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Abstract: This paper presents an investigation of traveling wave solutions and a sensitivity analysis for the unidirec-
tional Dullin-Gottwald-Holm (DGH) system, a well-established model for wave propagation in shallow water. We
apply the novel auxiliary equation method, a unique integration norm, to extract various soliton solutions, including
kink, rational, bright, singular, and bright-singular solutions. Precise explicit solutions of the resultant ordinary
differential equations are demonstrated using suitable parametric values. Furthermore, we explore the conditions
that ensure the existence of these solutions. By applying the Galilean transformation, we convert the model into a
planar dynamical system and evaluate its sensitivity performance. The selection of appropriate parameters enables
the generation of two and three-dimensional sketches, as well as contour plots for each solution.
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1 Introduction

Scientists and engineers are becoming ever more intrigued by the research of nonlinear wave phenomena in a
modern global era of science and technology. In many scientific disciplines, nonlinear partial differential equations
(NLPDEs) are essential for comprehending nonlinear wave phenomena that constitute our day-to-day challenges.
Due to its various uses and applications throughout the past few decades, NLPDEs have therefore attracted a lot
of attention in the field of nonlinear sciences. The NLPDEs are crucial in describing the dynamical, physical, and
physical processes in many different scientific domains, including ocean engineering, optical fibers, fluid mechanics,
plasma physics, quantum physics, geology, biology, and many othersr [1–6]. The behavior of waves in several
domains is explained by NLPDEs. In many different branches of science, particularly the study of complex nonlinear
wave phenomena, the precise solution of NPDEs is crucial to understanding many physical processes. Since these
effective computing packages make it easier to perform complex and laborious algebraic computations, finding
the exact solutions has recently grown in importance among scholars [7–11]. The exact solutions of NLPDEs,
especially the solitary wave solutions, have a special significance in the soliton theory of mathematical physics.
These NLPDE solutions provide more convincing evidence of its physical structures [12–14]. As a result, numerous
strong and effective algorithms were developed to derive the exact results for highly nonlinear models. The new
auxiliary scheme, out of all of these techniques, is the most effective and reliable for obtaining the precise solution
to NLPDEs [15–17].

Analytical exploration and discussion of the DGH system [18] are presented in this research. It has been
addressed from a variety of angles, despite not having been analytically addressed yet. The single and combined
forms of wave solutions are retrieved under specific parameter conditions, making it pertinent to investigate them
analytically. Additionally, the sensitivity analysis is addressed to evaluate how a physical system behaves under
stable beginning conditions. The following is how the (1+1)-dimensional DGH-model for shallow water waves is
expressed:

Qt + θQx −ϖ2
(
Qxxt +QQxxx + 2QxQxx

)
+ 3QQx + ΛQxxx = 0, (1)
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where the velocity of the fluid of the aforementioned system is denoted by Q(x, t) in the spatial direction x. The
coefficients ϖ2(ϖ > 0) and θ/Λ mention squares of length scales, while θ =

√
gh (where θ = 2ω) denotes the

linear wave speed for undisturbed water at rest at spatial infinity. The remarkable repercussions of thisDGH system
is similar to those of other unidirectional shallow water wave equations.

The DGH equation is a well-known nonlinear evolution equation that is the subject of this article. Many
scientists have carefully studied the equation under consideration in order to explain its many aspects. This model
has so far been the subject of work. Mustafa [19] has identified the existence and uniqueness of low regularity
patterns. Zhou et al. [20] investigated peakon-anti peakon interaction with direct computation. Xiao et al. [21]
discussed exact results by employing the traveling-wave transformation and the exp-function technique. The use
of qualitative planar systems to describe limited exact traveling wave solutions was examined [22]. Periodic wave
solutions were discovered by Meng et al. [23] using integral bifurcation and semi-inverse techniques. To assure
a single solution, the ansatz method [24] was also applied. Yu [25] provided examples of the dynamical behavior
of traveling wave solutions and related bifurcations in a variety of parameter ranges. da Silva [26] proposed the
categorization of bounded traveling wave solutions.

