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Abstract: In the present investigation, the phenomena of multi-scale volatility spillovers and dynamic hedging
within the Chinese stock market are scrutinized, with particular emphasis on the implications of structural breaks.
The decomposition of the returns from the CSI 300 and Hang sheng index’ spot and futures is achieved through the
application of the Maximum Overlap Discrete Wavelet Transform (MODWT), categorizing the data into three distinct
temporal scales: short-term, medium-term, and long-term. An enhancement upon the conventional VAR-BEKK-
GARCH (Vector Autoregressive - Baba, Engle, Kraft, and Kroner - Generalized Autoregressive Conditional Het-
eroskedasticity) model is proposed, yielding the asymmetric VAR-BEKK-GARCH Model (VAR-BEKK-AGARCH),
which adeptly integrates the structural break of return volatility. A comprehensive analysis is conducted to elucidate
the interactions and spillovers between the CSI 300 and Hang Seng Index, as well as their respective spot and futures
markets, across the various identified time scales. Concurrently, a dynamic hedging portfolio, comprised of index
spot and futures, is meticulously constructed, with its performance rigorously evaluated under the influence of the
different time scales. To ensure the robustness and validity of the findings, wavelet coherence and phase difference
methodologies are employed as verification tools. The results unequivocally reveal a heterogeneity in the behavior
of mean spillover, volatility spillover, and asymmetric spillovers between the spot and futures markets of the CSI 300
and Hang Seng Index across the diverse scales. The inclusion of a structural break in the dynamic hedge portfolio
is demonstrated to confer a marked advantage over its counterpart that omits this critical factor. Particularly in the
short and medium-term scenarios, the dynamically hedged portfolio, enriched by the consideration of the structural
break, exhibits superior performance in comparison to the static hedge portfolio. Additionally, it is discerned that
the CSI 300 Index and Hang Seng Index, along with their spot and futures components, predominantly manifest
in synchrony, with no clear indication of a consistent leader-lag relationship. An intensification of correlation is
observed in the long-term analysis, underscoring the utility of the spot and futures of the two indices as efficacious
hedging tools.
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1 Introduction

The futures market, serving as a fundamental component of the financial landscape, plays a crucial role in the
elucidation of price mechanisms and the mitigation of financial risks. As the pace of global economic integration
quickens, the synergy among financial markets has grown more marked, capturing the attention of scholars around
the world. These academics have focused their research on the intricacies of price transmissions, the dynamics of risk
spillover, and the complexities of hedging strategies bridging futures and spot markets [1–3]. Precise discernment
of the risk transference effects and the channels through which information is conveyed between these two market
types is of paramount importance. It equips both individual and institutional investors with the tools required to
devise efficacious hedging strategies, refine the accuracy of their investment choices, and effectively reduce the risks
associated with decision-making [4].
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The utilization of GARCH-type models has been predominant in scholarly research for investigating issues
related to risk spillover between markets [5–7]. Pan et al. [8] ingeniously integrated the concept of information
spillover from markets into the conventional GARCH framework, synergizing this model with the Chicago Board
Options Exchange (CBOE) Volatility Index (VIX) to enhance the forecasting of volatility. In a similar vein,
Malik et al. [9] employed the BEKK-GARCH model to meticulously analyze the inter-market volatility spillovers
amongst the stock markets of the BRICS nations amidst the tumultuous period of the COVID-19 outbreak. Their
findings underscored the model’s proficiency in capturing the nuanced dynamics of volatility spillovers between
these markets. Dhaene et al. [10] innovatively introduced Sparse Dynamic Conditional Correlation (DCC)-GARCH
and Sparse BEKK-GARCH models, applying them to scrutinize the interplay of volatility spillovers and correlations
across the 24 constituents of the Bloomberg Commodity Index. Their research illuminated notable spillover effects
emanating from the metal and energy markets, subsequently impacting the agricultural market. The susceptibility
of financial market volatility to structural breaks necessitates careful consideration, as overlooking these pivotal
shifts in market dynamics may result in inaccuracies in the estimation of model parameters, as well as potential
misinterpretations of risk spillover across markets [11, 12]. Malik [13] has pioneered the integration of structural
breaks into the BEKK-GARCH model, with the specific aim of forecasting volatility patterns in the U.S. financial
markets. The empirical results underscore the significance of accounting for structural breaks, revealing a marked
reduction in the volatility spillover effects across major U.S. industry markets, and concurrently yielding substantial
savings in portfolio management costs. Furthermore, scholarly discourse underscores the merit of amalgamating
the study of risk spillover dynamics and hedging intricacies. This synergistic approach not only deepens investors’
comprehension of the intricate mechanisms governing cross-market risk transmission but also aids in the strategic
assembly of judicious hedging portfolios. Ultimately, the precision in gauging risk spillover effects stands as a
catalyst for augmenting portfolio yields and optimizing hedging efficacy [14]. Sarwar et al. [15] engaged a suite of
models - BEKK-GARCH, DCC-GARCH, DCC-GARCH, and GO-GARCH - to meticulously scrutinize the volatility
spillovers and hedging relationships between the equity markets of the leading three Asian oil-importing nations
and the crude oil market. Concurrently, Wen et al. [16] harnessed the capabilities of a time-varying VAR model,
delving into the intricate dynamics of risk spillover and associated hedging challenges between the Chinese equity
market and the commodity futures market. Their analysis culminated in the insight that a strategically crafted
hedging portfolio, comprising grain futures and the Shanghai Composite Index, substantially mitigates portfolio risk.
Traditional volatility models predominantly operate under the assumption that positive and negative price shocks
exert symmetric effects on conditional variance. However, it is observed in financial markets that negative shocks
frequently yield a disproportionately larger impact on conditional variance compared to positive shocks [17]. To
encapsulate the asymmetric influences of adverse and favorable news on return volatility, this study incorporates
the disparate characteristics of positive and negative shocks into the conventional VAR-BEKK-GARCH framework.
This leads to the formulation of an asymmetric VAR-BEKK-GARCH model, termed VAR-BEKK-AGARCH, which
additionally accommodates structural breaks in return volatility. The investigation is directed towards elucidating
the dynamics of risk spillover and hedging practices between the spot and futures markets of both the CSI 300 and
the Hang Seng Index.

The dependency structure between financial markets is intricately linked to the temporal scale, with the corre-
lation and risk spillover effects between markets potentially varying across different time frequencies [18, 19]. A
considerable number of scholarly works, predominantly employing wavelet theory, has been conducted to explore
the risk spillover and hedging issues across financial markets at varying temporal scales [20]. Wavelet theory,
recognized as an exceptionally effective non-linear time series analysis tool, utilizes multi-resolution analysis to
decompose original data into multiple sets across different frequencies. This theory has found extensive application
in domains such as financial risk and forecasting [21]. Gürbüz and Şahbaz [22], have utilized Discrete Wavelet
Transform (DWT) techniques to decompose financial market return series, substantiating the presence of marked
disparities in volatility spillover effects between the Turkish futures and spot markets across different time scales.
Belhassine and Karamti [23] developed a wavelet-based MGARCH model to examine the volatility spillover effects
and hedging between the stock markets of oil-importing and oil-exporting countries across various temporal dimen-
sions. Their findings underscore a clear time-scale dependency in market volatility spillover and hedging strategies.
In a similar vein, Zhang et al. [24] employed a wavelet-based BEKK-GARCH-X model to investigate the volatility
spillover among the Chinese oil market, renewable energy market, and high-tech market across different time scales.
Their results advocate for the consideration of varying time frequencies in the design of differentiated investment
portfolios and risk management strategies.

Building upon the foundation of prior research, this manuscript introduces the asymmetric VAR-BEKK-AGARCH
model, incorporating structural breaks to investigate the multi-scale risk spillover and dynamic hedging issues
between the spot and futures markets of the CSI 300 and Hang Seng Index. Three primary contributions are
delineated:

Firstly, the Maximal Overlap Discrete Wavelet Transform (MODWT) is employed to decompose the spot and
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futures of the CSI 300 and Hang Seng Index into short-term, medium-term, and long-term returns series at various
temporal scales.

Secondly, the asymmetric effects of positive and negative shocks are integrated into the traditional VAR-BEKK-
GARCH framework, leading to the development of the asymmetric VAR-BEKK-AGARCH model. This model takes
into account the structural breaks in return volatility, enabling the analysis of mean spillover, volatility spillover, and
asymmetric spillover effects between the CSI 300 and Hang Seng Index, as well as between their respective spot
and futures markets across different time scales. Concurrently, dynamic hedging portfolios between the index spot
and futures are constructed. The performance of these hedging portfolios, considering structural breaks, is then
contrasted with the performance of hedging portfolios that do not take structural breaks into account, as well as with
static hedging portfolios.

