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Abstract: Named Entity Recognition (NER), a pivotal task in information extraction, is aimed at identifying named
entities of various types within text. Traditional NER methods, however, often fall short in providing sufficient
semantic representation of text and preserving word order information. Addressing these challenges, a novel approach
is proposed, leveraging dual Graph Neural Networks (GNNs) based on multi-feature fusion. This approach constructs a
co-occurrence graph and a dependency syntax graph from text sequences, capturing textual features from a dual-graph
perspective to overcome the oversight of word interdependencies. Furthermore, Bidirectional Long Short-Term
Memory Networks (BiLSTMs) are utilized to encode text, addressing the issues of neglecting word order features
and the difficulty in capturing contextual semantic information. Additionally, to enable the model to learn features
across different subspaces and the varying degrees of information significance, a multi-head self-attention mechanism
is introduced for calculating internal dependency weights within feature vectors. The proposed model achieves
F1-scores of 84.85% and 96.34% on the CCKS-2019 and Resume datasets, respectively, marking improvements of
1.13 and 0.67 percentage points over baseline models. The results affirm the effectiveness of the presented method in
enhancing performance on the NER task.

Keywords: Named Entity Recognition; Graph Neural Networks; Dependency syntax graph; Co-occurrence graph;
Multi-feature fusion

1 Introduction

NER, one of the significant research directions in the field of Natural Language Processing (NLP), is recognized
for its capability to identify specific entities such as names of people, places, organizations, and other named entities
within textual data. In various downstream tasks of NLP, including information retrieval, knowledge graphs, sentiment
analysis, and question-answering systems, NER plays a crucial role. Consequently, the effective and accurate
identification of specific entity information from text holds significant importance for computer processing of textual
data.

In recent years, GNNs [1] have demonstrated exceptional performance in capturing topological information within
data, making them particularly suitable for handling irregular graph-structured data. They have achieved remarkable
results in both computer vision and NLP domains. Yao et al. [2] constructed a heterogeneous graph for the entire
corpus based on word co-occurrence and text relationships, followed by the extraction of graph features using Graph
Convolutional Networks (GCNs) [1]. To obtain more information within the GCN, Hu et al. [3] introduced thematic
nodes during graph construction, while Xin et al. [4] incorporated label information. Zhang et al. [5] constructed
co-occurrence graphs for each text, utilizing Gated Graph Neural Networks (GGNNs) for information propagation.
The models mentioned above relied solely on co-occurrence information to build text graphs, neglecting other types of
information such as semantics. Sui et al. [6] proposed a Trigger-GNN for nested NER, which obtains complementary
annotation embeddings through entity trigger encoding and semantic matching, utilizing an efficient graph message
passing mechanism. Peng et al. [7] introduced a method using semantic and syntactic graphs for aspect-level sentiment
analysis. Wu et al. [8] modeled documents as graphs to capture non-contiguous and long-distance semantics, extracting
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features from graphs across different domains through joint training of hierarchical GNNs. Some of these GNN
models require constructing graphs for the entire corpus, leading to high space complexity. Others build text networks
solely from the perspective of neighborhood word co-occurrence, overlooking the inherent syntactic dependency
relationships within textual language, i.e., neglecting the representation of textual information at the level of syntactic
dependency relationships in the language itself.

Addressing the aforementioned challenges, this study explores various graph construction methods to compre-
hensively capture textual features from multiple dimensions, thereby enhancing NER performance. A novel NER
model based on multi-feature fusion using dual GNN (M-DGNN) is proposed. This approach involves constructing
a co-occurrence graph and a dependency syntax graph to learn textual features from a dual-graph perspective;
incorporating BiLSTMs to enhance the model’s capability in capturing contextual information. Two separate GCNs are
employed to learn the global semantic information of both graphs, i.e., the original distance dependency relationships.
These are then fused with contextual information through a multi-head self-attention mechanism, enabling the model
to learn features across different subspaces and the varying degrees of information significance. This, in turn, allows
for a more effective learning of graphical representations. The main contributions of this study are as follows:

(i) The introduction of a joint updating module for GCNs based on co-occurrence graphs and dependency
syntax graphs, extracting textual features from a dual-graph perspective. This module learns structured information
representations dependent on context and mitigates the impact of incorrect dependency labels.

(ii) Comparative experiments were conducted on two public datasets with several mainstream methods. The
results demonstrate that the M-DGNN model outperforms other methods.