Although this equation has been solved using a variety of analytical and numerical techniques, the new auxiliary
equation method (NAEM) has not been performed to examine the governing model before. This approach has also
been used to explore different models in multiple studies [27]. On the other hand, this approach makes it much
simpler to solve the DGH problem to find novel solutions. Since its beginnings, this approach has gained support
from the assessment profession for its straightforward estimation procedure. Future nonlinear scientific discussions
will benefit from the findings of this study by having accessibility to excellent research. Future study on this topic
may make use of theDGH equation in a fractional sense by applying fractional derivatives because many nowadays
researches are focused on solving NLPDEs formulated in the sense of fractional calculus [28–30].

The layout of this article is as follows: Section (2) provides the fundamental idea of the technique. Soliton’s
solutions have been taken out for the equation in Section (3). Section (4) presents the findings and a discussion of the
graphical depiction of the solutions. The sensitive performance of the system is represented in Section (5). Section
(6) concludes with final comments.

2 Overview of General Methodology

The solitary wave solutions to the equation under explored are determined by using an analytical scheme that is
outlined in this section. A general example of how NLPDE is constructed is the statement that follows:

P (Q,Qt,Qtx,QQtt,QtQxx, ...) = 0, (2)

Regarding a specific variable, P is a polynomial function. To transform Eq. (2) into an essential sense of
NLODE, take propagational transformation as Q(x, t) = U(ζ), where, ζ = x− ν t, then

R(U(ζ), U(ζ)
′
, U(ζ)

′′
, U(ζ)

′
U(ζ)

′′
, ...) = 0. (3)

The U superscripts signify U ’s derivative with respect to ζ, thus a polynomial with both linear and nonlinear
terms makes up the function R. Using the idea of NAEM, it is now possible to assume the initial solution of Eq. (2)
as:

U(ζ) =

M∑
i=0

fiλ
iψ(ζ), (4)

which satisfy the auxiliary equation

ψ
′
(ζ) =

1

ln(λ)

(
Θλ−ψ(ζ) +Φ+ Ω λψ(ζ)

)
, (5)

where, f0, f1, f2, ..., fM are unknown coefficients such that f ̸= 0. We can estimate the value of M in accordance
with balancing principle by equating the highest nonlinear element in Eq. (3) with the higher level derivative. Here,
the various scenarios for possible solutions to Eq. (5) are described.

Case 1: For Ω ̸= 0 and Φ2 − 4ΘΩ < 0,

λψ(ζ) =
−Φ

2Ω
+

√
4ΘΩ− Φ2

2Ω
tan

(√
4ΘΩ− Φ2

2
ζ

)
, (6)

or

λψ(ζ) =
−Φ

2Ω
−

√
4ΘΩ− Φ2

2Ω
cot

(√
4ΘΩ− Φ2

2
ζ

)
. (7)
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Case 2: When Φ2 − 4ΘΩ > 0 and Ω ̸= 0,

λψ(ζ) =
−Φ

2Ω
−

√
Φ2 − 4ΘΩ

2Ω
tanh

(√
Φ2 − 4ΘΩ

2
ζ

)
, (8)

or

λψ(ζ) =
−Φ

2Ω
−

√
Φ2 − 4ΘΩ

2Ω
coth

(√
Φ2 − 4ΘΩ

2
ζ

)
. (9)

Case 3: When Φ2 + 4Θ2 < 0, Ω ̸= 0 and Ω = −Θ,

λψ(ζ) =
Φ

2Θ
−

√
−4Θ2 − Φ2

2Θ
tan

(√
−4Θ2 − Φ2

2
ζ

)
, (10)

or

λψ(ζ) =
Φ

2Θ
+

√
−4Θ2 − Φ2

2Θ
cot

(√
−4Θ2 − Φ2

2
ζ

)
. (11)

Case 4: When Φ2 + 4Θ2 > 0, Ω ̸= 0 and Ω = −Θ,

λψ(ζ) =
Φ

2Θ
+

√
4Θ2 +Φ2

2Θ
tanh

(√
4Θ2 +Φ2

2
ζ

)
, (12)

or

λψ(ζ) =
Φ

2Θ
+

√
4Θ2 +Φ2

2Θ
coth

(√
4Θ2 +Φ2

2
ζ

)
. (13)

Case 5: When Φ2 − 4Θ2 < 0 and Ω = Θ,

λψ(ζ) =
−Φ

2Θ
+

√
4Θ2 − Φ2

2Θ
tan

(√
4Θ2 − Φ2

2
ζ

)
, (14)

or

λψ(ζ) =
−Φ

2Θ
−

√
4Θ2 − Φ2

2Θ
cot

(√
4Θ2 − Φ2

2
ζ

)
. (15)