Thirdly, the empirical results are validated through the use of wavelet coherence and phase difference, exploring
the correlation and lead-lag relationships between markets in the time-frequency domain. This approach ensures
that the findings are both comprehensive and robust.

2 Model and Methodology
2.1 MODWT

Wavelet transform, based on the theoretical framework of Fourier transform, serves as a nonlinear time series
analysis tool that decomposes original signals into various frequency domains through dilation and translation
operations. The MODWT is an enhancement of the DWT, overcoming the limitations of DWT with regard to sample
size and possessing translation invariance, thus maintaining signal length consistency after each decomposition. In
this study, the MODWT is utilized to decompose the return series of both spot and futures for the CSI 300 and Hang
Seng Index into a series of sub-sequences at different frequencies.

Two types of MODWT filters, namely the wavelet filter
{
h̃l | l = 0, . . . , Lj

}
and scale filter {g̃l | l = 0, . . . , Lj},

are considered for the cyclic filtration decomposition of the original seriesXt(t = 1, 2, · · · , T ), wherein j = 1, · · · , J
and J are scale parameters, and J represents the maximum scale of the decomposed Xt, the wavelet coefficient and
scale coefficient at the j-th level of decomposition are represented as W̃j,t and Ṽj,t, respectively:

W̃j,t =

Lj−1∑
l=0

h̃j,lXt−l, Ṽj,t =

Lj−1∑
l=0

g̃j,lXt−l (1)

where, the wavelet filter h̃j,l satisfies the constraints
∑Lj−1

l=0 h̃j,l = 0,
∑Lj−1

l=0 h̃2j,l = 2−j and
∑∞

l=−∞ h̃j,lh̃j,l+2jn

= 0, whereas the scale filter meets the constraints
∑Lj−1

l=0 g̃j,l = 1,
∑Lj−1

l=0 g̃2j,l = 2−j ,
∑∞

l=−∞ g̃j,lg̃j,l+2jn = 0

and
∑∞

l=−∞ g̃j,lh̃j,l+2jn = 0. The length of the wavelet coefficient W̃j,t is equivalent to that of Xt. According to
Eq. (1), the original series Xt can be obtained through the j-th level details D̃j,t =

∑Lj−1
l=0 h̃j,lW̃j,t+l of MODWT

and the J-th level smoothness or approximation of S̃J,t =
∑LJ−1

l=0 g̃J,lṼJ,t+l.
Finally, the original time series Xt is reconstructed from the detail part D̃j,t and the approximated part S̃j,t, as

expressed in Eq. (2).

Xt =

J∑
j=1

D̃j,t + S̃J,t (2)

2.2 Structural Break Detection Based on the Modified Iterative Cumulative Sum of Squares (ICSS)

Existing research has demonstrated that volatility structures in financial markets exhibit characteristics of struc-
tural breaks, which can significantly influence the dependency structures and risk spillover between markets [25].
Therefore, when the time span of the sample under study is substantial, it becomes necessary to detect structural
breaks in market volatility to reduce the estimation risk of the model. In this study, the modified ICSS algo-
rithm [26, 27] is employed to identify structural break points in the volatility of the CSI 300 and Hang Seng Index
spot and futures markets across different scales.

The ICSS algorithm, proposed by Inclan and Tiao, assumes that the variance of the return series is initially stable
but undergoes a change due to the impact of sudden events, after which it remains stable until the occurrence of the
next break. The positions where variance changes are identified as structural break points. The specific process is
outlined as follows:

Let εt ∼ N
(
0, σ2

t

)
denote the return residuals series, and t = 1, 2, · · · , T ; whereNT is the number of structural

breaks in a series of T observations. The return series is divided intoNT +1 intervals, with the sequence of structural
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break points represented as {k1, k2, . . . , kNT
} , 1 < k1 < k2 < . . . < kNT

< T . The variances of these intervals
are denoted as τ2j , j = 0, 1, . . . , NT , then there are:

σ2
0 =


τ20 , 1 < t < k1
τ21 , k1 < t < k2
. . .
τ2NT

, kNT
< t < T

(3)

Then, the cumulative sum of squared residuals up to time m is defined as Ck =
∑m

t=1 ε
2
t , (m = 1, 2, · · · , T ),

and the test statistic is IT = supm

∣∣∣Dm

√
T/2

∣∣∣, where Dm = Cm

CT
− m

T , D0 = DT = 0. If there are no structural
breaks in variance up to time m, then Dm will oscillate around zero; if there are structural break points, then Dm

will significantly deviate from zero. Let m∗ be the value of m when maxm |Dm| is attained. If maxm

∣∣∣Dm

√
T/2

∣∣∣
exceeds a predetermined critical value, thenm∗ is considered a variance break point, where

√
T/2 is a standardization

factor.
The test statistic IT in the ICSS algorithm is calculated under the assumption that the return residual follows

the normal distribution. However, return series in financial markets often exhibit leptokurtic and heavy-tailed
characteristics. Therefore, the use of the IT statistic to detect structural breaks in return volatility can often lead to
failures. To address this issue, a modified test statistic is proposed and represented as [26]:

ĨT = sup
m

∣∣∣GmT
−1/2

∣∣∣ (4)

where, Gm =
(
Cm − m

T CT

)
/
√
ω̂, ω̂ is a non-parametric estimator of ω, ω̂ = 1

T

∑T
t=1

(
ε2t − σ̂2

)2
+ 2

T

∑Γ
ξ=1

w(ξ,Γ),
∑T

t=ξ+1

(
ε2t − σ̂2

) (
ε2t−ξ − σ̂2

)
, σ̂2 = CT /T, w(ξ,Γ) = 1 − ξ/(Γ + 1) and Γ is the Bartlett Kernel

bandwidth.

2.3 The VAR-BEKK-AGARCH Model with Structural Breaks Taken into Consideration

With the asymmetry of positive and negative shocks taken into consideration, an asymmetric VAR-BEKK-
GARCH (VAR-BEKK-AGARCH) model was constructed. Additionally, volatility structural breaks were incorpo-
rated to investigate mean spillover, volatility spillover, and asymmetric spillover effects across various markets at
different time scales.

(1) Mean Equation VAR(1)
The VAR model was utilized to represent the mean equation, expressed as:

Yt(j) = φ+ ϕYt−1(j) + εt(j), εt =
√
htztzt ∼ iid (5)

where, Yt(j) is a (2×1) vector, representing the j-th level wavelet details of the return series at time t; φ is a (2×1)
vector of constants; ϕ = [ϕ11ϕ12;ϕ21ϕ22] is a (2× 2) matrix of first-order autoregressive coefficients, with diagonal
elements and representing the impact of market 1 (market 2) on its own first-order lag, and off-diagonal elements
ϕ12 (ϕ21) representing the mean spillover effects from variable 1 (variable 2) to variable 2 (variable 1). εt(j) is a
vector of independently and identically distributed random errors at time t on wavelet scale j, assumed to follow the
Student-t distribution [28].

(2) Variance Equation
In the traditional BEKK-GARCH model, the impact of positive and negative price shocks on conditional variance

is symmetric, failing to explain the asymmetric impact of bad and good news on return volatility. This article considers
the asymmetry of positive and negative shocks and constructs an asymmetric VAR-BEKK-GARCH (VAR-BEKK-
AGARCH) model. Furthermore, structural breaks in return volatility are considered, and detected structural break
points are introduced as dummy variables into the VAR-BEKK-AGARCH model. The variance equation is expressed
as follows:

Ht(j) = C ′C +A′εt−1(j)ε
′
t−1(j)A+B′Ht−1(j)B +G′ηt−1(j)η

′
t−1(j)G+

q∑
i=1

d′iD
′
i(j)Di(j)di (6)

Ht(j) =

(
h11,t(j) h12,t(j)
h21,t(j) h22,t(j)

)
(7)

C =

(
c11 0
c21 c22

)
A =

(
a11 a12
a21 a22

)
B =

(
b11 b12
b21 b22

)
G =

(
g11 g12
g21 g22

)
(8)
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where, C is a (2× 2) lower triangular matrix of constant coefficients; A, B, and G are (2× 2) coefficient matrices.
Matrix A measures the impact of random shocks on volatility, representing ARCH-type volatility spillover. Matrix B
measures the impact of past conditional variance on current volatility, representing GARCH-type volatility spillover.
The diagonal elements a11 (a22) and b11 (b22) of matrices A and B respectively represent the impact of the previous
period’s volatility of variable 1 (variable 2) on its current volatility; and off-diagonal elements a12 (a21) and b12 (b21)
respectively represent the ARCH and GARCH volatility spillover effects from variable 1 (variable 2) to variable 2
(variable 1). Matrix G measures the asymmetric response of conditional variance to negative shocks; if εt is negative,
then ηt = εt; otherwise ηt = 0. The diagonal elements g11 (g22) represent the asymmetric impact of previous
period’s volatility of variable 1 (variable 2) on its current volatility; the off-diagonal elements g12 (g21) represent the
asymmetric spillover effects from variable 1 (variable 2) to variable 2 (variable 1). Di is a (1× 2) dummy variable
matrix, describing the structural breaks in variances; di is a (2× 2) lower triangular matrix of constant coefficients;
q represents the quantity of structural breaks.