2 Related Work

Currently, NER methods based on deep learning capitalize on the strong representational learning capabilities of
deep neural networks, which autonomously learn features related to named entities from textual data. Models based
on Convolutional Neural Networks (CNNs) are particularly powerful in generating local features for sentences [9], and
they are very fast in their extended forms due to their parallelism [10]. Models based on Recurrent Neural Networks
(RNN) excel in modeling sequential information [11]. Huang et al. [12] proposed to capture contextual information
utilizing BiLSTMs and to model label relationships through Conditional Random Field (CRF) models, thereby
enhancing the accuracy of NER. Li et al. [13] introduced a BiLSTM sub-classification model into the base model,
effectively addressing the issue of nested medical entities. Ma and Hovy [14] presented the BiLSTM-CNN-CRF
model, which first extracts character-level features using CNN, followed by further extraction of contextual features
and final output using the BiLSTM-CRF model. Gui et al. [15] processed the task of Chinese NER in parallel with
a CNN model that integrates dictionary information and improved model performance through a novel feedback
mechanism to resolve ambiguity between words. Dang et al. [16] optimized word vectors with linguistic features in
the D3NER model, which incorporates a BiLSTM-CRF framework. Strubell et al. [10] utilized dilated convolutions
to extend the sequence coverage distance, thereby acquiring more contextual information. This method effectively
balances computational speed and feature extraction for long sequences in NER tasks.

In recent years, GNNs have garnered increasing attention in the field of NLP, as traditional CNNs and RNNs have
shown limitations in effectively utilizing structural information between documents, hierarchical classifications, and
dependency trees among other graph data. GNN models, through the use of recurrent neural structures, propagate
information from surrounding nodes, iteratively reaching a stable fixed point to obtain the vector representation of
target nodes. Driven by GNNs, scholars, drawing on the concepts of CNNs and RNNs, have defined and designed
GCNs for processing graph-structured data, applying them to classification tasks [2]. The convolution operation in
GCNs combines the feature vectors of nodes with the graph structure between them. With each graph convolution
operation, a node’s feature vector is updated through the graph structure using information from neighboring nodes,
thereby ensuring that similar nodes possess similar feature vectors. Existing evidence demonstrates the powerful
feature extraction capabilities of GCNs, capable of extracting the data features of graph structures and applying them
in areas such as relation classification and label classification. This study utilizes the existing capabilities of GCNs in
processing graph-structured data to extract features from long distances.

3 The NER Model Based on M-DGNN

The NER model based on M-DGNN, as proposed in this study, is depicted in Figure 1. The encoding layer of the
model comprises two sub-modules: a BiLSTM network module for extracting contextual features and a GCN module
for extracting global features. Initially, textual sequences are input into the BiLSTM model to learn context feature
vectors. Concurrently, by utilizing textual sequences in conjunction with co-occurrence graphs and dependency
syntax graphs, dual-graph GCNs are constructed to obtain global feature vectors. Subsequently, these two types of
feature vectors are input into a multi-head self-attention layer for feature fusion. Finally, a CRF model is used to
decode the optimal encoding sequence from the fused feature vectors.
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Figure 1. The NER model based on M-DGNN

3.1 Contextual Semantic Learning

Deep learning-based NER models typically transform text sequences into vector sequences, where traditional
one-hot encoding representations fail to effectively capture the contextual relationships and issues of data sparsity
within sentences. In recent years, low-dimensional dense vector representations, such as word2vec and Global Vectors
for Word Representation (GloVe), have gradually replaced traditional methods, offering advantages in extracting
semantic information, conserving computational resources, and exhibiting strong generalization capabilities. In this
study, the GloVe model is utilized for unsupervised training of text sequences to generate word vector representations
rich in semantic information. Let the preprocessed text sequence be denoted as W = {w1, w2, . . . , w3, . . . , wn}. The
pre-trained word vector model is employed to represent the text wi, resulting in wi =

{
w1

i , w
2
i , . . . , w

j
i , . . . , w

n
i

}
,

where, wj
i ∈ Rdw , n is the sentence length, and dw is the word vector dimension.

Long Short-Term Memory Networks (LSTMs), a variant of RNNs, possess the advantage of capturing long-distance
dependencies and contextual features within sentences, while effectively mitigating issues of gradient vanishing
and explosion. A BiLSTM, composed of forward and backward LSTM, is more conducive to learning contextual
information in sentences. This study employs BiLSTM for feature extraction from sentences wi, with both forward
and backward LSTM extracting features that are then concatenated to obtain hidden layer features ht. The specific
formulas are as follows:

ft = σ (Wf · [ht−1, xt] + bf ) (1)

it = σ (Wi · [ht−1, xt] + bi) (2)

Čt = tanh (WC · [ht−1, xt] + bC) (3)

Ct = ft ∗ Ct−1 + it ∗ Čt (4)

ot = σ (Wo · [ht−1, xt] + bo) (5)
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ht = ot ∗ tanh (Ct) (6)

where, ft, it, and ot respectively represent the forget gate, input gate, and output gate at time t; Čt denotes the
candidate memory cell vector at time t;Ct represents the memory cell vector at time t;ht denotes the output vector of
the hidden layer; * indicates the dot product; W and b represent the weight matrix and bias vector, respectively; σ(·)
and tanh(·) denote the sigmoid activation function and hyperbolic tangent activation function, respectively.

