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Abstract: The selection of optimal text embedding models remains a critical challenge in semantic textual similarity
(STS) tasks, particularly when performance varies substantially across datasets. In this study, the comparative
effectiveness of multiple state-of-the-art embedding models was systematically evaluated using a benchmarking
framework based on established machine learning techniques. A range of embedding architectures was examined
across diverse STS datasets, with similarity computations performed using Euclidean distance, cosine similarity,
and Manhattan distance metrics. Performance evaluation was conducted through Pearson and Spearman correlation
coefficients to ensure robust and interpretable assessments. The results revealed that GIST-Embedding-v0 consistently
achieved the highest average correlation scores across all datasets, indicating strong generalizability. Nevertheless,
MUG-B-1.6 demonstrated superior performance on datasets 2, 6, and 7, while UAE-Large-V1 outperformed other
models on datasets 3 and 5, thereby underscoring the influence of dataset-specific characteristics on embedding model
efficacy. These findings highlight the importance of adopting a dataset-aware approach in embedding model selection
for STS tasks, rather than relying on a single universal model. Moreover, the observed performance divergence
suggests that embedding architectures may encode semantic relationships differently depending on domain-specific
linguistic features. By providing a detailed evaluation of model behavior across varied datasets, this study offers
a methodological foundation for embedding selection in downstream NLP applications. The implications of this
research extend to the development of more reliable, scalable, and context-sensitive STS systems, where model
performance can be optimized based on empirical evidence rather than heuristics. These insights are expected to
inform future investigations on embedding adaptation, hybrid model integration, and meta-learning strategies for
semantic similarity tasks.

Keywords: Machine learning models; Multi-dataset; Semantic textual similarity (STS); Massive text embedding
benchmark (MTEB)

1 Introduction

STS is a very important research area in Natural Language Processing (NLP) and it is used to measure the extent
to which two texts are similar in meaning. In the context of developing an effective STS model, a comprehensive
evaluation is necessary to determine how effective a model is in dealing with various cases [1]. STS itself is a vital
component to measure the performance of NLP models, as it contains a wide range of tasks, such as document
summarization, word meaning interpretation, short answer scoring, and information extraction [2, 3]. Evaluation of
STS models is important to measure the effectiveness of these models. This evaluation is done by benchmarking
the STS models, and the results are compared with the results of human evaluation [1, 4, 5]. By conducting this
evaluation, the advantages and disadvantages of several models can be found out, making it possible to develop these
models to be even better in the future.

The STS task itself is defined as the problem of determining the semantic similarity between two linguistic units,
which may range from individual words to full sentences and documents. However, existing approaches often lack the
ability to consistently capture semantic similarity across different levels of linguistic data, ranging from single words
to entire documents. This is due to the limited number of methods that can accurately measure meaning similarity at
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various data granularities [6–8]. Calculating STS between sentences overcomes the limitations of traditional lexical
similarity measures that can only capture textual similarity instead of semantic similarity [7, 9]. Another problem
arises when computing STS between sentences, which overcomes the limitation of traditional lexical similarity
measures that can only capture textual similarity instead of semantic similarity, which implies lower quality of analysis,
especially in applications that rely on text processing, such as classification or text summarization tasks [5]. Most
current approaches rely solely on distribution- or vector-based word representations, which often fail to capture deeper
semantic context, especially when dealing with synonyms, polysemy (words with multiple meanings), or differences
in sentence structure. There is a need for methods that utilize generalized probabilistic representations to measure
semantic similarity more effectively, taking into account the broader context of meaning both at the word and whole
document levels.

In general, the STS model works by comparing the semantic representations of two different input texts to calculate
a similarity score that indicates how similar two sentences are in meaning [10–12]. These models use several methods,
such as neural networks, deep learning architecture, or embedding [7]. By utilizing contextualized token embeddings
or special tokens, such as CLS, these models can produce text embeddings that are optimized for tasks related to
Natural Language Inference (NLI) or STS tasks [4, 7].

2 Related Works

Some of the earliest research that addresses textual semantic similarity is a survey of various approaches to
semantic similarity in NLP, including corpus-based, knowledge-based, and string-based methods [13]. Kim et
al. [14] identified document similarity using semantic similarity, not just keyword matching. Mohammed et al. [15]
used density-based clustering algorithms, specifically Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) and Density Peaks Clustering (DPC), to cluster documents based on semantic similarity. Sentence meta-
embedding proposed by Zhang et al. [16] consistently outperformed its individual single-source components on the
STS Benchmark and STS12-16 datasets. The Generalized Canonical Correlation Analysis (GCCA) meta-embedding
method established a new unsupervised current state on the unsupervised STS Benchmark dataset, outperforming the
single-source sentence encoder by 3.7% to 6.4% in Pearson correlation. The meta-embedding approach is flexible
and can be further improved by adding new sentence encoders into the ensemble. The meta-embedding models
are computationally efficient, with fast training times and the ability to reuse the underlying sentence encoder. The
diversity in sentence structure makes it difficult to estimate semantic similarity between sentences using only lexical
overlap. Word context and sentence structure need to be considered. Shajalal and Aono [17] and Lee et al. [18]
proposed new methods to utilize the role of grammar and word semantics to measure semantic similarity between
sentences. It was found that the proposed methods outperformed several known related works on the SemEval STS
dataset, demonstrating their effectiveness. Calculating semantic similarity between sentences in different domains
is a challenge in NLP. Agarwal et al. [19] proposed a method that uses corpus-based statistics and an edge-based
approach with a lexical database to calculate semantic similarity. The proposed method achieved high correlation
with human judgment of semantic similarity, outperforming other unsupervised models. However, 3.75% of the
statement pairs in the SICK dataset were outliers omitted from the analysis [12]. Modi et al. [20] proposed various
approaches to calculate semantic similarity between large text data, such as neural embedding techniques, including
Google Sentence Encoder, ELMo, and GloVe, as well as traditional similarity metrics, such as TF-IDF and Jaccard
Index. It was found that Google Sentence Encoder and ELMo insertion provided the best performance for semantic
similarity tasks.

Muennighoff et al. [21] and Poświata et al. [22] presented the massive text embedding benchmark (MTEB),
which includes eight insertion tasks, 58 data sets, and 112 languages, and evaluates 33 different text insertion models.
Conventional semantic text similarity methods require a large amount of trained labeled data as well as human
intervention. Generally, these methods ignore contextual information and word order, resulting in data scarcity and
latitudinal explosion problems [22]. Recently, deep learning methods have been used to determine text similarity.
Aboutaleb et al. [23] implemented a novel hybridization approach using the fine-tuned weighted Bidirectional Encoder
Representations from Transformers (BERT) feature extraction with the Siamese Bidirectional Long Short-Term
Memory (Bi-LSTM) model. This technique was used to determine the set of question pairs using semantic text
similarity from the Quora dataset. Text features were extracted using the BERT process, followed by weighted word
insertion.

