiguity in
facial expressions. This issue underscores the subjective nature of human visual perception in emotion recognition
tasks. Discrepancies were noted between the model’s predictions and manual assessments. The model, due to its focus
on behavioral similarities, misclassified certain images into incorrect emotional categories. An image that visually
suggested fear was sometimes predicted as surprise, while an image that initially appeared sad was classified as
disgust. These misclassifications were attributed to the model’s challenge in discerning subtle differences in emotional
expressions. Figure 8 illustrates instances where the model struggled with reliable predictions due to the proximity
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of the emotional expressions depicted in the images. Despite its high accuracy in training and validation settings,
the model’s performance in real-world scenarios highlighted the intricacies of emotion recognition in photographs,
particularly when dealing with minute variations and nuances.

(a)

(b)

Figure 6. Comparative outputs (a) Manual method; (b) Proposed model

In summary, while the model exhibited commendable performance during training and validation phases,
it encountered difficulties in accurately discerning emotions in real-world images. The findings emphasize the
significance of acknowledging the inherent challenges and limitations in emotion detection tasks, particularly with
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images exhibiting a range of similar emotional expressions. Further research and refinement may be necessary to
enhance the model’s capability in such scenarios.

Figure 7. Speed comparison of deep learning models

Figure 8. Accuracy curve and validation loss

4 Results

Table 2 presents a comparative analysis between the proposed MobileNet-V1 model and existing techniques in
emotion recognition. The comparison, based on accuracy, is drawn from a range of studies and models:

Table 2. Comparative analysis with other techniques

Authors Model Accuracy
Barsoum et al. [33] VGG13(MV) 83.86%

Li et al. [34] TFE-JL 84.29%
Georgescu et al. [35] CNNs and BOVM + global SVM 87.76%

Huang [36] ResNet + VGG 87.4%
Wang et al. [18] SCN + ResNet18 88.01%
Nan et al. [37] A-MobileNet 88.11%

Proposed model MobileNet-V1 97.9%
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The proposed MobileNet-V1 model demonstrates a significantly higher accuracy rate of 97.9%, surpassing the
accuracy levels of other models cited in the comparative study. This superior accuracy rate is indicative of the model’s
effectiveness in emotion recognition tasks. The comparative analysis underscores the compactness and reliability of
the proposed model, especially in contrast to the existing methodologies.

5 Conclusions

The method presented in this article for real-time emotion recognition incorporates user behavior analysis and is
capable of differentiating between seven behavioral categories: happiness, sadness, neutrality, disgust, fear, surprise,
and anger. Existing methods in the literature for content extraction and behavior recognition, while useful, are often
hindered by high hardware demands and slow processing speeds. A detailed comparison of emotion recognition
techniques is provided, demonstrating the simplicity, optimization, precision, and reliability of the proposed model
relative to current methods. A key innovation in this study is the accurate and efficient extraction of seven distinct
behaviors. The primary objective of developing an emotion detection system based on seven classifications using
images or shots has been successfully achieved with the proposed approach. For assessment purposes, the experimental
study utilized two datasets, FER2013 and Random datasets, both comprising images categorized into seven emotional
states. In comparison to the subjective evaluation method, where an observer manually identifies the behavior from an
image, the proposed model demonstrated superior performance. Extensive experiments have shown that the proposed
method achieved an accuracy of 97.7% while maintaining high processing speed and efficiency. Future research
directions include exploring additional classes, enhancing accuracy, and implementing real-time facial emotion
recognition using cameras. A user-friendly interface is also planned for integration into an application utilizing the
developed model.
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The data used to support the research findings are available from the corresponding author upon request.
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