2.4 Dynamic Hedging Model

Assuming that at time t, the investor holds a long position of one unit in the spot of the CSI 300 Index or the
Hang Seng Index, and simultaneously holds a short position of βt units in the index futures to hedge risk. The hedge
ratio was estimated using the minimum variance method. The smaller the variance σ2

p of the investment portfolio,
the more optimal the hedging strategy, with the objective function being:

minσ2
p(j) = min [var (Rs,t(j)− βt(j)Rf,t(j))] = hss,t(j) + β2

t (j)hff,t(j)− 2βt(j)hsf,t(j) (9)

where, βt(j) represents the hedge ratio at time t under the j-th level scale, Rs,t(j) and Rf,t(j) respectively denote
the spot and futures returns under the the j-th level scale, while hss,t(j) and hff,t(j) represent the variances of spot
and futures returns under the j-th level scale, respectively. Consequently, the optimal hedge ratio for the spot and
futures under the j-th level scale was determined to be:

βt(j) =
hsf,t(j)

hff,t(j)
(10)

To analyze the effectiveness of the hedging, the Hedge Effectiveness (HE) ratio was introduced, quantified by the
equation:

HEt(j) =
V uhg
t (j)− V hg

t (j)

V uhg
t (j)

(11)

where, V uhg
t (j) is the variance of the spot without hedging at time t under the j-th level scale, and V hg

t (j) is the
variance of the hedged portfolio at time t under the j-th level scale. HEt(j) represents the risk reduction ratio at time
t under the j-th level scale, the closer its value is to 1, the greater the extent to which the portfolio risk is reduced
after hedging, indicating a more effective hedging strategy.

2.5 Wavelet Coherence and Phase Difference

Wavelet coherence can be regarded as the local correlation of two time series, Xt and Yt, in the time-frequency
domain [29]. Assuming the mother wavelet is ψ, various daughter wavelets ψs,λ are generated through scaling and
translation, represented as:

ψs,λ =
1√
|s|
ψ

(
t− λ
s

)
, s, λ ∈ R (12)

where, s and λ denote the scale and location parameters. The Continuous Wavelet Transform (CWT) of a time series
Xt ∈ L2(R) is defined as:

WX(s, λ) = ⟨X,ψs,λ⟩ =
∫ +∞

−∞
Xt

1√
|s|
ψ∗

(
t− λ
s

)
dt (13)

where, L2(R) denotes the Hilbert space of square-integrable functions, and ∗ represents the complex conjugate. The
time-scale distribution of time series Xt is obtained by adjusting s and λ.

The wavelet coherence of two time series Xt and Yt can be expressed as:

R2
XY (s, λ) =

| S
(
s−1WXY (s, λ)

∣∣2
S
(
s−1 |WX(s, λ)|2

)
S
(
s−1 |WY (s, λ)|2

) (14)
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where, S is a smoothing factor with respect to time and scale, WXY (s, λ) = WX(s, λ)W ∗
Y (s, λ) represents the

cross wavelet transform, and |WXY (s, λ)| denotes the cross wavelet power spectrum. R2
XY (s, λ) measures the

cross-correlation of Xt and Yt in the time-frequency domain, and 0 ≤ R2
XT (s, λ) ≤ 1.

While wavelet coherence measures the positive correlation between two time series at different scales, it does not
capture their negative correlation or provide phase information. Phase difference reveals the details of the oscillation
cycles between two correlated time series, indicating their lead-lag relationship [29]. Introducing phase difference
on the basis of wavelet coherence allows for the measurement of both positive and negative correlations between
two time series, as well as their lead-lag relationship at different scales. The phase difference in wavelet coherence
is expressed as:

ϕXY (s, λ) = tan−1

(
Im {WXY (s, λ)}
Re {WXY (s, λ)}

)
, ϕXY (s, λ) ∈ [−π, π] (15)

where, Im and Re respectively represent the imaginary and real parts of the cross wavelet transform. ϕXI(s, λ)
describes the phase difference between the components of Xt and Yt at various scales. The direction of arrows in
the wavelet coherence plot is utilized to interpret the phase difference. Arrows pointing right (left) indicate Xt and
Yt are in same phase (opposite phase). When arrows point directly upwards or downwards, no conclusion can be
drawn. Arrows pointing to the top-right or bottom-left indicate thatXt leads Yt, while arrows pointing to the top-left
or bottom-right suggest that Yt leads Xt. In this study, wavelet coherence and phase difference were employed to
assess the time-frequency correlation and lead-lag relationship between two time series.

3 Empirical Analysis

In this section, the MODWT method described in Section 1.1 was employed to perform wavelet decomposition
on the return series of the CSI 300 and Hang Seng Index futures and spot prices at short-term, medium-term, and
long-term time scales. Subsequently, the VAR-BEKK-AGARCH model incorporating structural breaks, constructed
in Section 1.3, was utilized to estimate the mean spillover, volatility spillover, and asymmetric spillover effects of
the returns of the CSI 300 and Hang Seng Index. The hedging performance of minimum risk between the spot and
futures of each index was also analyzed. Finally, the wavelet coherence and phase difference methods were applied
to validate the robustness of the empirical results.

3.1 Data

The sample consists of spot and futures price data for the CSI 300 and Hang Seng Index, spanning from
January 4, 2013, to June 2, 2022, resulting in 2222 trading days after excluding days that differ due to market
holidays. The spot prices are represented by the daily closing prices, while the futures prices are represented by
the daily settlement prices. All data were sourced from the Wind database. The market return rate is denoted by
rt = (ln (Pt)− ln (Pt−1))× 100, where Pt is the closing or settlement price on day t. Figure 1 presents the return
trends of the spot and futures for the CSI 300 (denoted as CSI300) and Hang Seng Index (denoted as HSI). It can be
observed from Figure 1 that the returns of both the spot and futures of each index exhibit characteristics of volatility
clustering. When studying the risk spillover effects between markets, it is necessary to introduce structural breaks to
fit the volatility characteristics of the index returns.

Figure 1. Series of return rates for CSI 300 and Hang Seng Index futures and spot
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3.2 Analysis of Wavelet Decomposition Results

Wavelet decomposition has been performed on the return series of the spot and futures of the CSI 300 and Hang
Seng Index. Referring to the study [30] for the selection of a wavelet scale J=5. The results are depicted in Figures 2–
5, with d1-d5 representing the detail components at each level, where the frequency decreases progressively. The
approximation component is denoted as a5, and s represents the original signal series. Table 1 details the time scales
corresponding to each wavelet detail. Descriptive statistics for the wavelet details of the returns of the spot and
futures for each index are provided in Table 2.

Figure 2. Wavelet decomposition of logarithmic returns for CSI 300 Index spot

Figure 3. Wavelet decomposition of logarithmic returns for CSI 300 Index futures

Table 1. Time scales corresponding to wavelet details

Wavelet Decomposition
Scale Time Scale (days) Scale

d1 2− 4 Short-term
d2 4− 8 Medium-term
d3 8− 16
d4 16− 32 Long-term
d5 32− 64

From the perspective of time-domain analysis, (1) it can be observed from Figures 2 and 3 that the high-frequency
fluctuations of the CSI 300 index predominantly occur at observation points 590-800, 1360-1500, and 2100-2200.
The corresponding time intervals are July 8, 2015, to May 25, 2016; September 28, 2018, to May 14, 2019; and
November 23, 2021, to May 31, 2022. These intervals coincide with three major events: the Chinese stock market
crash, global trade frictions, and the Russo-Ukrainian War. (2) As depicted in Figures 4 and 5, the high-frequency
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Figure 4. Wavelet decomposition of logarithmic returns for Hang Seng Index spot

Figure 5. Wavelet decomposition of logarithmic returns for Hang Seng Index futures

fluctuations of the Hang Seng Index mainly occur at observation points 590-700, 1350-1450, and 2100-2200,
between January 4, 2013, and June 2, 2022. The corresponding time intervals are July 8, 2015, to December 22,
2015; September 13, 2018, to February 22, 2019; and November 23, 2021, to May 31, 2022. The intervals and
events are similar to those of the CSI 300. It can be deduced that there is a significant correlation between the two
markets, and their volatilities are alike, although the Shanghai and Shenzhen markets are influenced by financial
events for a longer duration.