STS is an important aspect of NLP that has been explored in various studies, which focus on the early exploitation
of NLP techniques in North Atlantic Treaty Organization (NATO) documents to improve interoperability within the
Alliance [24]. Zanon et al. [25] proposed WordRecommender, an algorithm based on semantic similarity, to generate
recommendations using sentiment analysis. Emotion detection in textual data is an emerging field in NLP that
involves classification of emotional content based on psychological models [26, 27]. Sosnowski and Yordanova [28]
discussed the challenges of antonym disambiguation in intelligent conversational guidance systems, highlighting the
importance of capturing the meaning of input text. Yang et al. [29] used BERT to assess clinical STS, demonstrating
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its effectiveness in a variety of tasks. Risch et al. [30] developed a metric called Semantic Answer Similarity (SAS) to
evaluate semantic similarity in question-answering models. Abdalla et al. [31] introduced a dataset for Semantic
Textual Relatedness-2022 (STR-2022) to assess the relatedness of English sentence pairs, which emphasizes the
reliability of human judgment in determining semantic relatedness. Alignment techniques were evaluated based on
semantic similarity detection for word sense and definition in lexicographic resources. Polley et al. [32] also presented
X-Vision, an explainable image retrieval system based on reordering in semantic space. In the NLP domain, the use of
trained models, such as BERT and Generative Pre-trained Transformer (GPT), has gained popularity for tasks, such as
semantic sentence similarity and text classification, as demonstrated by the studies by Mayil and Jeyalakshmi [33] and
Pai [34]. These studies collectively contribute to the advancement of STS in NLP by exploring various techniques
and applications.

3 Methodology
3.1 Theoretical Framework
3.1.1 STS

STS is one of the important elements in the field of NLP and it measures the semantic correlation between a pair
of texts, either sentences or paragraphs [35, 36]. The STS model is designed to automatically measure the relationship
and similarity of meaning between two text sentences quantitatively [4]. This process is very important in applications
related to question answering, document summarization, information retrieval, and information extraction [13, 30].

In general, the STS model works by comparing the semantic representations of two different input texts to calculate
a similarity score that indicates how similar two sentences are in meaning [37–39]. These models use several methods,
such as neural networks, deep learning architecture, or embedding. By utilizing contextualized token embeddings or
specialized tokens, such as CLS, these models can produce text embeddings that are optimized for tasks related to
NLI or STS tasks [2, 22, 23].
3.1.2 MTEB

As a very important tool in the field of NLP, MTEB provides a standardized platform for evaluating the performance
of text embedding models [21]. MTEB allows researchers to test various types of evaluations and benchmarks of the
text embedding model [8], gaining insights into the advantages and weaknesses of various text embedding models,
thereby contributing to progress in the development of more accurate and robust text representation techniques [22].

MTEB plays an important role in the evaluation and comparison of text embedding models by providing a
standardized framework to assess their performance across various tasks and datasets. Mohr et al. [40] used MTEB
to evaluate the quality of text embedding produced by various models, identifying the most effective approaches in
capturing semantic information in text. The benchmarking process supported by MTEB enables a comprehensive
evaluation of text embedding models, leading to the improvement of the design and performance of such text
embedding models [41]. In addition, MTEB serves as a very important tool for researchers involved in experiments,
such as semantic similarity assessment, text classification, and information retrieval, by providing a standardization to
evaluate the effectiveness of text embedding techniques [40]. By utilizing MTEB, the performance of the new models
proposed can be compared with existing benchmarks to identify areas for improvement, ultimately contributing to the
advancement of text embedding research [22].

Spearman correlation measures the relationship between two ordinal variables by assessing the extent to which
changes in one variable are related to changes in the other. It quantifies this relationship with values ranging from
-1 to 1, where -1 indicates a perfect negative correlation, 1 represents a perfect positive correlation, and 0 signifies
no correlation. The calculation follows Spearman’s correlation formula, which ranks the data before computing the
correlation coefficient.

ρ = 1− 6
∑

d2i
n (n2 − 1)

(1)

where, di is the rank difference between the pair of data, and n is the number of data [7, 16].
Pearson correlation measures the linear relationship between two interval or ratio variables, quantifying the

strength and direction of their association. Its values range from -1 to 1, where -1 indicates a perfect negative
correlation, 1 represents a perfect positive correlation, and 0 signifies no correlation. The calculation follows Pearson’s
correlation formula, which evaluates the covariance of the variables relative to their standard deviations.

r =

∑
(xi − x̄) (yi − ȳ)√∑

(xi − x̄)
2 ∑

(yi − ȳ)
2

(2)

where, xi and yi are the values of the two variables, and x̄ and ȳ are the averages of each variable [42].
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Euclidean distance measures the straight-line distance between two points in Euclidean space, providing a
geometric measure of similarity or dissimilarity. It is calculated using the Euclidean distance formula for two vectors
A and B with n dimensions, which determines the root of the sum of squared differences between corresponding
elements of the vectors [43].

d(A,B) =

√√√√ n∑
i=1

(Ai −Bi)
2 (3)

Cosine similarity measures the directional similarity between two vectors by evaluating the cosine of the angle
between them. Its values range from -1 to 1, where 1 indicates perfect similarity, 0 signifies no similarity, and
-1 represents complete dissimilarity. The calculation follows the cosine similarity formula, which determines the
normalized dot product of the vectors to assess their alignment [44, 45].

cosine similarity =

∑n
i=1 Ai ·Bi√∑n

i=1 A
2
i ·

√∑n
i=1 B

2
i

(4)

Manhattan distance, also known as L1 distance, measures the total absolute difference between two vectors by
summing the absolute differences of their corresponding elements. It is calculated using the Manhattan distance
formula for two vectors A and B with n dimensions, representing the shortest path along grid-based movements
rather than the direct Euclidean distance [46, 47].

d(A,B) =

n∑
i=1

|Ai −Bi| (5)

3.2 Proposed Method

The framework proposed in this research is designed to address these challenges by integrating modern massive
text embedding models that have superior capabilities in generating semantic representations of text. The framework
does not rely on only one similarity evaluation metric but also utilizes various metric approaches, such as cosine
similarity, Euclidean distance, and Manhattan distance, combined with correlation metrics, such as Pearson and
Spearman. By testing the framework on various well-known STS datasets, such as BIOSSES, Sentences Involving
Compositional Knowledge-Relatedness (SICK-R), and STSBenchmark, it aims to provide a comprehensive evaluation
of embedding model performance in various semantic similarity contexts.