Case 6: When Φ2 − 4Θ2 > 0 and Ω = Θ,

λψ(ζ) =
−Φ

2Θ
−

√
−4Θ2 +Φ2

2Θ
tanh

(√
−4Θ2 +Φ2

2
ζ

)
, (16)

or

λψ(ζ) =
−Φ

2Θ
−

√
−4Θ2 +Φ2

2Θ
coth

(√
−4Θ2 +Φ2

2
ζ

)
. (17)

Case 7: When Φ2 = 4ΘΩ,
λψ(ζ) = −2 + Φ ζ

2Ωζ
. (18)

Case 8: For ΘΩ < 0, Φ = 0 and Ω ̸= 0,

λψ(ζ) = −
√

−Θ

Ω
tanh(

√
−ΘΩ ζ), (19)

or

λψ(ζ) = −
√

−Θ

Ω
coth(

√
−ΘΩ ζ). (20)

Case 9: When Θ = −Ω with Φ = 0,

λψ(ζ) = −
(
1 + e−2Ω ζ

1− e−2Ω ζ

)
. (21)

Case 10: For Θ = Ω = 0,
λψ(ζ) = sinh(Φ ζ) + cosh(Φ ζ). (22)

Case 11: For Θ = Φ = K, Ω = 0,
λψ(ζ) = eKζ − 1. (23)
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Case 12: When Ω = Φ = K and Θ = 0,

λψ(ζ) =
eKζ

1− eKζ
. (24)

Case 13: When Φ = Θ+Ω,

λψ(ζ) = −1−Θe(Θ−Ω)ζ

1− Ωe(Θ−Ω)ζ
. (25)

Case 14: When Φ = −Θ− Ω,

λψ(ζ) =
e(Θ−Ω)ζ −Θ

e(Θ−Ω)ζ − Ω
. (26)

Case 15: When Θ = 0,

λψ(ζ) =
ΦeΦζ

1− ΩeΦζ
. (27)

Case 16: When Θ = Φ = Ω ̸= 0,

λψ(ζ) =
1

2

[√
3 tan(

√
3

2
Θ ζ)− 1

]
. (28)

Case 17: When Φ = Ω = 0,
λψ(ζ) = Θ ζ. (29)

Case 18: When Φ = Θ = 0,
λψ(ζ) = − 1

Ω ζ
. (30)

Case 19: For Θ = Ω and Φ = 0,
λψ(ζ) = tan(Θ ζ). (31)

Case 20: For Ω = 0,
λψ(ζ) = eΦζ − n

l
. (32)

3 Traveling Wave Profile

The objective of this section is to explore into the problem’s current traveling wave solutions. We begin with
wave transformation to resolve the aforementioned system as Q(x, t) = U(ζ) where ζ = x − ν t such that ν ̸= 0.
The transformation is substituted into Eq. (1) to produce the following form:

ϖ2νU
′′′
− νU

′
+ θU

′
−ϖ2UU

′′′
+ ΛU

′′′
+ 3UU

′
− 2ϖ2U

′
U

′′
= 0. (33)

Eq. (33) is once integrated with respect to ζ with an integration constant of zero and after some simplification,
the above equation becomes

U
′′(
ϖ2(−ν)− Λ +ϖ2U

)
−
(
θ − ν

)
U − 3U2

2
+

1

2
ϖ2(U

′
)2. (34)

We just apply the homogeneous balance principle to Eq. (34) in order to determine M , resulting in M = 2.
Now, Eq. (4) has the following shape:

U(ζ) = f0 + f1λ
ψ(ζ) + f2λ

2ψ(ζ). (35)

By putting Eq. (35) with Eq. (5) into Eq. (34), a system of equations is established by putting all coefficients of
different powers of λψ(ζ) to zero.
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(λψ(ζ))0 : −2ϖ2Θ2νf2 + 2ϖ2Θ2f0f2 −ΘΦΛ f1 − 3/2 f0
2 + νf0 − f0a0 − 2Θ2Λ f2 +