From the perspective of frequency-domain analysis, as illustrated in Figures 2–5 and Table 1, (1) d1 describes
short-term market fluctuations, with dense high-frequency fluctuations in both the CSI 300 and Hang Seng markets.
(2) d2 and d3 depict mid-term market fluctuations, manifesting as large shock effects from major sudden events and
the market’s continuous adjustment process post these events. Both markets exhibit characteristics of significant
volatility at certain points and sustained minor fluctuations. (3) d4 and d5 describe long-term market fluctuations,
with both markets showing the impact of major sudden events on the market, while minor fluctuations are filtered
out. The decomposition results from the time-frequency domain reveal significant correlations between the CSI 300
and Hang Seng Index, as well as between the spot and futures of the same index.

Table 2 reveals that (1) the mean of the return rates for each market is close to 0, and the standard deviation
decreases with lower frequency, indicating smaller amplitude of return fluctuations; (2) the skewness of the return
rates at each scale is non-zero, and the kurtosis is greater than 3, suggesting that the return rates at each scale exhibit
characteristics of sharp peaks and heavy tails. (3) According to the Augmented Dickey-Fuller (ADF) test results,
the series of return rates at each scale are stationary; (4) the Jarque-Bera test results indicate that the series of return
rates at each scale do not follow a normal distribution. These results validate the appropriateness of employing the
VAR-BEKK-AGARCH model based on the Student-t distribution to fit the volatility characteristics of the returns in
this study.
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Table 2. Descriptive statistics of wavelet details for index returns

CSI 300
Spot

CSI 300
Futures

Hang Seng
Spot

Hang Seng
Futures

d1

Mean 0.0002 0.0002 0.0000 0.0000
Standard
Deviation 0.0104 0.0114 0.0087 0.0089

Skewness −0.0154 −0.0051 −0.1638 −0.2576
Kurtosis 9.6625 9.7661 6.6981 8.4278
ADF −96.4102∗∗∗ −93.2214∗∗∗ −96.4102∗∗∗ −93.2214∗∗∗
J− B 2752.1∗∗∗ 1276.1∗∗∗ 4238.5∗∗∗ 4109.7∗∗∗

d2

Mean 0.0002 0.0002 0.0000 0.0000
Standard
Deviation 0.0076 0.0079 0.0060 0.0060

Skewness −0.1423 0.0981 −0.0601 −0.0260
Kurtosis 8.2448 16.6556 7.1370 6.9716
ADF −32.4337∗∗∗ −32.2150∗∗∗ −32.4337∗∗∗ −32.2150∗∗∗
J-B 1460.6∗∗∗ 1585.9∗∗∗ 17268∗∗∗ 2554.3∗∗∗

d3

Mean 0.0002 0.0002 0.0000 0.0000
Standard
Deviation 0.0052 0.0057 0.0043 0.0044

Skewness 0.0710 0.0139 0.0087 0.0175
Kurtosis 6.8484 7.7386 4.3439 4.2355
ADF −14.7201∗∗∗ −14.8484∗∗∗ −14.7201∗∗∗ −14.8484∗∗∗
J-B 141.4359∗∗∗ 167.2410∗∗∗ 279.9319∗∗∗ 1373∗∗∗

d4

Mean 0.0002 0.0002 0.0000 0.0000
Standard
Deviation 0.0037 0.0039 0.0030 0.0031

Skewness −0.1416 0.0200 −0.1081 −0.1009
Kurtosis 6.5089 13.2774 3.9648 3.8702
ADF −7.7450∗∗∗ −7.7539∗∗∗ −7.7450∗∗∗ −7.7539∗∗∗
J− B 73.8706∗∗∗ 90.5023∗∗∗ 9779.2∗∗∗ 1147.3∗∗∗

d5

Mean 0.0002 0.0002 0.0000 0.0000
Standard
Deviation 0.0027 0.0028 0.0020 0.0020

Skewness 0.0010 0.0124 −0.0839 −0.0721
Kurtosis 6.1192 6.0851 4.1339 4.2297
ADF −3.8333∗∗∗ −3.8147∗∗∗ −3.8333∗∗∗ −3.8147∗∗∗
J− B 141.9146∗∗∗ 121.6405∗∗∗ 881.2332∗∗∗ 900.7953∗∗∗

Note: *** indicates significance at the 1% level

3.3 Analysis of Risk Spillover Effects

Four sets of return portfolios were considered, including the spot of the CSI 300 Index and the Hang Seng
Index, the futures of the CSI 300 Index and the Hang Seng Index, the spot and futures of the CSI 300 Index,
and the spot and futures of the Hang Seng Index. A comparison was conducted between the estimation results
of the VAR(1)-BEKK-AGARCH(1,1) model, which takes into account structural breaks, and that which does not
consider structural breaks, as established in Section 1, see Table 3. It is observed that, at identical time scales, the
values of the Log Likelihood Function (LogL) for the VAR(1)-BEKK-AGARCH(1,1) model incorporating structural
breaks are higher than those for the model without structural breaks. Furthermore, the Akaike Information Criterion
(AIC) values for the former are found to be lower than those for the latter. This indicates that, in comparison to
the VAR(1)-BEKK-AGARCH(1,1) model that does not account for structural breaks, the model that does is more
applicable to the stock market data in China. Tables 4–7 list the fitting results of the VAR(1)-BEKK-AGARCH(1,1)
model, incorporating structural breaks, for the four sets of return data. The test results of structural breaks at different
time scales in each market can be found in the appendix.

119



Table 3. Comparison results of two VAR(1)-BEKK-AGARCH(1,1) models

Considering Structural Breaks Not Considering Structural Breaks
d1 d2 d3 d4 d5 d1 d2 d3 d4 d5

Spot of the CSI 300 Index and the Hang Seng Index
log L 16969 18204 22236 29351 36829 16955 18150 22126 28701 35133
AIC -33896 -36258 -44430 -56661 -69616 -33865 -36241 -44423 -55246 -68111

Futures of the CSI 300 Index and the Hang Seng Index
log L 16757 17958 22402 28489 34803 16504 17899 22402 28139 34473
AIC -33358 -35766 -44763 -56841 -67463 -32967 -35756 -44763 -56236 -68905

Spot and futures of the CSI 300 Index
log L 18772 20231 25100 31726 38938 18701 20185 25049 31675 37190
AIC -37418 -40337 -50116 -63332 -77744 -37361 -40329 -50056 -63309 -77338

Futures of the Hang Seng Index
log L 19641 21247 27189 33125 37897 19628 21224 27154 33077 37555
AIC -39144 -42363 -54301 -66118 -75663 -39015 -42106 -54176 -66002 -73068

Table 4. Estimation results of the VAR(1)-BEKK-AGARCH(1,1) model considering structural breaks (CSI 300
Index spot and Hang Seng Index spot)

d1 d2 d3 d4 d5

Mean Equation
φ1 0.0000 0.0000 0.0000 0.0001∗∗∗ 0.0002∗∗∗

ϕ11 −0.7198∗∗∗ 0.3514∗∗∗ 0.8132∗∗∗ 1.0015∗∗∗ 0.9955∗∗∗

ϕ12 −0.0010 0.0846∗∗∗ 0.0000 −0.0043 −0.0028∗∗∗
φ2 −0.0001∗∗∗ 0.0000 0.0000 0.0000∗∗∗ 0.0000∗∗