The framework offers a novel approach by incorporating rarely used embedding models collectively, such as
bge-large-en-v1.5 and privacy embedding rag 10k base final, making it relevant for specific domains and broader
data generalization. Thus, this framework is expected to be a flexible, scalable, and comprehensive solution in
measuring semantic similarity between texts.

Figure 1. Proposed framework
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Figure 1 explains the proposed framework for STS, aiming to measure the degree of semantic similarity between
sentence pairs by utilizing various massive text embedding models. The framework starts with processing datasets,
such as BIOSSES, SICK-R, STS12-STS17, STS22, and STSBenchmark, which are diverse in semantic context. These
datasets provide sentence pairs that are assessed for similarity as ground truth. Furthermore, the framework uses
modern text embedding models, such as GIST-Embedding-v0, MUG-B-1.6, bge-large-en-v1.5, and stella-base-en-v2,
to generate numerical representations of sentences in vector form. These models are known for their ability to capture
semantic meaning in depth and are applied to various text domains, including specific domains such as privacy.

As shown in the figure, the resulting vector representations are compared using similarity metrics, such as cosine
similarity, Euclidean distance, and Manhattan distance, to calculate the degree of semantic similarity between sentence
pairs. The similarity values are then evaluated with correlation metrics, such as Pearson correlation to measure
linear relationships and Spearman correlation for monotonic relationships, thereby assessing the performance of the
embedding model. The framework also uses matrix evaluation to compare different combinations of embedding
models and metrics, such as Euclidean Pearson, cosine Spearman, and Manhattan Pearson, thus providing greater
insight into the performance of each method.

The novelty of this framework lies in the integration of large embedding models that are rarely used collectively
for STS, such as privacy embedding rag 10k base final for specific privacy-related data. In addition, evaluation using
various similarity and correlation metrics provides a more comprehensive analysis than classical approaches. With
validation using many well-known datasets, the framework ensures its relevance for various text domains and contexts.
This makes the framework more flexible, scalable, and in-depth in supporting semantic similarity evaluation in text.

For each line in the dataset, sentence 1 and sentence 2 were converted into text embeddings using the model under
test. Once the text embedding is obtained, the closeness between the text embedding of sentence 1 and sentence 2 can
be calculated using a predefined metric. The metric value was then re-entered into the dataset as the score model
column. Furthermore, the correlation between the score and score model columns in the dataset was calculated using
Pearson and Spearman correlation.

A total of ten datasets were used in this research. Each dataset was tested using 13 different models. To measure
the distance/closeness between text embedding sentence 1 and sentence 2, three methods were used, namely cosine
similarity, Manhattan, and Euclidean. The three methods were correlated to the score given by humans using
Spearman correlation and Pearson correlation.
3.2.1 Dataset description

The datasets used by MTEB in evaluating STS models were adopted, which consist of sentence pairs that have
semantic similarity labels. The datasets were used to evaluate existing STS models, and the results were compared
with the results of human evaluation.

The dataset characteristics significantly affect the performance of the model. Most texts contain 10-20 words,
which affects how well the embedding captures contextual meaning. The datasets cover various domains, such as
news, opinion, and technical discussions, which requires the model to generalize effectively across different writing
styles. In addition, GIST-Embedding-v0 has the best performance in handling synonym variations compared to the
other models, as confirmed by the Spearman correlation test.

The datasets consist of three columns containing sentence 1, sentence 2, and score. The score column is a
similarity of meaning, ranging from 0-4, with 0 meaning that the two sentences have opposite meanings and 4
meaning that the two sentences have similar meanings. The datasets used in the study consist of several datasets, such
as BIOSSES, SICK-R, STS12-STS17, STS22 and STSBenchmark, as shown in Table 1.
3.2.2 Models

The STS models used in this study have been proven to perform well in measuring semantic similarity between two
sentences. They were taken from the MTEB Leaderboard with the URL https://huggingface.co/spaces/mteb/leaderboard
and their performance was measured using the metrics in Table 2.
3.2.3 Model selection justification

The models were selected based on several factors, including accuracy, efficiency, and reliability. GIST-Embedding-
v0 consistently outperformed other models across a wide range of distance metrics, making it the most robust choice
for tasks requiring high accuracy. In addition, it maintained an optimal balance between computational efficiency and
performance, with an inference time of 12.4 ms and memory usage of 512 MB, making it suitable for large-scale
deployments.

MUG-B-1.6 and UAE-Large-V1 also showed competitive performance, especially on certain datasets where
they outperformed GIST-Embedding-v0. However, their slightly higher inference time and memory requirements
make them less optimal for real-time applications. The b1ade-embed model showed strong performance in specific
evaluations while maintaining the lowest inference time, making it a viable option for efficiency-focused tasks.
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Overall, GIST-Embedding-v0 was selected as the preferred model due to its superior accuracy and balanced
computational efficiency, making it well suited for real-world applications where accuracy and performance are
critical.

Table 1. STS datasets

Dataset Description URL

BIOSSES

BIOSSES is a dataset for testing meaning
similarity between sentences in the

biomedical field. Pairs of sentences were
evaluated by five experts who rated their
similarity and assigned a score ranging

from 0 (no meaning similarity at all) to 4
(similar meaning).

https://huggingface.co/datasets/qanaste
k/Biosses-BLUE

SICK-R

SICK-R is a dataset that is used to estimate
sentence meaning similarity in the context
of compositional distribution. The dataset
includes many sentence pairs that are rich

in lexical, syntactic, and semantic
phenomena. Each sentence pair is
annotated to indicate the degree of

similarity between the two sentences, with
a scale from 1 to 5.

https://huggingface.co/datasets/mteb/si ckr-sts

STS12 Datasets used at Semantic Evaluation
(Semeval) Workshop 2012 https://huggingface.co/datasets/mteb/st s12-sts

STS13 Datasets used at Semeval Workshop 2013 https://huggingface.co/datasets/mteb/st s13-sts
STS14 Datasets used at Semeval Workshop 2014 https://huggingface.co/datasets/mteb/st s14-sts
STS15 Datasets used at Semeval Workshop 2015 https://huggingface.co/datasets/mteb/st s15-sts
STS16 Datasets used at Semeval Workshop 2016 https://huggingface.co/datasets/mteb/st s16-sts

STS17 Datasets used at Semeval Workshop 2017 https://huggingface.co/datasets/mteb/st
s17-crosslingual-sts/viewer/en-de

STS22 Datasets used in Semeval Workshop 2022 https://huggingface.co/datasets/mteb/st
s22-crosslingual-sts/viewer/en

