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Abstract: In contemporary military contexts, the determination of an optimal course of action (COA) in combat
operations emerges as a critical challenge. This study delineates a decision support methodology for military
applications, employing sophisticated decision analysis techniques. The initial phase entails the identification of
pivotal criteria for assessing and ranking COAs, followed by the assignment of weight coefficients to each criterion via
the full consistency method (FUCOM). Subsequently, the Einstein weighted arithmetic average operator (EWAA) was
utilized for the aggregation of expert opinions, ensuring a consensual evaluation of these criteria and culminating
in the final values of their weight coefficients. The ensuing phase focuses on the selection of an optimal COA,
incorporating the grey complex proportional assessment (COPRAS-G) method. This method addresses uncertainties
and varying criterion values. Expert ratings were again aggregated using the EWAA operator. The findings from
this phase are designed to provide military commanders with precise, data-driven guidance for decision-making.
To validate and verify the stability of the proposed model, a series of tests were conducted, including a rank
reversal test, sensitivity analysis regarding changes in weight coefficients, and a comparative analysis with alternative
methods. These assessments uniformly indicated the model’s consistency, stability, and validity as a military
decision support tool. Emphasizing a high degree of confidence in COA selection, the methodology advocated
herein is applicable to decision-making processes in the planning and execution of military operations. The uniform
application of professional terms, consistent with the broader context of this research, ensures clarity and coherence
in its presentation. The approach outlined in this study stands as a testament to rigorous analytical methodologies
in the realm of military strategic planning, offering a robust framework for decision-making under conditions of
uncertainty and complexity.

Keywords: Course of action (COA); Multi-criteria decision making (MCDM); Full consistency method (FUCOM);
Einstein weighted arithmetic average (EWAA) operator; Grey complex proportional assessment (COPRAS-G); Army

1 Introduction

Dynamic shifts in contemporary combat environments necessitate the prediction and real-time response to
unfolding scenarios, as highlighted in recent studies [1]. Within this context, decision-making in military operations
emerges as a multifaceted challenge, encompassing both execution and preparatory phases. Central to these decisions
is the COA, a term in military parlance referring to a sequence of planned or spontaneous activities undertaken by
armed forces to achieve specific objectives on the battlefield, a product of operational planning [1]. Determining a
COA involves analyzing the current and desired states, identifying obstacles impeding transition from the former to
the latter, and strategizing the necessary actions [2]. Addressing such complex problems, particularly from multiple
perspectives, calls for the application of MCDM methods. These methods, adept at handling inaccuracies and
uncertainties in decision-making, have found applications across various sectors [3–13], including the military [14–
23]. A review of existing literature reveals diverse approaches to COA selection using MCDM methods.

Guitouni et al. [24] conducted COA selection to address emergency scenarios in the Air Operation Center
(AOC), focusing on criteria encompassing complexity, sustainability, risk, flexibility, and resource cost. This
process employed decision-making analysis tools integrated into the Commander’s Advisory System for Airspace
Protection. Similarly, Pamucar et al. [21] approached COA selection for obstacle employment groups using a fuzzy
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logic system, basing their criteria on potential enemy penetration along specific routes, the ramifications of route
closure, the adverse impacts of minefields on subsequent actions, and the characteristics of the group’s chosen
route. In the realm of security forces operations, Karavidić and Projović [25] applied the ROSSETA software, which
operates on rough numbers, to select an optimal COA. Their approach incorporated an extensive set of 15 criteria
within a simulation software framework. In a related study, Božanić et al. [26] employed the Multi-Attributive Border
Approximation Area Comparison (MABAC) method for COA selection in defensive operations, considering eight
critical criteria: maneuver, fire, command, intelligence, mobility, logistics, simplicity, and anti-aircraft operations.
These authors, in subsequent work [27], addressed COA selection in attack operations using the same criteria set
but through the lens of an Adaptive Neural Network. Further, Božanić et al. [28] tackled the challenge of selecting
a COA for groups responsible for additional hindrances in military operations. This task was approached using the
Fuzzy Analytic Hierarchy Process (AHP), examining alternatives across a two-tiered hierarchy of criteria, with three
criteria at the first level and eight at the second. In the context of amphibious operations, Yudy Arie Bintoro [29]
adopted the MCDM model comprising Decision Making Trial and Evaluation Laboratory (DEMATEL) and Adaptive
Neural Network. The evaluation of alternatives here was conducted using a three-level criteria matrix, focusing on
personnel, logistics, operational capabilities, and a comprehensive set of technical criteria, including electronics
and communications. This overview of previous research indicates the successful application of various MCDM
methods and theories in the selection of optimal COAs, particularly at lower levels of command where the number
of criteria tends to be extensive. This observation is corroborated by Milovanović [30], who also notes that criteria
tend to be more generalized at higher levels of command, a focus that will be further explored in this paper.