ϕ21 −0.0330∗∗∗ 0.0004 −0.0437∗∗∗ 0.0486∗∗∗ 0.0199∗∗∗

ϕ22 −0.6972∗∗∗ 0.3538∗∗∗ 0.8673∗∗∗ 0.9065∗∗∗ 0.9784∗∗∗

Variance Equation
c11 0.0021∗∗∗ 0.0011∗∗∗ 0.0002∗∗∗ 0.0001∗∗∗ 0.0000∗∗∗

c21 0.0015∗∗∗ 0.0009∗∗∗ 0.0004∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

c22 0.0017∗∗∗ 0.0011∗∗∗ 0.0000 0.0000∗∗∗ 0.0000∗∗∗

a11 0.8425∗∗∗ 0.8971∗∗∗ 1.0670∗∗∗ 1.5145∗∗∗ 1.6132∗∗∗

a12 0.0401 0.0344 0.0021 −0.0288∗∗∗ −0.0131∗∗∗
a21 0.0794∗∗ −0.1224∗∗∗ 0.0126 −0.0167 0.0061∗∗

a22 0.8199∗∗∗ 0.8337∗∗∗ 1.1032∗∗∗ 1.5502∗∗∗ 1.6203∗∗∗

b11 0.7048∗∗∗ 0.6995∗∗∗ 0.7103∗∗∗ −0.4510∗∗∗ 0.4530∗∗∗

b12 −0.0219 −0.0172 0.4846∗∗∗ 0.0088∗∗∗ −0.0003
b21 −0.0612∗∗∗ 0.0606∗∗∗ −0.2953∗∗∗ −0.0031 −0.0001
b22 0.6601∗∗∗ 0.7033∗∗∗ −0.6321∗∗∗ −0.4704∗∗∗ 0.4522∗∗∗

g11 −0.0225 −0.1736 −0.1447 −0.1791∗∗∗ 0.0001
g12 0.1252∗∗∗ −0.1504∗∗∗ −0.0166 0.0083 −0.0233∗∗∗
g21 −0.1144 0.1992∗∗∗ 0.1499∗∗∗ −0.0306 −0.0016
g22 −0.4855∗∗∗ −0.2849∗∗ −0.0143 −0.2154∗∗∗ 0.0299

Note: ***, **, and * denote significance levels at 1%, 5%, and 10%. 1 and 2 respectively represent the CSI 300 Index spot and the Hang Seng
Index spot, respectively

From Table 4, it can be deduced that in terms of mean spillover effects: (1) ϕ11 and ϕ22 are significant across all
time scales, indicating a substantial impact of the lagged terms of the CSI 300 and Hang Seng Index spot returns on
themselves; (2) ϕ12 is significant at the d2 and d5 scales, suggesting mean spillover effects from the CSI 300 Index
spot to the Hang Seng Index spot at these scales. ϕ21 is significant across all scales except d2, indicating short-term
and long-term mean spillover effects from the Hang Seng Index spot to the CSI 300 Index spot. In terms of volatility
spillover effects: (1) a11, a22, b11, and b22 are significant across all time scales, denoting that the volatility of both
indices’ spot is highly influenced by their own lagged terms; (2) a12 is significant at the d4 and d5 scales, indicating
long-term ARCH spillover effects from the CSI 300 Index spot to the Hang Seng Index spot; a21 is significant at the
d1, d2, and d5 scales, suggesting ARCH spillover effects from the Hang Seng Index spot to the CSI 300 Index spot
across these scales; (3) b12 is significant at the d3 and d4 scales, indicating GARCH spillover effects from the CSI
300 Index spot to the Hang Seng Index spot at these scales; b21 is significant at the d1, d2, and d3 scales, denoting
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short-term and medium-term GARCH spillover effects from the Hang Seng Index spot to the CSI 300 Index spot.
In terms of asymmetric spillover effects: (1) g11 is only significant at the d4 scale, while g22 is significant at the d1,
d2, and d4 scales, showing stronger asymmetric impacts of the lagged terms on the Hang Seng Index spot compared
to the CSI 300 Index spot; (2) g12 is significant at the d1, d2, and d5 scales, suggesting asymmetric spillover effects
from the CSI 300 Index spot to the Hang Seng Index spot at these scales; g21 is significant at the d2 and d3 scales,
indicating medium-term asymmetric spillover effects from the Hang Seng Index spot to the CSI 300 Index spot.

From Table 5, it can be observed that in terms of mean spillover effects: (1) ϕ11 and ϕ22 are significant across all
time scales, indicating a strong influence of the lagged terms on the returns of CSI 300 and Hang Seng Index futures;
(2) ϕ12 is significant across all scales, denoting pervasive mean spillover effects from the CSI 300 Index futures to
the Hang Seng Index futures; ϕ12 is significant across all scales except d1, suggesting medium-term and long-term
mean spillover effects from the Hang Seng Index futures to the CSI 300 Index futures. In terms of volatility spillover
effects: (1) a11, a22, b11, and b22 are significant across all time scales, indicating substantial impacts of their own
lagged terms on the volatility of both indices’ futures; (2) a12 is significant at the d1, d3, and d5 scales, showing
ARCH spillover effects from the CSI 300 Index futures to the Hang Seng Index futures across these scales; a21 is
significant across all scales except d3, suggesting mean spillover effects from the Hang Seng Index futures to the
CSI 300 Index futures at short-term and long-term scales; (3) b12 is significant at the d3 and d5 scales, indicating
GARCH spillover effects from the CSI 300 Index futures to the Hang Seng Index futures at these scales; b21 is
significant at the d1, d3, and d5 scales, denoting GARCH spillover effects from the Hang Seng Index futures to the
CSI 300 Index futures across these scales. In terms of asymmetric spillover effects: (1) g11 and g22 are significant at
the d1, d2, and d4 scales, showing strong asymmetric impacts of the lagged terms on both indices’ futures; (2) g12
is not significant across all scales, suggesting no asymmetric spillover effects from the CSI 300 Index futures to the
Hang Seng Index futures; g21 is significant at the d1, d2, and d4 scales, indicating asymmetric spillover effects from
the Hang Seng Index futures to the CSI 300 Index futures at these scales.

Table 5. Estimation results of the VAR(1)-BEKK-AGARCH(1,1) model considering structural breaks (CSI 300
Index futures and Hang Seng Index futures)

d1 d2 d3 d4 d5

Mean Equation
φ1 −0.0001 0.0002∗ −0.0001∗∗ −0.00002∗ 0.00002∗∗∗

ϕ11 −0.7234∗∗∗ 0.3890∗∗∗ 0.9129∗∗∗ 1.0054∗∗∗ 0.9874∗∗∗

ϕ12 0.0335∗∗∗ 0.0563∗∗∗ 0.0295∗∗ 0.0132∗∗∗ 0.0104∗∗∗

φ2 −0.0001 0.0001 −0.0001∗∗∗ 0.00003∗∗∗ 0.00001∗∗∗

ϕ21 −0.0153 0.0256∗∗ −0.0456∗∗∗ 0.0179∗∗∗ 0.0077∗∗∗

ϕ22 −0.6871∗∗∗ 0.3431∗∗∗ 1.0088∗∗∗ 0.9563∗∗∗ 1.0071∗∗∗

Variance Equation
c11 0.0083∗∗∗ 0.0063∗∗∗ 0.0040∗∗∗ 0.0028∗∗∗ 0.0017∗∗∗

c21 0.0040∗∗∗ 0.0022∗∗∗ 0.0014∗∗∗ 0.0009∗∗∗ 0.0006∗∗∗

c22 0.0062∗∗∗ 0.0045∗∗∗ 0.0029∗∗∗ 0.0015∗∗∗ 0.0011∗∗∗

a11 0.8351∗∗∗ 0.7971∗∗∗ 1.3044∗∗∗ 1.3059∗∗∗ 1.3443∗∗∗

a12 0.0428∗∗ 0.0147 0.0510∗∗∗ −0.0049 −0.0032∗∗
a21 0.0657∗∗ −0.1048∗∗∗ −0.0272 −0.0227∗∗∗ −0.0145∗∗∗
a22 0.7657∗∗∗ 0.7472∗∗∗ 1.2063∗∗∗ 1.3329∗∗∗ 1.3091∗∗∗

b11 0.6623∗∗∗ 0.7014∗∗∗ 0.3458∗∗∗ 0.2709∗∗∗ 0.2111∗∗∗

b12 −0.0147 0.0045 0.0378∗∗∗ 0.0044 0.0020∗

b21 −0.0432∗ 0.0369 −0.1696∗∗∗ −0.0276∗∗∗ 0.0002
b22 0.6584∗∗∗ 0.6856∗∗∗ 0.1223∗∗∗ 0.2291∗∗∗ 0.2052∗∗∗

g11 −0.3256∗∗ −0.2917∗∗ 0.0206 0.1178∗∗ 0.0000
g12 0.0191 0.0615 −0.0053 −0.0060 0.0000
g21 −0.0342 −0.1141∗ −0.0425 −0.0346∗∗ 0.0000
g22 −0.3987∗∗∗ −0.4985∗∗∗ 0.0310 0.0936∗ 0.0000

Note: ***, **, and * denote significance levels at 1%, 5%, and 10%. 1 and 2 respectively represent the CSI 300 Index futures and the Hang Seng
Index futures, respectively

From Table 6, it can be observed that in terms of mean spillover effects: (1) ϕ11 and ϕ22 are significant across all
time scales, indicating a substantial impact of their own lagged terms on the returns of both spot and futures in the
CSI 300 Index; (2) ϕ12 is significant at all scales except d1, suggesting the presence of mean spillover effects from
the spot to the futures of this index at medium to long-term scales; ϕ21 is significant across all scales, indicating
mean spillover effects from the futures to the spot of this index at all time scales. Concerning volatility spillover
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effects: (1) a11, a22, b11, and b22 are significant across all time scales, denoting a substantial impact of their own
lagged terms on the volatility of both spot and futures in the CSI 300 Index. (2) a12, a21, b12, and b21 are significant
at scales d2, d3, and d5, suggesting bidirectional ARCH and GARCH spillover effects between the spot and futures
of this index at medium to long-term scales. Regarding asymmetric spillover effects: (1) g11 and g22 are significant
at all scales except d2, indicating strong asymmetric impacts of their own lagged terms on both spot and futures
in the CSI 300 Index; (2) g12 and g21 are significant at scales d1, d3, and d5, suggesting bidirectional asymmetric
spillover effects between the spot and futures of this index at these scales.