STSBenchmark Selected datasets taken from Semeval 2012
-2017 https://paperswithcode.com/dataset/stsbenchmark

Table 2. STS models and evaluation metrics

No. Models Evaluation Metrics
1 GIST-Embedding-v0

Euclidean Pearson [48]
Euclidean Spearman [48]
Cos Sim Pearson [49]
Cos Sim Spearman [49]
Manhattan Pearson [50]
Manhattan Spearman [50]

2 MUG-B-1.6
3 privacy embedding rag 10k base 15 final
4 blade-embed
5 bge-base-en-v1.5
6 ember-v1
7 privacy embedding rag 10k base 12 final
8 privacy embedding rag 10k base final
9 stella-base-en-v2

10 gte-large
11 instructor-large
12 UAE-Large-V1
13 bge-large-en-v1.5

4 Results
4.1 Pearson Correlation Based on Euclidean Distance

Table 3 shows the Pearson correlation values between the 13 models tested, with the Avg. column showing the
average correlation for each model against other models. From the table, it can be seen that most of the models
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have a relatively high correlation, with the average correlation value ranging from 71% to 83%. For example, the
GIST-Embedding-v0 model has the highest average correlation of 83%, indicating high consistency in the way it
measures Euclidean distance compared to the other models.

As shown in Table 3, most of the models show good correlation, with an average correlation between 71% and
83%. For example, GIST-Embedding-v0 has the highest average correlation (83%), while models, such as gte-large
and privacy embedding rag 10k base final, show larger fluctuations in correlation, with average values around 76%
to 72%. Overall, this table illustrates the extent to which the models are related in terms of the Euclidean distance
measurement, with most models showing a consistent and reliable relationship.

However, some models, such as gte-large and privacy embedding rag 10k base final, show larger fluctuations in
correlation, with an average of 76% and 72%, respectively, indicating variations in the way the Euclidean distance
is measured by these models. High correlations between models, such as in b1ade-embed with an average of 79%,
indicate that the models produce consistent and reliable Euclidean distances for measuring similarity between data.

Table 3. Pearson correlation of Euclidean distance (%)

Models 1 2 3 4 5 6 7 8 9 10 Avg.
blade-embed 87 85 86 89 87 89 86 48 46 88 79

bge-base-en-v1.5 87 81 83 83 82 87 85 35 55 86 77
bge-large-en-v1.5 83 82 83 86 83 87 86 43 54 87 77

ember-v1 84 82 83 84 81 86 85 48 54 85 77
GIST-Embedding-v0 89 84 83 87 85 89 85 89 49 87 83

gte-large 89 83 83 87 84 88 83 9 71 86 76
instructor-large 86 83 80 86 83 88 85 16 69 87 76

MUG-B-1.6 88 85 85 89 86 89 86 44 54 89 79
privacy embedding rag 10k ba

se 12 final 80 78 75 81 78 83 80 25 61 82 72

privacy embedding rag 10k ba
se 15 final 86 79 82 81 79 82 81 25 49 82 73

privacy embedding rag 10k ba
se final 86 79 82 81 79 82 81 24 37 82 71

stella-base-en-v2 85 83 83 84 83 88 85 7 68 87 75
UAE-Large-V1 86 85 86 87 85 88 85 46 69 87 80

Table 4. Spearman correlation of Euclidean distance (%)

Models 1 2 3 4 5 6 7 8 9 10 Avg.
b1ade-embed 88 83 79 90 85 89 86 46 47 88 78

bge-base-en-v1.5 87 80 78 84 82 88 85 35 59 86 77
bge-large-en-v1.5 85 82 79 86 83 88 86 41 54 88 77

ember-v1 86 81 79 84 82 87 85 46 57 86 77
GIST-Embedding-v0 88 81 76 88 83 89 85 89 51 87 82

gte-large 89 80 77 88 83 89 84 7 70 86 75
instructor-large 85 81 76 87 82 89 86 14 68 87 75

MUG-B-1.6 88 83 79 89 85 90 87 43 54 89 79
privacy embedding rag 10k ba

se 12 final 79 77 72 82 77 84 80 24 63 82 72

privacy embedding rag 10k ba
se 15 final 84 78 77 82 79 83 82 24 55 82 73

privacy embedding rag 10k ba
se final 84 78 77 82 79 83 82 23 42 82 71

stella-base-en-v2 86 81 79 85 83 89 86 5 67 87 75
UAE-Large-V1 86 82 80 88 85 88 85 44 67 88 79

Table 4 shows the Pearson correlation values of the Euclidean distances between the models tested, with the
correlation values calculated for each pair of models and presented in columns showing the relationship between the
different models. Each row represents a model compared to other models, and the last column (Avg.) shows the average
correlation value for each model. The GIST-Embedding-v0 model has the highest average correlation (82%), showing
good consistency in measuring similarity with other models, while the privacy embedding rag 10k base 12 final
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model has the lowest average correlation (72%), indicating greater variation in distance measurements. Some models,
such as gte-large and instructor-large, show larger fluctuations in correlation, which could indicate a mismatch in the
way the Euclidean distance between the data is measured. Overall, this table illustrates the level of consistency and
alignment between the tested models in terms of Euclidean distance measurement.

4.2 Pearson Correlation of Cosine Similarity Distance

Table 5 presents the Pearson correlation values between the models tested using the cosine similarity distance,
where each correlation value describes the extent to which two models are similar in measuring similarity between
data or features.

Table 5. Pearson correlation of cosine similarity distance (%)

Models 1 2 3 4 5 6 7 8 9 10 Avg.
blade-embed 90 88 87 89 87 89 85 49 46 87 80

bge-base-en-v1.5 89 84 86 83 83 87 84 36 54 85 77
bge-large-en-v1.5 85 85 87 85 83 87 85 43 54 86 78

ember-v1 86 85 86 86 84 88 85 51 57 87 80
GIST-Embedding-v0 90 87 86 87 86 88 84 89 47 86 83

gte-large 90 85 86 86 85 87 83 8 70 85 77
instructor-large 87 85 84 85 84 87 84 15 68 86 76

MUG-B-1.6 90 88 88 88 87 88 85 44 52 88 80
privacy embedding rag 10k ba

se 12 final 82 80 79 80 78 82 78 24 62 80 72

privacy embedding rag 10k ba
se 15 final 87 81 84 80 78 80 79 23 48 79 72

privacy embedding rag 10k ba
se final 87 81 84 80 78 80 79 22 36 79 71

stella-base-en-v2 86 85 86 83 83 87 84 11 66 85 76
UAE-Large-V1 88 87 88 89 87 88 85 49 69 87 82

Table 5 presents the Pearson correlation of cosine similarity distance between the tested models. Each column
shows the correlation value between the model in the first row and the other models, while the last column (Avg.)
presents the average correlation for each model against the other models. The b1ade-embed and ember-v1 models
have the highest average correlation value (80%), which shows good consistency in measuring similarity between
models. Meanwhile, the privacy embedding rag 10k base 12 final, privacy embedding rag 10k base 15 final, and
privacy embedding rag 10k base final models show lower average correlation values of 72%, 72%, and 71%,
respectively, indicating greater variation in the cosine similarity distance measurement with other models. Some
models, such as gte-large and instructor-large, also show lower correlations in certain pairs, such as the 8% value in
the eighth model pair for gte-large, which may reflect discrepancies in the similarity measurement between models.
Overall, this table illustrates the degree of similarity between models based on the cosine similarity measure used for
alignment or difference analysis between models in the tested datasets.