This paper introduces the FUCOM–EWAA–COPRAS-G MCDM model for optimal COA selection in military
operations at higher command levels. The FUCOM method was utilized to determine weight coefficients of identified
criteria, based on inputs from five field experts. The COPRAS method, enhanced with Grey theory, was employed
for selecting the optimal COA. To affirm the methodology’s stability and validate the MCDM model, rank reversal
tests, sensitivity analysis, and comparative evaluations were conducted. The following sections detail the proposed
model, its methods, and underlying theories.

2 Methodology

To address the complexities inherent in selecting a COA, a MCDM model has been developed, as illustrated in
Figure 1.

Figure 1. MCDM model FUCOM-EWAA-COPRAS-G

The proposed model encompasses four distinct phases. Initially, relevant criteria are identified, and their
respective weight coefficients are determined utilizing the FUCOM, facilitated by the insights of five area-specific
experts. These expert opinions are collectively aggregated employing the EWAA operator. The subsequent phase
involves implementing these weighted criteria into an initial decision matrix, proceeding to the selection of the
optimal COA via the COPRAS-G method. Here, expert ratings are again aggregated using the EWAA operator.
In the third phase, the model’s robustness is tested. This involves examining the consistency of the derived results
against variations in weight coefficients through a sensitivity analysis, followed by conducting a rank reversal test.
Upon completion of these analyses and tests, the fourth phase is initiated. This final stage involves a comparative
analysis of the results yielded by the proposed methodology against those obtained via alternative methods. The
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objective of this comparative analysis is to validate the efficacy and reliability of the model. The forthcoming sections
will provide detailed descriptions of each method employed in the model.

2.1 FUCOM Method

The FUCOM is a relatively recent methodology for determining the weight coefficients of criteria, notable for its
straightforward mathematical framework and minimal procedural steps [31]. Its application has been wide-ranging,
covering diverse research fields such as human resources [32], maintenance [33], the video game industry [34],
construction machinery selection [35, 36], the electric car industry [37], postal traffic [38], healthcare manage-
ment [39, 40], and location problems [41, 42], among others. The mathematical formulation of this method is
detailed in the following section [31].

Step 1. Ranking of Criteria Based on Importance: The initial step involves arranging the criteria in order of
importance, starting with the most significant and ending with the least significant.

Step 2. Comparative Analysis of Adjacent Criteria: This step entails comparing adjacent, ranked criteria
to determine their relative priorities. The comparative priority of a criterion (represented by πk/(k+1)) can be
mathematically expressed as follows:

Π =
(
π1/2, π1/2, . . . , πk/(k+1)

)
(1)

where, k represents the rank of the criteria.
Step 3. Computation of Final Weight Coefficients: The final phase involves calculating the definitive values

of the weight coefficients for each criterion (ωj). This calculation is represented by the following equation:

minΩ

s.t.∣∣∣∣ ωj(k)

ωj(k+1)
− πk/(k+1)

∣∣∣∣ ≤ Ω,∀j∣∣∣∣ ωj(k)

ωj(k+2)
− πk(k+1) ⊙ π(k+1)(k+2)

∣∣∣∣ ≤ Ω,∀j

n∑
j=1

ωj ,∀j

ωj ≥ 0,∀j

(2)

where, j represents the number of criteria, and Ω denotes the deviation from full consistency (DFC).