3.2 Global Semantic Learning Based on Dual-Graph GCNs

GCNs are adept at capturing relationships between nodes and have been widely applied in NLP. To effectively
capture the dependencies between words, GCNs are utilized to extract features from both co-occurrence graphs and
syntactic dependency graphs. Through the dual-graph structure, a complementary acquisition of textual sequential
information and global information is achieved.
3.2.1 Construction of co-occurrence graphs

Co-occurrence graphs utilize graph structures to express the co-occurrence relationships between words, aiming to
showcase semantic connections between vocabularies by capturing words that frequently appear in the same context
within texts. Words in text sequences are represented as nodes, and the edges between nodes denote the co-occurrence
relationships between words. A predefined sliding window is moved from left to right along the text sequence. When
words appear within the same sliding window, they are considered to have a co-occurrence relationship, thereby
constructing a co-occurrence graph, as illustrated in Figure 2.

Figure 2. Example of co-occurrence graph construction

3.2.2 Construction of syntactic dependency graphs
Syntactic parsing, a fundamental component of NLP, plays a pivotal role in presenting the grammatical dependency

relationships between words within sentences. By analyzing the dependency relationships among words in sentences,
the syntactic structure of sentences is determined, revealing their hierarchical structure and grammatical dependencies.
Text sequences are analyzed using the StanfordNLP syntactic parser to effectively transform text sequences into graph
network data structures. The result of the syntactic analysis for a given text sequence is shown in Figure 3.

From the example in Figure 3, it can be observed that the syntactic analysis results obtained from the syntactic
parser not only provide the grammatical roles of each word but also mark the dependency relationships between words.
For instance, the relationship between “suffers” and “pain” is labeled as “ccomp,” indicating a clausal complement.
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Although the dependency relationships obtained from syntactic analysis are represented as directed edges, for the
purposes of constructing syntactic dependency graphs and feature extraction, this study opts to consider directed
edges as undirected. By analyzing the dependency relationships among words in sentences with a syntactic parser,
syntactic dependency graphs are constructed, enabling a more effective expression of the dependency relationships
between words and the overall text structure.

Figure 3. Example of syntactic dependency analysis

Through the construction of graphs, two textual graphs are obtained: a co-occurrence graph G1 = (V,E1) and a
syntactic dependency graph G2 = (V,E2). X is used to represent the initial embedding representations of the textual
word nodes. In addition, V denotes the set of nodes in the graph, which corresponds to the collection of words in the
text sequence; E1 represents the set of edges in the co-occurrence graph, indicating the existence of a relationship
between two words; E2 is the set of edges in the syntactic dependency graph.

Two GCNs are employed to learn the topological structures of the two text networks separately. Through
neighborhood aggregation operations based on the word connection relationships in the two text networks, the
embedding representations of textual words are obtained. The computational formulas are as follows:

HM = RELU
(
AmHMW l

)
(7)

HS = RELU
(
AsHSW

l
)

(8)

where, HM represents the embedding matrix of the co-occurrence graph, and HS denotes the embedding matrix of
the syntactic dependency graph. H0

M = X
(
X ∈ RN×L

)
is the input to the first layer of the GCN, N represents the

number of word nodes, and L denotes the embedding dimension of word nodes. A ∈ RN×N signifies the adjacency
matrix, with elements being decimals ranging from 0 to 1, indicating the edge weight between two word nodes. W l

represents the model training weight parameter matrix, and RELU(·) denotes the activation function.
In the dual-graph GCN module, features HM obtained from the co-occurrence graph G1 and features HS obtained

from the syntactic dependency graph G2 are concatenated. The concatenated HC represents the global features
obtained by word embeddings through the dual graphs:

HC = HM ⊕HS (9)

3.3 Feature Fusion

The multi-head self-attention mechanism aids in capturing syntactic and semantic features between words
in sentences, particularly focusing on long-distance dependencies between words, enabling a more effective
understanding of internal dependencies within feature vectors. To fuse feature vectors extracted by the GCN and
BiLSTM modules, this study introduces a multi-head self-attention mechanism, concentrating on the structural
features of the fusion vectors. The fusion vector representing global semantic information and contextual information
is denoted as R = [r1, r2, . . . , rn], where ri is the vector of the i-th character in the sentence. After undergoing linear
transformation, three different vector matrices Q(query), K(Key) and V(Value) are obtained, and Q=K=V =R. By
performing dot product operations on each key matrix K using Q, the results are scaled and normalized using a
softmax function to obtain attention weights. The specific computational formula is as follows:

SelfAttention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (10)
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where,
√
dk represents the dimensionality of key, and softmax(·) indicates probability mapping of the input elements.