4.3 Spearman Correlation of Cosine Similarity Distance

Table 6 shows the Spearman correlation of cosine similarity distance between the different models tested.
Spearman’s correlation is used to measure the relationship between two variables based on their rank, which means it
is more sensitive to the order and relative differences between the data rather than their absolute values. In this context,
this table illustrates the rank relationship between the models based on the cosine similarity distance calculated for
each pair of models. Each column shows the correlation value between the model in the first row and the other models,
while the last column (Avg.) gives the average correlation value for each model.

Table 6 shows that the GIST-Embedding-v0 model has the highest average correlation value (82%), indicating good
consistency in similarity measures between other models. On the other hand, the privacy embedding rag 10k base final
model has the lowest average correlation (71%), indicating greater variation in similarity measures between models.
Models, such as gte-large and instructor-large, show greater fluctuations in the correlation between multiple models,
with lower correlation values in some pairs, such as 7% in the eighth model pair for gte-large. Overall, this table
illustrates the extent to which the tested models rank according to the calculated cosine similarity distance, providing
insights into the degree of alignment between models in terms of rank-based similarity measures.
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Table 6. Spearman correlation in cosine similarity distance (%)

Models 1 2 3 4 5 6 7 8 9 10 Avg.
blade-embed 89 83 79 90 85 90 87 48 47 89 79

bge-base-en-v1.5 87 80 78 84 82 88 85 35 59 86 77
bge-large-en-v1.5 85 82 79 86 83 88 86 41 54 88 77

ember-v1 86 82 79 87 83 88 87 50 61 88 79
GIST-Embedding-v0 88 81 76 88 83 89 85 89 51 87 82

gte-large 89 80 77 88 83 89 84 7 70 86 75
instructor-large 85 81 76 87 82 89 86 14 68 87 75

MUG-B-1.6 88 83 79 89 85 90 87 43 54 89 79
Mrivacy embedding rag 10k ba

se 12 final 79 77 72 82 77 84 80 24 63 82 72

privacy embedding rag 10k ba
se 15 final 84 78 77 82 79 83 82 24 55 82 73

privacy embedding rag 10k ba
se final 84 78 77 82 79 83 82 23 42 82 71

stella-base-en-v2 86 81 79 85 83 89 86 8 67 87 75
UAE-Large-V1 86 83 79 90 85 90 87 48 69 89 80

4.4 Pearson Correlation of Manhattan Distance

Table 7 shows the Pearson correlation of Manhattan distance between the various models tested. Manhattan
distance (or L1 norm) is a distance measurement that calculates the absolute sum of the differences between two
vectors. In this case, this table illustrates the extent to which the values of the tested models have a significant linear
relationship based on the Manhattan distance between models.

Table 7 also presents the Pearson correlation values between the model listed in the first column and the other models.
These values reflect how much of a linear relationship there is between models based on their Manhattan distance. For
example, the GIST-Embedding-v0 model has the highest correlation value with an average value of 83%, indicating
that it has a more consistent relationship with the other models. In contrast, privacy embedding rag 10k base final
has a lower average correlation value of 71%, indicating greater variation in distance measurements between models.
The MUG-B-1.6 and b1ade-embed models show higher correlations, with each having an average correlation of
79%, indicating good consistency between models. In addition, UAE-Large-V1 has an average correlation of 80%,
indicating good alignment with the other models in terms of Manhattan distance.

Table 7. Pearson correlation of Manhattan distance (%)

Models 1 2 3 4 5 6 7 8 9 10 Avg.
b1ade-embed 87 85 86 89 87 89 86 47 46 88 79

bge-base-en-v1.5 87 81 83 83 82 87 85 34 55 86 76
bge-large-en-v1.5 83 82 83 86 83 87 86 43 55 87 77

ember-v1 84 82 83 84 81 86 85 47 53 85 77
GIST-Embedding-v0 89 84 83 87 85 89 85 89 49 87 83

gte-large 88 83 83 87 84 88 83 8 71 86 76
instructor-large 86 83 80 86 83 88 85 15 69 87 76

MUG-B-1.6 88 85 85 89 86 89 86 45 54 89 79
MURacy embedding rag 10k ba

se 12 final 80 78 75 81 78 83 80 25 60 82 72

privacy embedding rag 10k ba
se 15 final 85 79 82 81 79 82 81 24 49 82 73

privacy embedding rag 10k ba
se final 85 79 82 81 79 82 81 24 37 82 71

stella-base-en-v2 85 83 83 84 83 88 85 7 67 87 75
UAE-Large-V1 86 85 86 87 85 88 85 46 69 87 80

4.5 Spearman Correlation of Manhattan Distance

Table 8 shows the Spearman correlation of Manhattan distance between the various models tested. Spearman’s
correlation is used to measure the monotonic relationship between two variables, meaning that it measures how well
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the relationship between two variables can be ordered (regardless of whether the relationship is linear or not). In this
table, the Spearman correlation values indicate the extent to which the ordered distance values between models are
related to each other.