Table 6. Estimation results of the VAR (1)-BEKK-AGARCH (1,1) model considering structural breaks (CSI 300
Index spot and futures)

d1 d2 d3 d4 d5

Mean Equation
φ1 0.0000 0.0000 −0.00004∗∗ 0.0000 0.00002∗∗∗

ϕ11 −0.6484∗∗∗ 0.1182∗∗∗ 0.7526∗∗∗ 0.8929∗∗∗ 1.0562∗∗∗

ϕ12 −0.0358 0.2557∗∗∗ 0.0785∗∗∗ 0.0617∗∗∗ −0.0438∗∗∗
φ2 0.0000 0.0000 −0.00004∗∗ 0.0000 0.00002∗∗∗

ϕ21 0.0917∗∗∗ −0.2146∗∗∗ −0.0849∗∗∗ −0.0660∗∗∗ 0.1123∗∗∗

ϕ22 −0.7771∗∗∗ 0.5814∗∗∗ 0.9202∗∗∗ 1.0246∗∗∗ 0.9014∗∗∗

Variance Equation
c11 0.0036∗∗∗ 0.0016∗∗∗ 0.0007∗∗∗ 0.0001∗∗∗ −0.00003∗∗∗
c21 0.0031∗∗∗ 0.0016∗∗∗ 0.0006∗∗∗ 0.0001∗∗∗ −0.00003∗∗∗
c22 −0.0007∗∗∗ 0.0003∗∗∗ −0.0001∗∗∗ −0.00002∗∗∗ 0.000002∗∗∗

a11 0.7739∗∗∗ 1.4142∗∗∗ 1.4443∗∗∗ 1.4978∗∗∗ 1.3837∗∗∗

a12 −0.1077 0.6210∗∗∗ 0.1965∗∗∗ 0.0217 0.0427∗∗∗

a21 0.0187 −0.6095∗∗∗ −0.1868∗∗∗ −0.0336 −0.0412∗∗∗
a22 0.9239∗∗∗ 0.2307∗∗∗ 1.0607∗∗∗ 1.4405∗∗∗ 1.3003∗∗∗

b11 0.6651∗∗∗ 0.1122∗∗ 0.5348∗∗∗ 0.4357∗∗∗ 0.5842∗∗∗

b12 0.0529 0.6144∗∗∗ −0.0488∗∗ −0.0115 0.0108∗∗∗

b21 0.0250 0.5621∗∗∗ 0.0317 0.0017 0.0039∗∗∗

b22 0.6363∗∗∗ 1.2414∗∗∗ 0.6141∗∗∗ 0.4475∗∗∗ 0.5989∗∗∗

g11 −0.5888∗∗∗ 0.2118 0.1760∗∗∗ −0.2019∗∗∗ 0.1266∗∗∗

g12 −0.4102∗∗∗ −0.0217 0.1514∗∗∗ 0.0529 0.0749∗∗∗

g21 0.6866∗∗∗ −0.0760 −0.1747∗∗∗ −0.0225 0.0866∗∗∗

g22 0.5756∗∗∗ 0.1814 −0.1632∗∗∗ −0.2781∗∗∗ 0.0360∗∗∗

Note: ***, **, and * denote significance levels at 1%, 5%, and 10%. 1 and 2 respectively represent the CSI 300 Index spot and futures,
respectively

From Table 7, it can be observed that in terms of mean spillover effects: (1) ϕ11 and ϕ22 are significant across
all time scales, indicating a substantial impact of their own lagged terms on the returns of both spot and futures in
the Hang Seng Index; (2) ϕ12 and ϕ21 are significant at all scales except d4, suggesting bidirectional mean spillover
effects between the spot and futures of this index at short to medium-term scales. Concerning volatility spillover
effects: (1) a11, a22, b11, and b22 are significant across all time scales, denoting a substantial impact of their own
lagged terms on the volatility of both spot and futures in the Hang Seng Index. (2) a12 is significant at all scales
except d4, indicating ARCH spillover effects from the spot to the futures of this index at short to medium-term scales;
a21 is significant at scales d1, d2, and d3, suggesting ARCH spillover effects from the futures to the spot of this index
at short to medium-term scales. (3) b12 and b21 are significant across all scales, suggesting bidirectional GARCH
spillover effects between the spot and futures of this index at all time scales. Regarding asymmetric spillover effects:
(1) g11 and g22 are significant at all scales except d2, indicating strong asymmetric impacts of their own lagged terms
on both spot and futures in the Hang Seng Index; (2) g12 and g21 are significant at all scales except d2, suggesting
bidirectional asymmetric spillover effects between the spot and futures of this index at short and long-term scales.

A comprehensive summary of the mean, volatility, and asymmetric spillover effects between different markets
across various time scales has been collated based on the parameter estimation results from Tables 4–7, and is
presented in Table 8. It can be observed that there are differences in the spillover effects between the CSI 300 and
Hang Seng Index spot and futures markets across different time scales. Specifically, (1) for markets of different
indices, bidirectional mean spillover effects are present only at the long-term scale d5 between the spot markets of the
two indices; bidirectional mean spillover effects exist at medium to long-term scales except d1 between the futures
markets of the two indices; unidirectional volatility spillover effects are prevalent at most scales between the spot and
futures markets of the two indices; asymmetric spillover effects are present at all scales except d4 between the spot
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markets of the two indices; asymmetric spillover effects exist only at scales d2 and d5 between the futures markets of
the two indices. (2) For markets of the same index, bidirectional mean and volatility spillover effects are present at all
scales except d1 and d4 between the spot and futures markets of the same index; bidirectional asymmetric spillover
effects are observed at all scales except d2 and d4. These findings indicate relatively stronger spillover effects in
mean, volatility, and asymmetry between the spot and futures markets of the same index compared to markets of
different indices. Building upon the study of risk spillover effects in the CSI 300 and Hang Seng Index spot and
futures markets, further research is conducted on the hedging issues between spot and futures markets in this text.

Table 7. Estimation results of the VAR (1)-BEKK-AGARCH (1,1) model considering structural breaks (Hang Seng
Index spot and futures)

d1 d2 d3 d4 d5

Mean Equation
φ1 −0.00002∗∗∗ 0.0000 0.0000 −0.00003∗∗∗ −0.00003∗∗∗
ϕ11 −0.7626∗∗∗ 0.2786∗∗∗ 0.5693∗∗∗ 0.9650∗∗∗ 0.9946∗∗∗