Through the multi-head self-attention mechanism, high-dimensional feature vectors are subjected to multiple
parallel attention computations, with the number of heads being e. Each attention head possesses distinct feature
parameters. After computing the attention information for one head, the information from e heads is concatenated
and then linearly transformed to obtain comprehensive feature information fused with attention, represented as:

Mi = SelfAttention (QWQ,KWK , V WV ) (11)

MulAtt(Q,K, V ) = Concat (M1,M2, . . . ,Me)W (12)

where,WQ,WK ,WV denotes the weight matrix learned during model training,Concat(·) represents the concatenation
of feature vectors extracted by e attention heads, and W is the weight matrix generated in the process.

3.4 CRF Decoding

While the multi-head self-attention mechanism effectively fuses features and independently identifies the most
probable label for each word, it does not address the issue of the rationality between adjacent labels. To resolve
this, a CRF model is employed to introduce effective constraints between labels, thereby ensuring that reasonable
label sequences attain higher probability values, resulting in the optimal predicted sequence. For a given sequence
X = {x1, x2, . . . , xn} and its predicted sequence y = {y1, y2, . . . , yn}, the computed score can be represented as:

S(X, y) =

n∑
i=1

Ayi,yi+1 +

n∑
i=1

Pi,yi (13)

where, Ayi,yi+1 denotes the probability of transitioning yi to yi+1, Pi,yi represents the probability of the i-th word
being labeled yi, and S(x, y) signifies the probability of the input sentence sequence x being tagged with the label
sequence y.

Thus, the conditional probability of label sequence y in the text representation X is:

p(y | X) =
eS(X,y)∑

ỹ∈YX
S(X, ỹ)

(14)

where, YX represents the set of all possible labels under the text sequence X . Subsequently, the likelihood function is
solved, and the optimal label sequence is decoded to obtain the prediction result, as follows:

log(p(y | X)) = S(X, y)− log

 ∑
ỹ∈YX

eS(X,ỹ)

 (15)

y∗ = argmaxS(X, ỹ) (16)

4 Results and Analysis
4.1 Datasets

Experiments were conducted on the Chinese Electronic Medical Records Entity Dataset released by the China
Conference on Knowledge Graph and Semantic Computing (CCKS-2019) and the Chinese Resume Dataset. The
distribution of the two datasets is shown in Table 1. The datasets employ the BIO tagging scheme: “B” represents
Beginning, indicating the start of an entity; “I” represents Inside, indicating the middle part of an entity; “O” represents
Outside, indicating information unrelated to any entity.

4.2 Evaluation Metrics

To accurately measure the effectiveness of entity recognition, this study employs three evaluation metrics: precision
(P), recall (R), and F1-score (F1). The specific formulas are as follows:

P = TP/(TP + FP )

R = TP/(TP + FN)

F1 = 2PR/(P +R)

where, TP represents the number of correctly identified entities, FP denotes the number of entities with either
boundary determination errors or category classification errors, and FN denotes the number of unrecognized entities.
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Table 1. Introduction of the datasets

Dataset Dataset Division Number of
Sentences/Documents Entity Types

CCKS-2019

Training set 1000 Surgical procedures, body parts,
Development set 79 medications, imaging examinations,

Test set 300 diseases and diagnoses, laboratory tests.

Resume

Training set 3821 Nationalities, educational institutions,
Development set 463 addresses, personal names, organization

Test set 477 names.

4.3 Parameter Settings

The word vectors were initialized using GloVe, with an embedding dimension set to 300. The embedding
dimension for BiLSTM was set to 100. The graph convolutional module utilized two layers of convolution, with a
word embedding dimension of 300. The number of heads in the self-attention mechanism was set to 6. The Adam
optimizer was used for training with epochs=200, an initial learning rate of 0.01, and a Dropout rate of 0.5.

4.4 Experimental Results and Analysis

To validate the effectiveness of the model proposed in this study, comparative experiments were conducted on the
CCKS-2019 and Resume datasets. The performance comparison of various models on the CCKS-2019 dataset is
presented in Table 2 and Table 3.