Table 8. Spearman correlation of Manhattan distance (%)

Models 1 2 3 4 5 6 7 8 9 10 Avg.
blade-embed 88 83 79 90 85 89 86 45 46 88 78

bge-base-en-v1.5 87 80 78 84 82 88 86 34 59 86 76
bge-large-en-v1.5 84 82 79 86 83 88 86 40 54 87 77

ember-v1 85 81 79 84 82 87 85 46 56 85 77
GIST-Embedding-v0 88 81 76 88 83 89 85 88 51 87 82

gte-large 88 80 77 88 83 89 84 7 70 86 75
instructor-large 85 81 76 87 82 89 86 13 68 87 75

MUG-B-1.6 88 83 79 89 85 90 87 43 54 89 79
privacy embedding rag 10k ba

se 12 final 79 77 72 82 77 84 80 23 63 82 72

privacy embedding rag 10k ba
se 15 final 83 78 77 82 79 83 82 24 54 82 72

privacy embedding rag 10k ba
se final 83 78 77 82 79 83 82 24 42 82 71

stella-base-en-v2 86 81 78 85 83 89 86 5 66 87 75
UAE-Large-V1 86 82 80 88 85 88 85 43 67 88 79

Each row shows the Spearman correlation between the model listed in the first column and the other models.
For example, GIST-Embedding-v0 has an average correlation value of 82%, which indicates a strong and consistent
relationship with the other models based on Manhattan distance. Meanwhile, privacy embedding rag 10k base final
has a lower average correlation value of 71%, indicating a larger variation in the order of distance between the tested
models. The MUG-B-1.6 and b1ade-embed models show a higher correlation, with each having an average value of
79%, indicating that these two models have a more consistent ordering with the other models based on Manhattan
distance. UAE-Large-V1 has a higher average correlation value of 79%, reflecting fairly good alignment with the
other models.

Table 9 shows the models that have the highest scores on each of the distance metrics tested, which include
Euclidean, cosine similarity, and Manhattan, for both Pearson correlation and Spearman correlation. Based on this
table, GIST-Embedding-v0 is the superior model in all the metrics tested, with the highest average value in each
category.

Table 9. Models with the highest scores on each metric (%)

Metrics Models Average Score
Euclidean Pearson GIST-Embedding-v0 82.75

Euclidean Spearman GIST-Embedding-v0 81.83
Cos Sim Pearson GIST-Embedding-v0 83.02

Cos Sim Spearman GIST-Embedding-v0 81.83
Manhattan Pearson GIST-Embedding-v0 82.72

Manhattan Spearman GIST-Embedding-v0 81.79

Table 9 shows that the GIST-Embedding-v0 model has the highest scores in all metrics tested, using Euclidean,
cosine similarity, and Manhattan, with Pearson and Spearman correlations. In Euclidean Pearson, the highest value is
82.75%, while in Euclidean Spearman it reaches 81.83%. The model also excels in cosine similarity Pearson with
83.02% and cosine similarity Spearman with 81.83%. For Manhattan Pearson, the highest value is 82.72%, and in
Manhattan Spearman, it reaches 81.79%.

Figure 2 shows the performance evaluation of the GIST-Embedding-v0 model based on several distance metrics
used: Euclidean Pearson, Euclidean Spearman, cosine similarity Pearson, cosine similarity Spearman, Manhattan
Pearson, and Manhattan Spearman. The model shows the highest score on the cosine similarity Pearson metric, with
a value of 83.02%, and the lowest score on Manhattan Spearman with a value of 81.79%.

Table 10 shows the model with the highest score on each dataset based on the various evaluation metrics used,
namely Euclidean Pearson, Euclidean Spearman, cosine similarity Pearson, cosine similarity Spearman, Manhattan
Pearson, and Manhattan Spearman.
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Figure 2. Performance evaluation of GIST Embedding-v0

Table 10. Models with the highest scores on each dataset

Dataset Euclidean
Pearson

Euclidean
Spearman

Cos Sim
Pearson

Cos Sim
Spearman

Manhattan
Pearson

Manhattan
Spearman

1
GIST-

Embedding-
v0

gte-large
GIST-

Embedding-
v0

b1ade-embed
GIST-

Embedding-
v0

gte-large

2 MUG-B-1.6 MUG-B-1.6 MUG-B-1.6 MUG-B-1.6 MUG-B-1.6 MUG-B-1.6
3 UAE-Large-V1 UAE-LargeV1 UAE-Large-V1 MUG-B-1.6 UAE-Large-V1 UAE-Large-V1
4 b1ade-embed b1ade-embed b1ade-embed b1ade-embed blade-embed b1ade-embed
5 b1ade-embed b1ade-embed b1ade-embed UAE-Large-V1 b1ade-embed b1ade-embed
6 MUG-B-1.6 MUG-B-1.6 b1ade-embed b1ade-embed MUG-B-1.6 MUG-B-1.6
7 MUG-B-1.6 MUG-B-1.6 ember-v1 ember-v1 MUG-B-1.6 MUG-B-1.6

8
GIST-

Embedding-
v0

GIST-
Embedding-

v0

GIST-
Embedding-

v0

GIST-
Embedding-

v0

GIST-
Embedding-

v0

GIST-
Embedding-

v0
9 gte-large gte-large gte-large gte-large gte-large gte-large

10 MUG-B-1.6 MUG-B-1.6 MUG-B-1.6 UAE-Large-V1 MUG-B-1.6 MUG-B-1.6

Table 10 describes the models with the highest scores on each dataset based on various evaluation metrics. The
GIST-Embedding-v0 model stands out on several metrics, such as Euclidean Pearson, cosine similarity Pearson,
and Manhattan Pearson, especially on datasets 1, 8, and 9. MUG-B-1.6 is dominant on the Euclidean Spearman,
cosine similarity Spearman, and Manhattan Spearman metrics, with the best results on datasets 2, 6, 7, and 10. The
UAE-Large-V1 model shows the best performance on datasets 3 and 5, while b1ade-embed excels on some other
datasets, although not always the best across metrics. Overall, MUG-B-1.6 and GIST-Embedding-v0 are the two most
consistent top performers, but other models, such as UAE-Large-V1 and b1ade-embed, also perform well on certain
datasets.

5 Discussion

Based on the research results listed in Table 9 and the previous discussion, it can be concluded that the GIST-
Embedding-v0 model shows the best performance in measuring semantic similarity between two sentences in
almost all evaluation metrics used, such as Euclidean Pearson, Euclidean Spearman, Cos Sim Pearson, Cos Sim
Spearman, Manhattan Pearson, and Manhattan Spearman. The high mean scores on these models indicate that
GIST-Embedding-v0 has a better ability to produce consistent and accurate semantic representations for texts in a
variety of common situations. Therefore, this model can be considered as the best choice for general-purpose text
embedding applications, where the main goal is to measure the semantic similarity between two sentences in general.

Although GIST-Embedding-v0 shows an overall superior performance, a closer analysis of Table 10 reveals
that some other models, such as MUG-B-1.6 and UAE-Large-V1, perform better on some specific datasets. This
suggests that MUG-B-1.6 and UAE-Large-V1 may excel in specific situations or edge cases, where certain dataset
characteristics affect the way the models handle semantic similarity calculations. For example, MUG-B-1.6 tends to
perform better on datasets 2, 6, and 7, while UAE-Large-V1 performs better on datasets 3 and 5. This shows that
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while a model may perform best overall, its performance can be affected by the unique characteristics of the datasets
used. Some datasets may contain special features or patterns that make certain models more effective in measuring
the semantic similarity of sentences in that context. Therefore, it is important to select a model based on the dataset to
be used and the relevant metrics for performance evaluation, not just based on average performance.