1/2ϖ2Θν2f1
2 −ϖ2ΘΦ f1 +ϖ2ΘΦ f0f1,

(λψ(ζ))1 : 4ϖ2Θ2f1f2 − 6ϖ2Θ νΦ f2 − 2ϖ2Θ νΩ f1 + 6ϖ2ΘΦ f0f2 + 2ϖ2ΘΦ f1
2 +

2ϖ2ΘΩ f0f1 −ϖ2νΦ2f1 +ϖ2Φ2f0f1 − 6ΘΦΛ f2 − 2ΘΩΛ f1 − Φ2Λ f1 +

νf1 − 3 f0f1 − f1a0,

(λψ(ζ))2 : 4ϖ2Θ2f2
2 + 3/2ϖ2Φ2f1

2 − 4Φ2Λ f2 − 8ϖ2Θ νΩ f2 + 11ϖ2ΘΦ f1f2 +

8ϖ2ΘΩ f0f2 − 3ϖ2νΦΩ f1 + 3ϖ2ΦΩ f0f1 − 3/2 f1
2 + νf2 − f2a0 −

3 f0f2 + 3ϖ2ΘΩ f1
2 − 4ϖ2νΦ2f2 + 4ϖ2Φ2f0f2 − 8ΘΩΛ f2 − 3ΦΩΛ f1,

(λψ(ζ))3 : 10ϖ2ΘΦ f2
2 + 14ϖ2ΘΩ f1f2 − 10ϖ2νΦΩ f2 − 2ϖ2νΩ2f1 + 7ϖ2Φ2f1f2 +

10ϖ2ΦΩ f0f2 + 4ϖ2ΦΩ f1
2 + 2ϖ2Ω2f0f1 −

10ΦΩΛ f2 − 2Ω2Λ f1 − 3 f1f2,

(λψ(ζ))4 : 6ϖ2Φ2f2
2 + 5/2ϖ2Ω2f1

2 − 6Ω2Λ f2 + 17ϖ2ΦΩ f1f2 − 3/2 f2
2 +

12ϖ2ΘΩ f2
2 − 6ϖ2νΩ2f2 + 6ϖ2Ω2f0f2,

(λψ(ζ))5 : 14ϖ2ΦΩ f2
2 + 10ϖ2Ω2f1f2,

(λψ(ζ))6 : 8ϖ2Ω2f2
2.

By using the Maple software to solve the provided system, the following acceptable solution is produced:

ϖ = 0, f0 = −4ΛΩΘ, f1 = −4ΛΩΦ, f2 = −4ΛΩ2 θ = 4ΩΛΘ− Φ2Λ + ν. (36)

The following is the result of inserting Eq. (36) into Eq. (35):

U(ζ) = −4ΛΩ

[
Θ+Φ λψ(ζ) +Ω λ2ψ(ζ)

]
. (37)

Eq. (37) yields a variety of surface wave solutions when the solutions identified by Eq. (5) are substituted:
Case 1: When Φ2 − 4ΘΩ < 0 and Ω ̸= 0,

U1,1(x, t) =− 4ΛΘΩ+ 2ΦΩ

[
Φ−

√
4ΘΩ− Φ2 tan

(√
4ΘΩ− Φ2

2
ζ

)]
−

Ω

[
−Φ+

√
4ΘΩ− Φ2 tan

(√
4ΘΩ− Φ2

2
ζ

)]2
,

(38)

or

U1,2(x, t) = −4ΛΘΩ+ 2ΦΩ

[
Φ+

√
4ΘΩ− Φ2 cot

(√
4ΘΩ− Φ2

2
ζ

)]
−

Ω

[
Φ+

√
4ΘΩ− Φ2 cot

(√
4ΘΩ− Φ2

2
ζ

)]2
.

(39)

Case 2: When Φ2 − 4ΘΩ > 0 and Ω ̸= 0,

U2,1(x, t) = −4ΛΘΩ+ 2ΦΩ

[
Φ+

√
Φ2 − 4ΘΩ tanh

(√
Φ2 − 4ΘΩ

2
ζ

)]
−

Ω

[
Φ+

√
Φ2 − 4ΘΩ tanh

(√
Φ2 − 4ΘΩ

2
ζ

)]2
,

(40)

or

U2,2(x, t) = −4ΛΘΩ+ 2ΦΩ

[
Φ+

√
Φ2 − 4ΘΩcoth

(√
Φ2 − 4ΘΩ

2
ζ

)]
−

Ω

[
Φ+

√
Φ2 − 4ΘΩcoth

(√
Φ2 − 4ΘΩ

2
ζ

)]2
.