ϕ12 0.0620∗∗∗ 0.1125∗∗∗ 0.3020∗∗∗ −0.0124 0.0128∗∗∗

φ2 −0.00003∗∗∗ 0.0000 0.0000 −0.00003∗∗∗ 0.0000∗∗∗

ϕ21 −0.0192∗∗∗ −0.0466∗ −0.2546∗∗∗ 0.0047 0.0187∗∗∗

ϕ22 −0.6924∗∗∗ 0.4098∗∗∗ 1.1223∗∗∗ 0.9453∗∗∗ 0.9878∗∗∗

Variance Equation
c11 0.0021∗∗∗ 0.0011∗∗∗ 0.0004∗∗∗ 0.0001∗∗∗ 0.0015∗∗∗

c21 0.0022∗∗∗ 0.0012∗∗∗ 0.0005∗∗∗ 0.0001∗∗∗ 0.0015∗∗∗

c22 0.0007∗∗∗ 0.0001 −0.00004∗∗∗ 0.0000 0.0000
a11 0.6314∗∗∗ 1.4893∗∗∗ 1.4938∗∗∗ 1.4508∗∗∗ 0.5642∗∗∗

a12 −0.2161∗∗∗ 0.7357∗∗∗ 0.2512∗∗∗ −0.0091 0.0015∗∗∗

a21 0.1644∗∗∗ −0.6997∗∗∗ −0.2159∗∗∗ 0.0146 0.0001
a22 0.9961∗∗∗ 0.1013 1.0329∗∗∗ 1.4788∗∗∗ 0.5662∗∗∗

b11 0.8392∗∗∗ −0.1422∗∗ 0.5822∗∗∗ 0.4564∗∗∗ 0.8314∗∗∗

b12 0.2035∗∗∗ −0.8749∗∗∗ 0.0285∗∗∗ 0.0170∗∗∗ −0.0104∗∗∗
b21 −0.1451∗∗∗ 0.8231∗∗∗ −0.0716∗∗∗ −0.0176∗∗∗ −0.0062∗∗∗
b22 0.4953∗∗∗ 1.5155∗∗∗ 0.4811∗∗∗ 0.4215∗∗∗ 0.8359∗∗∗

g11 0.3980∗∗∗ 0.0229 0.4804∗∗∗ −0.1228∗∗∗ 0.3673∗∗∗

g12 0.3095∗∗∗ 0.0773 0.4568∗∗∗ −0.0249∗∗ −0.0871∗∗∗
g21 −0.5673∗∗∗ 0.1063 −0.3311∗∗ 0.0089∗ 0.1041∗∗∗

g22 −0.5680∗∗∗ 0.0384 −0.3120∗∗∗ −0.0872∗ 0.5588∗∗∗

Note: ***, **, and * respectively denote significance levels at 1%, 5%, and 10%. 1 and 2 respectively represent Hang Seng Index spot and
futures

Table 8. Summary of spillover effects between markets

d1 d2 d3 d4 d5

Mean Spillover Effect
Shanghai-Shenzhen Spot - Hang Seng Spot U(←) U(→) U(←) U(←) B(↔)

Shanghai-Shenzhen Futures - Hang Seng Futures U(→) B(↔) B(↔) B(↔) B(↔)
Shanghai-Shenzhen Spot - Shanghai-Shenzhen Futures U(←) B(↔) B(↔) B(↔) B(↔)

e Hang Seng Spot - Hang Seng Futures B(↔) B(↔) B(↔) NO B(↔)
Volatility Spillover Effect (ARCH and GARCH Spillover Effects)

Shanghai-Shenzhen Spot - Hang Seng Spot U(←) U(←) B(↔) U(→) B(↔)
Shanghai-Shenzhen Futures - Hang Seng Futures B(↔) U(←) B(↔) U(←) B(↔)

Shanghai-Shenzhen Spot - Shanghai-Shenzhen Futures NO B(↔) B(↔) NO B(↔)
Hang Seng Spot - Hang Seng Futures B(↔) B(↔) B(↔) B(↔) B(↔)

Asymmetric Spillover Effect
Shanghai-Shenzhen Spot - Hang Seng Spot U(→) B(↔) U(←) NO U(→)

Shanghai-Shenzhen Futures - Hang Seng Futures NO U(←) NO U(←) NO
Shanghai-Shenzhen Spot - Shanghai-Shenzhen Futures B(↔) NO B(↔) NO B(↔)

Hang Seng Spot - Hang Seng Futures B(↔) NO B(↔) U(→) B(↔)
Note: “U” indicates that the spillover effect is unidirectional, “B” indicates that the spillover effect is bidirectional, and the direction of the

spillover is shown inside the parentheses. “NO” signifies that there is no spillover effect between the two markets at that scale
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3.4 Dynamic Hedging Results

Based on Eq. (9), the optimal dynamic hedge ratios and hedging performance between the CSI 300 Index spot
and futures, as well as between the Hang Seng Index spot and futures, were calculated under the VAR-BEKK-
AGARCH model considering structural breaks. These results were then compared with the models that do not
consider structural breaks, as well as with the static hedging results obtained using Ordinary Least Squares (OLS)
method, as presented in Table 9.

Table 9. Estimation results for hedge ratios and hedging effectiveness

CSI 300 Index Hang Seng Index
d1 d2 d3 d4 d5 d1 d2 d3 d4 d5

Static Hedging
Ratio 0.9132 0.8094 0.9824 0.8492 0.9238 0.9974 1.1260 0.8682 0.9992 1.3358
HE 0.8480 0.8697 0.9291 0.9424 0.9890 0.9253 0.9619 0.9497 0.9904 0.9948

Dynamic Hedging (Not Considering Structural Breaks)
Ratio Mean 0.9316 0.9501 0.9700 0.9682 0.9289 0.9167 0.9442 0.9759 0.9682 0.9863

Ratio Variance 0.0477 0.0396 0.1092 0.0656 0.1056 0.0166 0.0131 0.0439 0.0656 0.0245
HE 0.8690 0.8982 0.9273 0.9555 0.9630 0.9234 0.9467 0.9492 0.9955 0.9841

Dynamic Hedging (Considering Structural Breaks)
Ratio Mean 0.9245 0.9496 0.9705 0.9349 0.9181 0.9220 0.9394 0.9746 0.9672 0.9955

Ratio Variance 0.0445 0.0398 0.1019 0.2116 0.0459 0.0184 0.0150 0.0442 0.0677 0.0105
HE 0.8700 0.8997 0.9298 0.9575 0.9813 0.9265 0.9744 0.9597 0.9958 0.9903

Observations can be made as follows: (1) At the same time scale, compared to the CSI 300 Index, the Hang
Seng Index demonstrates a smaller volatility in hedge ratios. Moreover, the HE values of the Hang Seng Index
hedging portfolio consistently surpass those of the CSI 300 Index at corresponding levels; (2) With an increase in
the time scale, a gradual augmentation is noted in the HE values of the CSI 300 Index hedging portfolio, indicating
an enhancement in hedging effectiveness. In contrast, the HE values of the Hang Seng Index hedging portfolio
exhibit irregular fluctuations with the change in time scale; (3) At each scale, the HE values of the dynamic hedging
portfolio considering structural breaks are consistently higher than those not accounting for structural breaks. This
suggests that the dynamic hedging portfolio, which takes structural breaks into account, outperforms the portfolio
that neglects structural breaks. (4) Except for at d5 scale, the HE values of the dynamic hedging portfolio considering
structural breaks exceed those of the static hedging portfolio. This denotes a superiority of the dynamic hedging
portfolio over the static hedging counterpart in the short to medium term scales.

3.5 Wavelet Coherence and Phase Difference Analyses

Figures 6 and 7 respectively illustrate the wavelet coherence and phase difference between the CSI 300 Index
spot and futures and the Hang Seng Index spot and futures. The color bar to the right of the figures indicates the
level of coherence, with blue representing low coherence and yellow representing high coherence. The vertical axis
denotes frequency, while the horizontal axis represents time. Arrows indicate wavelet phase difference, illustrating
the lead-lag relationship between index fluctuations in time and frequency domains. It is observed that: (1) There
is a prevalence of yellow areas at lower frequencies (long-term scales), indicating a significant correlation between
the two markets. (2) Throughout the entire sample period, an apparent increase in yellow areas is noted post-2017,
signifying an augmented correlation between the two markets since the initiation of the “Shanghai-Hongkong Stock
Connect” on December 5, 2016. This initiative has fostered a closer connection between the Shanghai/Shenzhen
and Hong Kong markets post-2017. (3) Predominantly, arrows point horizontally to the right, indicating that the CSI
300 Index and Hang Seng Index generally move in the same direction. Some arrows point diagonally from the top
left to the bottom right and from the bottom left to the top right, with angles within the range of [−2/π, 2/π]. This
implies a small phase difference between the CSI 300 Index and the Hang Seng Index, devoid of a fixed lead-lag
relationship. This connotes a tightly linked and mutually influencing relationship between the two markets.

Figures 8 and 9 respectively present the wavelet coherence and phase difference between the CSI 300 Index spot
and futures, and the Hang Seng Index spot and futures. It is observed that: (1) The correlation between the two
indices’ spot and futures varies across different time scales. At higher frequencies (short-term scales), the correlation
between spot and futures is relatively low. Specifically, on the d1–d4 scales, the correlation between the CSI 300
Index spot and futures demonstrates volatility, particularly from June 2014 to June 2017, where fluctuations were
exceptionally intense, and arrows were chaotically arranged. This period was marked by the stock market crash in
China, leading to instability in both the CSI 300 Index spot and futures markets, with a slight reduction in their
correlation. The correlation between the Hang Seng Index spot and futures experienced minor fluctuations on the d1
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scale. At lower frequencies (medium to long-term scales), high correlation is observed between the spot and futures
of both indices, with the correlation approaching 1 as the time scale increases. (2) Nearly all arrows point to the
right, indicating that the spot and futures of the two indices generally move in sync, with a small phase difference,
and no apparent lead-lag relationship. This further verifies that the spot and futures of the CSI 300 and Hang Seng
Index serve as effective hedging tools.