Although GIST-Embedding-v0 is an excellent model for general text embedding tasks, the selection of an
appropriate model should take into account the context and specific characteristics of the dataset being used. Further
research is needed to understand more about the characteristics of these datasets, as well as how certain models can be
optimized to handle edge cases, providing further insights into the advantages and disadvantages of each model in
various real-world conditions.

To better understand the practical utility of the models during testing, the computational efficiency was also
evaluated in terms of inference time and memory usage, as shown in Table 11.

Table 11 provides insights into the computational efficiency of each model. GIST-Embedding-v0 demonstrates
the fastest inference time (9.6 ms) and the lowest memory consumption (750 MB), making it the most efficient model
in terms of computational resources. In contrast, instructor-large exhibits the highest memory usage (970 MB) and
inference time (15.4 ms), indicating a trade-off between performance and computational cost.

Table 12 shows how each model handles different types of text based on certain characteristics, such as sentence
length, language variety, and semantic context. This comparison helps evaluate the generalization ability of the
models in various scenarios and identify their advantages and limitations in handling texts from different domains.

Table 12 also shows that GIST-Embedding-v0 consistently excels in various evaluation metrics, including
Euclidean, cosine similarity, and Manhattan distance, in both Pearson and Spearman correlations. The model shows
high stability in capturing semantic relationships between texts with better correlation rates than other models. In
addition, the computational efficiency of this model is also a key factor in its selection, with relatively fast inference
time and optimal memory usage. Meanwhile, models, such as MUG-B-1.6 and UAE-Large-V1, have competitive
performance in some aspects, but lag behind in terms of efficiency and generalization across different text types.
Considering the aspects of accuracy, efficiency, and reliability, GIST-Embedding-v0 is the top choice in this study.

Table 11. Computational efficiency of the models

No. Models Inference Time (ms) Memory Usage (MB)
1 blade-embed 12.4 850
2 bge-base-en-v1.5 10.2 780
3 bge-large-en-v1.5 14.8 920
4 ember-v1 11.5 810
5 GIST-Embedding-v0 9.6 750
6 gte-large 13.2 890
7 instructor-large 15.4 970
8 MUG-B-1.6 10.8 800
9 privacy embedding rag 10k base 12 final 13.9 910

10 privacy embedding rag 10k base 15 final 14.1 930
11 privacy embedding rag 10k base final 14.0 925
12 stella-base-en-v2 12.7 860
13 UAE-Large-V1 11.9 835

Table 12. Model performance

Text Category GIST-Embedding-v0 MUG-B-1.6 UAE-Large-V1
Long ( > 20 words) 82.1% 79.5% 78.8%
Short (<10 words) 85.3% 81.2% 80.6%

News 83.0% 80.1% 79.4%
Opinion 81.5% 78.9% 77.6%

Technical 84.2% 80.7% 79.9%

6 Conclusion

This research empirically reveals that the GIST-Embedding-v0 model performs best in measuring semantic
similarity between sentences on almost all evaluation metrics, including Euclidean, cosine similarity, and Manhattan,
for both Pearson and Spearman correlation. With the highest average score, the model proved capable of producing
consistent and accurate semantic representations, making it excellent for general-purpose text embedding applications.
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However, a deeper analysis of specific datasets shows that other models, such as MUG-B-1.6 and UAE-Large-V1,
have an advantage on datasets with certain patterns or characteristics, such as on datasets 2, 6, and 7 for MUG-B-1.6
and datasets 3 and 5 for UAE-Large-V1. This shows that the performance of the model can be greatly influenced
by the characteristics of the datasets used. Therefore, despite the overall superiority of GIST-Embedding-v0, the
selection of an appropriate model should consider the specific characteristics of the dataset and the needs of the
application. This study also highlights the importance of a thorough and contextual evaluation to identify the best
model for real-world conditions, as well as the need for further research to understand how unique patterns in the
dataset affect the effectiveness of the model in measuring semantic similarity.
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[30] J. Risch, T. Möller, J. Gutsch, and M. Pietsch, “Semantic answer similarity for evaluating question answering
models,” in Proceedings of the 3rd Workshop on Machine Reading for Question Answering, Punta Cana,
Dominican Republic, 2021, pp. 149–157. https://doi.org/10.18653/v1/2021.mrqa-1.15

[31] M. Abdalla, K. Vishnubhotla, and S. Mohammad, “What makes sentences semantically related? A textual
relatedness dataset and empirical study,” in Proceedings of the 17th Conference of the European Chapter of the
Association for Computational Linguistics, Dubrovnik, Croatia, 2023, pp. 782–796. https://doi.org/10.18653/v1/
2023.eacl-main.55

[32] S. Polley, S. Mondal, V. S. K. Mannam, K. Kumar, S. Patra, and A. Nürnberger, “X-Vision: Explainable image
retrieval by re-ranking in semantic space,” in CIKM ’22: The 31st ACM International Conference on Information
and Knowledge Management, Atlanta, GA, USA, 2022, pp. 4955–4959. https://doi.org/10.1145/3511808.3557187

[33] V. V. Mayil and T. R. Jeyalakshmi, “Pretrained sentence embedding and semantic sentence similarity language
model for text classification in NLP,” in 2023 3rd International Conference on Artificial Intelligence and Signal
Processing (AISP), Vijayawada, India, 2023, pp. 1–5. https://doi.org/10.1109/AISP57993.2023.10134937

[34] S. Pai, “Unveiling the power of pre-trained language models in NLP applications,” Int. J. Sci. Res., vol. 12,
no. 11, pp. 1174–1177, 2023. https://doi.org/10.21275/sr231115202502

[35] G. Majumder, P. Pakray, A. Gelbukh, and D. Pinto, “Semantic textual similarity methods, tools, and applications:
A survey,” Comput. y Sist., vol. 20, no. 4, pp. 647–665, 2016. https://doi.org/10.13053/CyS-20-4-2506

[36] D. Chandrasekaran and V. Mago, “Evolution of semantic similarity-A survey,” ACM Comput. Surv., vol. 54,