(41)

100



Case 3: When Φ2 + 4ΘΩ < 0, Ω ̸= 0 and Ω = −Θ,

U3,1(x, t) = 4Θ2Ω+ 2ΦΩ

[
Φ−

√
−4Θ2 − Φ2 tan

(√
−4Θ2 − Φ2

2
ζ

)]
−

Ω

[
Φ−

√
−4Θ2 − Φ2 tan

(√
−4Θ2 − Φ2

2
ζ

)]2
,

(42)

or

U3,2(x, t) = 4Θ2Ω+ 2ΦΩ

[
Φ+

√
−4Θ2 − Φ2 cot

(√
−4Θ2 − Φ2

2
ζ

)]
−

Ω

[
Φ+

√
−4Θ2 − Φ2 cot

(√
−4Θ2 − Φ2

2
ζ

)]2
.

(43)

Case 4: When Φ2 + 4ΘΩ > 0, Ω ̸= 0 and Ω = −Θ,

U4,1(x, t) = 4Θ2Ω+ 2ΦΩ

[
Φ+

√
4Θ2 +Φ2 tanh

(√
4Θ2 +Φ2

2
ζ

)]
−

Ω

[
Φ+

√
4Θ2 +Φ2 tanh

(√
4Θ2 +Φ2

2
ζ

)]2
,

(44)

or

U4,2(x, t) = 4Θ2Ω+ 2ΦΩ

[
Φ+

√
4Θ2 +Φ2 coth

(√
4Θ2 +Φ2

2
ζ

)]
−

Ω

[
Φ+

√
4Θ2 +Φ2 coth

(√
4Θ2 +Φ2

2
ζ

)]2
.

(45)

Case 5: When Φ2 − 4Θ2 < 0 and Ω = Θ,

U5,1(x, t) = −4Θ2Ω− 2ΦΩ

[
−Φ+

√
4Θ2 − Φ2 tan

(√
4Θ2 − Φ2

2
ζ

)]
−

Ω

[
−Φ+

√
4Θ2 − Φ2 tan

(√
4Θ2 − Φ2

2
ζ

)]2
,

(46)

or

U5,2(x, t) = −4Θ2Ω+ 2ΦΩ

[
Φ+

√
4Θ2 − Φ2 cot

(√
4Θ2 − Φ2

2
ζ

)]
−

Ω

[
Φ+

√
4Θ2 − Φ2 cot

(√
4Θ2 − Φ2

2
ζ

)]2
.

(47)

Case 6: When Φ2 − 4Θ2 > 0 and Ω = Θ,

U6,1(x, t) = 4Θ2Ω+ 2ΦΩ

[
Φ+

√
Φ2 − 4Θ2 tanh

(√
Φ2 − 4Θ2

2
ζ

)]
−

Ω

[
Φ+

√
Φ2 − 4Θ2 tanh

(√
Φ2 − 4Θ2

2
ζ

)]2
,

(48)

or

U6,2(x, t) = 4Θ2Ω+ 2ΦΩ

[
Φ+

√
Φ2 − 4Θ2 coth

(√
Φ2 − 4Θ2

2
ζ

)]
−

Ω

[
Φ+

√
Φ2 − 4Θ2 coth

(√
Φ2 − 4Θ2

2
ζ

)]2
.

(49)
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Case 7: When Φ2 = 4ΘΩ,

U7(x, t) = −4ΛΘΩ+ 4ΛΦΩ

(
2 + Φ ζ

2Φζ

)
− 4Ω2Ω

(
2 + Φ ζ

2Φζ

)2

. (50)

Case 8: ΘΩ < 0, Φ = 0 and Ω ̸= 0,

U8,1(x, t) = −4ΘΛΩ− 4Λ2Ω

[√
−Θ

Ω
tanh(

√
−ΘΩ ζ)

]2
, (51)

or

U8,2(x, t) = −4ΘΛΩ− 4Λ2Ω

[√
−Θ

Ω
coth(

√
−ΘΩ ζ)

]2
. (52)

Case 9: When Φ = 0 and Θ = −Ω,

U9,1(x, t) = 4Λ2Ω+ 4Λ2Ω

(
1 + e−2 Ω ζ

1− e−2 Ω ζ

)
(53)