Chiu and Nichols [17] utilized a CNN model to capture character features, which were then combined with word
vectors and other additional features for input into a BiLSTM network. Li et al. [18] employed both sentence and
bi-word vectors in their model. Dang et al. [16] proposed the D3NER model, which introduces linguistic features into
the BiLSTM-CRF structure to optimize word vectors. Peters et al. [19] introduced the Embeddings from Language
Models (ELMo), utilizing BiLSTM as a pre-training structure to obtain dynamic word vectors. Through experimental
comparison, the model presented in this study demonstrated superior performance on the CCKS-2019 dataset, with
an F1-score exceeding the next best model by 1.13 percentage points.

The performance comparison of models on the Resume dataset is shown in Table 3. Zhang and Yang [20] first
proposed using Lattice-LSTM to achieve character-word fusion, enhancing the performance of Chinese NER. Building
on this, Liu et al. [21] further optimized the model with four strategies for acceleration, enabling the model to support
larger batch sizes. Gui et al. [22] introduced graph methods to the field of NER, utilizing co-occurrence relationships
for sequence tagging. Li et al. [23] improved the self-attention mechanism and introduced position encoding to
improve the F1-score for NER. Through comparative experiments, the model presented in this study achieved the best
results on the Resume dataset, with an F1-score exceeding the next best model by 0.67 percentage points.

Table 2. Comparison of evaluation metrics for different models on the CCKS-2019 dataset

Model P (%) R (%) F1 (%)
BCEL [17] 83.65 82.56 83.24

VT-BiLSTM [18] 83.45 83.68 83.54
D3NER [16] 82.35 83.41 83.62
ELMo [19] 83.65 83.52 83.72
M-DGNN 84.72 84.49 84.85

Table 3. Comparison of evaluation metrics for different models on the resume dataset

Model P (%) R (%) F1 (%)
Lattice-LSTM [20] 94.62 94.23 94.65

WC-LSTM [21] 95.33 94.60 94.74
LB-GNN [22] 95.58 95.52 95.40

FL-Transformer [22] - - 95.67
M-DGNN 96.12 95.86 96.34

The experimental results indicate that the introduction of GCNs into NER tasks, combined with the co-occurrence
and syntactic dependency information within text sequences, is effective in enhancing the accuracy of NER.
Constructing text sequences into graph structures facilitates the exploration of hidden structural information within
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the text. GCN models can effectively model the global co-occurrence relationships of words, with embedding
representations considering both topological information and word co-occurrence information. Simultaneously,
combining BiLSTMs to capture the bidirectional contextual semantic information of texts addresses the insufficiency
of GCNs in neglecting textual word order features.

4.5 Parameter Analysis

Figure 4 presents the impact of different sliding window sizes on model performance across two datasets. It can
be observed that, on both the CCKS-2019 and Resume datasets, the model’s F1-score reaches its peak when the
sliding window size is set to 3, and shows a declining trend when the size is either decreased or further increased.
Therefore, setting the sliding window too large or too small is not the optimal strategy. A too large sliding window
might lead to unnecessary node connections. Conversely, a too small setting reduces the number of words within the
window, decreasing the number of node connections in the constructed text graph. This could result in the loss of
some important connections between nodes, thereby losing key information and reducing the performance of entity
recognition.

Figure 4. Impact of different sliding window sizes on model performance

Figure 5. Impact of different numbers of graph convolutional layers on model performance

Figure 5 illustrates the performance of the model under different numbers of graph convolutional layers. It is
observed that the model exhibits the highest accuracy when the number of graph convolutional layers is set to 3.
Compared to having one or two layers of graph convolution, both accuracy and F1-score show improvement. However,
an increase to four layers results in a decrease in both accuracy and F1-score. This decline can be attributed to the
issue of over-smoothing that may occur with too many stacked layers of graph convolution, leading to the features of
adjacent nodes becoming increasingly similar and thus negatively impacting the performance of entity recognition.
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5 Conclusions

This study introduced a NER method based on dual GNNs with multi-feature fusion. The model leverages GCNs,
combining co-occurrence and syntactic dependency graphs, to learn the feature information of text word nodes.
In addition, a multi-head self-attention mechanism is introduced to calculate the internal dependency significance
of feature vectors. Experimental results demonstrate that fully considering the grammatical characteristics of text
language and introducing syntactic dependency information significantly enhances the effectiveness of NER. A
limitation of this study is the construction of static text graphs. Future work could involve constructing dynamic text
graphs and exploring various methods for constructing text graphs, including those based on semantic associations
and entity relationships. Furthermore, different variants of GNNs based on text graph features could be experimented
with for further improvements.
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