95

https://doi.org/10.18653/v1/2022.naacl-main.436
https://doi.org/10.1109/ICECE.2018.8636779
https://doi.org/10.1155/2014/437162
https://doi.org/10.1109/ICSES52305.2021.9633911
https://doi.org/10.1109/ICSES60034.2023.10465440
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.48550/arXiv.2405.10138
https://doi.org/10.1109/ICAICA52286.2021.9498209
https://doi.org/10.11610/isij.4713
https://doi.org/10.1111/exsy.12991
https://doi.org/10.1088/1757-899X/1110/1/012009
https://doi.org/10.1109/AIIoT52608.2021.9454192
https://doi.org/10.1109/AIIoT52608.2021.9454192
https://doi.org/10.1109/PerComWorkshops51409.2021.9431031
https://doi.org/10.1109/PerComWorkshops51409.2021.9431031
https://doi.org/10.2196/19735
https://doi.org/10.18653/v1/2021.mrqa-1.15
https://doi.org/10.18653/v1/2023.eacl-main.55
https://doi.org/10.18653/v1/2023.eacl-main.55
https://doi.org/10.1145/3511808.3557187
https://doi.org/10.1109/AISP57993.2023.10134937
https://doi.org/10.21275/sr231115202502
https://doi.org/10.13053/CyS-20-4-2506


no. 2, pp. 1–35, 2021. https://doi.org/10.1145/3440755
[37] E. S. Samuel, “An assessment on the use of mathematical softwares in teaching and learning of mathematics in

colleges of education in South-Eastern Nigeria: A case study of Anambra and Enugu,” Int. J. Res. Publ. Rev.,
vol. 4, no. 1, pp. 1806–1812, 2022. https://doi.org/10.55248/gengpi.2023.4149

[38] H. Choi, J. Kim, S. Joe, and Y. Gwon, “Evaluation of BERT and ALBERT sentence embedding performance
on downstream NLP tasks,” in 2020 25th International Conference on Pattern Recognition (ICPR), 2021, pp.
5482–5487. https://doi.org/10.1109/ICPR48806.2021.9412102

[39] Y. Li and H. Zhao, “BURT: BERT-inspired universal representation from twin structure,” arXiv preprint
arXiv:2004.13947, 2020. https://doi.org/10.48550/arXiv.2004.13947

[40] I. Mohr, M. Krimmel, S. Sturua, M. K. Akram, A. Koukounas, M. Günther, G. Mastrapas, V. Ravishankar,
J. F. Martı́nez, F. Wang, Q. Liu, Z. Yu, J. Fu, S. Ognawala, S. Guzman, B. Wang, M. Werk, N. Wang, and
H. Xiao, “Multi-task contrastive learning for 8192-token bilingual text embeddings,” arXiv Preprint, vol.
arXiv:2402.17016, 2024. https://doi.org/10.48550/arXiv.2402.17016

[41] S. Xiao, Z. Liu, P. Zhang, N. Muennighoff, D. Lian, and J. Y. Nie, “C-Pack: Packed resources for general Chinese
embeddings,” in SIGIR 2024: The 47th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Washington DC, USA, 2024, pp. 641–649. https://doi.org/10.1145/3626772.3657878

[42] S. Varshney, P. Sharma, and H. Javed, “Semantic textual similarity using machine learning and conceptual
relatedness,” in Proceedings of the International Conference on Advances in Electronics, Electrical &
Computational Intelligence (ICAEEC) 2019, Jhalwa Prayagraj, India, 2020. https://doi.org/10.2139/ssrn.3576366

[43] A. M. El-Refaiy, A. R. Abas, and I. M. El-Henawy, “Determining extractive summary for a single document
based on collaborative filtering frequency prediction and mean shift clustering,” IAENG Int. J. Comput. Sci.,
vol. 46, no. 3, 2019.

[44] C. N. Santhosh Kumar, V. Pavan Kumar, and K. S. Reddy, “Similarity matching of pairs of text using CACT
algorithm,” Int. J. Eng. Adv. Technol., vol. 8, no. 6, pp. 2296–2298, 2019. https://doi.org/10.35940/ijeat.F8685.0
88619

[45] C. S. Yadav and A. Sharan, “Automatic text document summarization using graph based centrality measures on
lexical network,” Int. J. Inf. Retr. Res., vol. 8, no. 3, pp. 14–32, 2018. https://doi.org/10.4018/ijirr.2018070102

[46] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using siamese BERT-networks,” in
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 2019,
pp. 3982–3992. https://doi.org/10.18653/v1/d19-1410

[47] A. I. Kadhim, “Survey on supervised machine learning techniques for automatic text classification,” Artif. Intell.
Rev., vol. 52, pp. 273–292, 2019. https://doi.org/10.1007/s10462-018-09677-1

[48] A. Li, C. Fan, F. Xiao, and Z. J. Chen, “Distance measures in building informatics: An in-depth assessment
through typical tasks in building energy management,” Energy Build., vol. 258, p. 111817, 2022. https:
//doi.org/10.1016/j.enbuild.2021.111817

[49] S. B. H. Sakur, “Perbandingan distance measures pada K-means cluster dan Topsis dengan korelasi Pearson dan
Spearman,” J. Inform. Dan Tekonologi Komput., vol. 3, no. 1, pp. 74–81, 2023. https://doi.org/10.55606/jitek.v
3i1.1394

[50] D. Verma and S. N. Muralikrishna, “Semantic similarity between short paragraphs using deep learning,” in 2020
IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT),
Bangalore, India, 2020, pp. 1–5. https://doi.org/10.1109/CONECCT50063.2020.9198445

96

https://doi.org/10.1145/3440755
https://doi.org/10.55248/gengpi.2023.4149
https://doi.org/10.1109/ICPR48806.2021.9412102
https://doi.org/10.48550/arXiv.2004.13947
https://doi.org/10.48550/arXiv.2402.17016
https://doi.org/10.1145/3626772.3657878
https://doi.org/10.2139/ssrn.3576366
https://doi.org/10.35940/ijeat.F8685.088619
https://doi.org/10.35940/ijeat.F8685.088619
https://doi.org/10.4018/ijirr.2018070102
https://doi.org/10.18653/v1/d19-1410
https://doi.org/10.1007/s10462-018-09677-1
https://doi.org/10.1016/j.enbuild.2021.111817
https://doi.org/10.1016/j.enbuild.2021.111817
https://doi.org/10.55606/jitek.v3i1.1394
https://doi.org/10.55606/jitek.v3i1.1394
https://doi.org/10.1109/CONECCT50063.2020.9198445

	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Theoretical Framework
	3.1.1 STS
	3.1.2 MTEB

	3.2 Proposed Method
	3.2.1 Dataset description
	3.2.2 Models
	3.2.3 Model selection justification


	4 Results
	4.1 Pearson Correlation Based on Euclidean Distance
	4.2 Pearson Correlation of Cosine Similarity Distance
	4.3 Spearman Correlation of Cosine Similarity Distance
	4.4 Pearson Correlation of Manhattan Distance
	4.5 Spearman Correlation of Manhattan Distance

	5 Discussion
	6 Conclusion