Case 12: When Ω = Φ = K and Θ = 0,

U12(x, t) = −4ΛΩ

[
K

(
eKζ

1− eKζ

)
+K

(
eKζ

1− eKζ

)2]
. (54)

Case 13: When Θ+Ω = Φ,

U13(x, t) = −4ΛΩ

[
Θ− Φ

(
1−Θe(Θ−Ω)ζ

1− Ωe(Θ−Ω)ζ

)
+Ω

(
1−Θe(Θ−Ω)ζ

1− Ωe(Θ−Ω)ζ

)2]
. (55)

Case 14: When −(Θ + Ω) = Φ,

U14(x, t) = −4ΛΩ

[
Θ− Φ

(
Θ− e(Θ−Ω)ζ

e(Θ−Ω)ζ − Ω

)
+Ω

(
Θ− e(Θ−Ω)ζ

e(Θ−Ω)ζ − Ω

)2]
. (56)

Case 15: When Θ = 0,

U15(x, t) = −4ΛΩ

[
Φ

(
Φ eΦζ

1− Ω eΦζ

)
+Ω

(
Φ eΦζ

1− Ω eΦζ

)2]
. (57)

Case 16: When Φ = Θ = Ω ̸= 0,

U16(x, t) = −4ΛΩ2

[
1 +

1

2

(√
3 tan(

√
3

2
Ω ζ)− 1

)
+

1

4

(√
3 tan(

√
3

2
Ω ζ)− 1

)2]
. (58)

Case 19: When Θ = Ω and Φ = 0,

U19(x, t) = −4ΛΩ2 sec2(Ωζ). (59)

4 Results and Discussion

We show a visual representation of these few wave structures that are discovered in the system under study in
this section. We employ NAEM to acquire twenty-two precise solutions, and when we compare these solutions,
it is clear that the suggested method provides more solutions than the one currently used in the literature for the
solution of the DGH equation [19, 26]. By using the proposed technique, wave structures such as kink, rational,
hyperbolic, and singular-type wave results are obtained and visually shown via 2D, 3D, and their contours plot.
These waveforms have various physical significance, as the diagrams demonstrate. For instance, hyperbolic functions
like the hyperbolic tangent are used in the computation and speed of special relativity, while the Langevin function
for magnetic polarization involves the hyperbolic cotangent [31]. This relationship to the governing model can
therefore be explained using the results presented in this work. The findings of this investigation will contribute as
motivation and inspiration for the next nonlinear scientific discussions. Our approach is simpler to calculate than
previous approaches and is more straightforward, succinct, and effective, and in comparison, to the standard direct
methods, it offers more accurate solutions. Figure 1 depicts bright-singular solitons, Figures 2 and 3 showcase bright
solitons, Figure 4 illustrates kink solitons, Figure 5 represents singular solitons, Figures 6 and 7 display dark-singular
solitons, and Figures 8 and 9 also illustrate kink solitons.
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(a) 3D (b) Contour plot

(c) 2D

Figure 1. Plots (a), (b), and (c) reveal the 3D, contour, and 2D physical behavior of solution U1,2(x, t),
respectively, with the parametric values Φ = 0.15, Θ = 0.1, Ω = 0.8, Λ = 1, and ν = −2

(a) 3D (b) Contour plot

(c) 2D

Figure 2. Plots of bright soliton wave solution (U2,1(x, t)) are represented here by 3D, contour, and 2D
respectively, with the parametric values Φ = 0.9, Θ = 0.2, Ω = 0.1, Λ = 0.5, and ν = 1
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(a) 3D (b) Contour plot

(c) 2D

Figure 3. Plots (a), (b), and (c) show the 3D, contour, and 2D physical behavior of bright soliton solution
U4,1(x, t), respectively, with Φ = 1.2, Θ = 0.1, Ω = −0.5, Λ = −0.1, and ν = 1

(a) 3D (b) Contour plot

(c) 2D

Figure 4. Plots (a), (b), and (c) display the 3D, contour, and 2D behavior of combo periodic-singular wave
solution U5,1(x, t), respectively, with parametric values Φ = 0.2, Θ = Λ = 0.25, Ω = −0.5, and ν = 1

104



(a) 3D (b) Contour plot

(c) Combine effect of Θ=1 for both operators

Figure 5. Plots (a), (b), and (c) show the 3D, contour, and 2D behavior of kink wave solution U6,1(x, t),
respectively, with the parametric values Φ = 0.15, Θ = 0.1, Ω = 0.8, Λ = 1, and ν = −2