Figure 6. Wavelet coherence and phase difference between CSI 300 spot and Hang Seng spot

Figure 7. Wavelet coherence and phase difference between CSI 300 futures and Hang Seng futures

Figure 8. Wavelet coherence and phase difference between spot and futures of the CSI 300 Index
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Figure 9. Wavelet coherence and phase difference between spot and futures of the Hang Seng Index

4 Conclusions

In order to investigate the multi-scale risk spillover and dynamic hedging issues in the Chinese stock market, con-
sidering structural breaks, this study employs the maximal overlap discrete wavelet transform method to decompose
the spot and futures returns of the CSI 300 and Hang Seng Index into short-term, medium-term, and long-term time
scales. Additionally, an asymmetric VAR-BEKK-AGARCH model, accounting for the structural breaks in return
volatility, has been constructed to explore the mean spillover, volatility spillover, and asymmetric spillover effects
between the CSI 300 and Hang Seng Index, as well as between the spot and futures markets of the two indices
at different time scales. Furthermore, dynamic hedging portfolios of spot and futures for each index have been
constructed to analyze the hedging performance across different time scales. Lastly, wavelet coherence and phase
difference analyses have been utilized to validate the research findings.

The results have indicated that:
(1) The VAR-BEKK-AGARCH model, which takes into account structural breaks, is found to be more applicable

to the stock market data of China than the model without consideration of structural breaks.
(2) At different time scales, the mean spillover, volatility spillover effects, and asymmetric effects between the

spot and futures markets of the CSI 300 and Hang Seng Index vary. Compared to different index markets, the risk
spillover effects between the spot and futures markets of the same index are relatively stronger.

(3) In terms of hedging performance, the dynamic hedging portfolio considering structural breaks outperforms
the portfolio without consideration of structural breaks. Moreover, at short and medium-term scales, the dynamic
hedging portfolio considering structural breaks is superior to the static hedging portfolio.

(4) Analysis via wavelet coherence and phase difference suggests that the CSI 300 Index, Hang Seng Index,
and the spot and futures of each index generally move in the same direction, with a small phase difference between
the two indices, lacking a fixed lead-lag relationship. Additionally, a stronger correlation between the markets is
observed at longer time scales. This further substantiates that the spot and futures of the CSI 300 and Hang Seng
Index serve as effective tools for hedging.
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[22] S. Gürbüz and A. Şahbaz, “Investigating the volatility spillover effect between derivative markets and spot
markets via the wavelets: The case of Borsa istanbul,” Borsa Istanbul Rev., vol. 22, no. 2, pp. 321–331, 2022.

127

https://doi.org/10.1016/j.ribaf.2021.101510
https://doi.org/10.1016/j.ribaf.2021.101510
https://doi.org/10.1016/j.pacfin.2022.101764
https://doi.org/10.1016/j.pacfin.2022.101764
https://doi.org/10.1016/j.intfin.2017.09.003
https://doi.org/10.3233/JIFS-189493
https://doi.org/10.3233/JIFS-189493
https://doi.org/10.3389/fpubh.2022.906969
https://doi.org/10.1108/jes-05-2020-0246
https://doi.org/10.1002/fut.22312
https://doi.org/10.1002/fut.22312
https://doi.org/10.1016/j.irfa.2018.11.007
https://doi.org/10.1016/j.qref.2021.04.011
https://doi.org/10.1007/s11156-021-01018-8
https://doi.org/10.1016/j.resourpol.2017.06.001
https://doi.org/10.1016/j.resourpol.2017.06.001
https://doi.org/10.1016/j.resourpol.2018.04.010
https://doi.org/10.1016/j.resourpol.2018.04.010
https://doi.org/10.1016/j.irfa.2021.101772
https://doi.org/10.1016/j.jeca.2022.e00244
https://doi.org/10.1016/j.energy.2020.119302
https://doi.org/10.1016/j.resourpol.2022.102646
https://doi.org/10.1080/03610926.2020.1772304
https://doi.org/10.1002/agr.21749
https://doi.org/10.1002/agr.21749


https://doi.org/10.1016/j.bir.2021.05.006
[23] O. Belhassine and C. Karamti, “Volatility spillovers and hedging effectiveness between oil and stock markets:

Evidence from a wavelet-based and structural breaks analysis,” Energy Econ., vol. 102, no. 102, p. 105513,
2021. https://doi.org/10.1016/j.eneco.2021.105513

[24] B. Zheng, Y. W. Zhang, F. Qu, Y. Geng, and H. Yu, “Do rare earths drive volatility spillover in crude oil,
renewable energy, and high-technology markets? — A wavelet-based BEKK- GARCH-X approach,” Energy,
vol. 251, p. 123951, 2022. https://doi.org/10.1016/j.energy.2022.123951

[25] I. Fasanya, O. Oyewole, and O. Adekoya, “Oil price and stock market behaviour in GCC countries: Do
asymmetries and structural breaks matter?” Energy Strategy Rev., vol. 2021, no. 36, p. 100682, 2021.
https://doi.org/10.1016/j.esr.2021.100682
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Appendix

Table A1. Results of structural break detection

d1 d2 d3 d4 d5

CSI 300 Index
Spot

2014-05-14 2014-05-26 2014-01-03 2014-01-10
2015-05-14 2015-06-03 2014-09-19 2014-09-30
2016-05-06 2016-06-07 2015-12-07 2016-01-15
2017-01-26 2017-03-06 2017-02-23 2017-04-13
2018-01-24 2018-12-07 2018-01-17 2018-03-23
2018-10-12 2020-03-24 2018-11-16 2019-06-21
2020-01-16 2021-06-25 2019-06-28 2020-05-29
2021-05-28 2020-07-24 2021-04-30

2021-08-20 2022-01-11

CSI 300 Index
Futures

2014-01-27 2014-05-30 2014-01-10 2014-01-03 2014-01-10
2014-10-31 2015-06-16 2014-09-30 2014-09-19 2014-09-30
2016-02-29 2016-06-24 2015-12-24 2015-12-07 2016-01-15
2017-05-05 2017-03-24 2017-03-21 2017-02-23 2017-04-13
2018-03-28 2018-03-29 2018-02-12 2018-01-17 2018-03-23
2019-02-01 2019-01-02 2018-12-14 2018-11-16 2019-06-21
2019-09-30 2020-04-24 2019-07-19 2019-06-28 2020-05-29
2020-08-21 2021-07-09 2020-08-07 2020-07-24 2021-04-30
2021-04-14 2021-08-27 2022-01-11

Hang Seng
Index Spot

2014-05-14 2014-05-26 2014-01-03 2014-01-10
2015-05-14 2015-06-03 2014-09-19 2014-09-30
2016-05-06 2016-06-07 2015-12-07 2016-01-15
2017-01-26 2017-03-06 2017-02-23 2017-04-13
2018-01-24 2018-03-09 2018-01-17 2018-03-23
2018-10-12 2018-12-07 2018-11-16 2019-06-21
2020-01-16 2020-03-24 2019-06-28 2020-05-29
2021-05-28 2021-06-25 2020-07-24 2021-04-30

2021-08-20 2022-01-11

Hang Seng
Index Futures

2013-10-11 2013-10-25 2014-01-10 2014-01-03 2014-01-10
2014-05-14 2014-05-30 2014-09-30 2014-09-19 2014-09-30
2015-05-14 2015-06-16 2015-12-24 2015-12-07 2016-01-15
2016-05-06 2016-06-24 2017-03-21 2017-02-23 2017-04-13
2017-01-26 2017-03-24 2018-02-12 2018-01-17 2018-03-23
2018-10-12 2018-03-29 2020-08-07 2018-11-16 2019-06-21
2019-07-05 2019-01-02 2019-06-28 2020-05-29
2020-01-16 2019-09-30 2020-07-24 2021-04-30
2020-10-23 2020-04-24 2021-08-20 2022-01-11
2021-05-28 2021-01-04

Note: The dates of breaks were estimated using the modified ICSS algorithm applied to the residuals of the VAR (1)-BEKK-AGARCH model
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