(a) 3D (b) Contour plot

(c) 2D

Figure 6. Plots (a), (b), and (c) show the 3D, contour, and 2D behavior of singular-type wave solution U6,2(x, t),
respectively, with the parametric values Φ = 2, Θ = 0.7, Ω = 1.5, Λ = 0.7, and ν = 1
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(a) 3D (b) Contour plot

(c) 2D

Figure 7. Plots (a), (b), and (c) show 3D, contour, and 2D of rational wave solution U12(x, t) are displayed,
respectively, with the parametric values Φ = 0.3, Θ = 0, K = 0.3, Ω = 1, Λ = 0.3, and, ν = 1

(a) 3D (b) Contour plot

(c) 2D

Figure 8. Plots (a), (b), and (c) show the 3D, contour, and 2D physical behavior of singular-periodic wave solution
U16(x, t), respectively, with the parametric values Φ = 1, Θ = 0.5, Ω = 2, Λ = −0.5, and ν = 1
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(a) 3D (b) Contour plot

(c) 2D

Figure 9. Plots (a), (b), and (c) show the 3D, contour, and 2D physical behavior of dark-singular wave solution
U19(x, t), respectively, with the parametric values Φ = 0, Θ = Λ = 0.14, Ω = 2, and ν = 1

5 Sensitivity Analysis

The sensitive behavior of the suggested model after being transformed into a system is covered in this section.
This analysis determines how sensitive our system is to the specified initial and parametric conditions. The system
is said to be insensitive if a little change in the beginning conditions only results in a tiny change in the system.
Since the system will alter tremendously if the initial conditions vary even slightly, it is highly sensitive. The major
objective of this inquiry is to accurately quantify the output disruption caused by changes in input. Here, we’ll use
the idea of sensitivity analysis to examine Eq. (1). We convert Eq. (31) into the planer dynamical system as a result
of studying Galilean transformation: {

dU
dζ = V,
dV
dζ = B

AU + C
AU

2 − D
AV

2,
(60)

where, A =
(
ϖ2(U − c)−Λ

)
, B =

(
θ− ν

)
, C = 3

2 and D = 1
2ϖ

2. The above system of equations contains initial
conditions namely as: (0.3, 0.4), (0.3, 0.45), (0.25, 0.45), and (0.3, 0.4). The analysis results may be exhibited
to show how little changes in the input can cause large variations in the outcome. The results are displayed using
a variety of parametric values. Figure 10 reflects the sensitivity of the system taking first initial conditions and
Figure 11 shows the behavior of the system when we take a little change in initial conditions and some parameters.

6 Conclusion

The dynamics of novel solitons to the DGH equation has been discussed in this article. In addition to several
unique solutions, such as the well-known traveling wave solutions, the achieved solutions include hyperbolic, kink,
brilliant, singular, and rational function solutions. NAEM, which is more efficient and has families of solutions,
is the technique used to find the solutions. By choosing the appropriate values for the parameter, we also drew
some plots to represent the physical behavior of the solutions that were presented. Physically, it can be seen that
wave behavior has reported their estimated wave distributions and propagation in Figures 1–9. The calculations also
show how useful this method is for locating the exact results from a wider perspective. By selecting various initial
conditions and parametric values, the sensitivity analysis to the considered system is also thoroughly examined in
Figures 10 and 11. The findings of this study add to the analysis of the DGH equation. The findings of this study
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will provide future nonlinear scientific conversations with high-quality literature. One may use DGH equation in a
fractional sense applying new fractional derivatives to extend this work in the future [32–35].

(a) Λ = 0.6 (b) Λ = 0.5

(c) Λ = 0.3

Figure 10. (a), (b) and (c) show the sensitivity analysis of the system by allowing the initial conditions (0.3, 0.4)
and (0.3, 0.45) with θ = 0.2, ν = 1.4. α = 0.3 with different values of Λ as 0.6, 0.5 and 0.3

(a) Λ = 1.1 (b) Λ = 1

(c) Λ = 0.9

Figure 11. (a), (b) and (c) represent the sensitivity analysis of the system by allowing the initial conditions
(0.25, 0.45), and (0.3, 0.4) with α = 0.3, ν = 1.4, θ = 0.2 with three different values of Λ as 1.1, 1 and 0.9
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