2.2 EWAA Operator

The EWAA operator is a significant tool in decision-making processes, particularly when aggregating expert
opinions. The fundamental concept of this operator, presented in the study [43], originates from the fuzzy Einstein
weighted arithmetic average (FEWAA) operator. This operator’s unique feature is its ability to treat each distribution
of a triangular fuzzy number as a crisp value, facilitating their effective aggregation.

EWAA {χ1, χ2, . . . , χj} =

e∑
j=1

χe
j

∏e
j=1

(
1 + f

(
χe
j

))λ −
∏e

j=1

(
1− f

(
χe
j

))λ∏e
j=1

(
1 + f

(
χe
j

))λ
+
∏e

j=1

(
1− f

(
χe
j

))λ (3)

where, X = {χ1, χ2, . . . , χj} represents a set of data that needs to be aggregated, E = {E1,E2, . . . ,Ee} represents
the set of experts, e – the total number of experts, λ = 1/e when the competence coefficients of the experts (ωe) are
equal, and λ = ωe when the competence coefficients of the experts are different.

2.3 COPRAS-G Method

The complex proportional assessment (COPRAS) method, initially introduced in the 2004 paper titled “Housing
credit access model: The case for Lithuania” [44], has since been widely applied in various research domains, as
evidenced by studies [45–50]. Over time, the method has been enhanced by integrating theories adept at handling
uncertainties and inaccuracies, such as Fuzzy [51–54], Rough [55–58], and Grey [59–62].

Step 1: Formation of the Initial Decision Matrix (⊗Xij). This matrix is created by aggregating the decision
matrices from all experts (E = {E1,E2, . . . ,Ee}) using the EWAA operator, as per Eq. (3).
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Step 2: Normalization of the Initial Matrix. The initial matrix is normalized using Eqs. (4) and (5), resulting
in a normalized matrix:

nij =
2xij∑m

i=1 xij +
∑m

i=1 x̄ij
(4)

n̄ij =
2x̄ij∑m

i=1 xij +
∑m

i=1 x̄ij
(5)

Thus, a normalized matrix (⊗Nij) is obtained.

C1 C2 . . . Cj

⊗Nij =

A1

A2

. . .
Ai


⊗n11 ⊗n12 . . . ⊗n1j

⊗n21 ⊗n22 . . . ⊗n2j

. . . . . . . . . . . .
⊗ni1 ⊗ni2 . . . ⊗nij

 (6)

Step 3: Formation of Weighted Grey Normalized Matrix (⊗Vij). This step involves creating a weighted grey
normalized matrix, as per Eq. (7):

C1 C2 . . . Cj

⊗ Vij =

A1

A2

. . .
Ai


⊗v11 ⊗v12 . . . ⊗v1j
⊗v21 ⊗v22 . . . ⊗v2j
. . . . . . . . . . . .
⊗vi1 ⊗vi2 . . . ⊗vij

 (7)

where, ⊗vij = ⊗ωj • ⊗Nij .
Step 4: Defining the Relative Importance of Alternatives (Qi). The relative importance of alternatives is

determined using Eqs. (8)-(10):

Qi = Pi +

∑m
i=1 Ri

Ri

∑m
i=1

1
Ri

, i = 1, 2, . . . ,m (8)

where,

Pi =
1

2

n∑
j=1

(
vij + v̄ij

)
, i = 1, 2, . . . ,m; j = 1, 2, . . . ,n applies only to Benefit type criteria (9)

Ri =
1

2

n∑
j=1

(
vij + v̄ij

)
, i = 1, 2, . . . ,m; j = 1, 2, . . . ,n applies only to Cost type criteria (10)

Step 5: Calculation of the Utility Degree of Alternatives (Ui). The utility degree of each alternative is
calculated using Eq. (11):

Ui =
Qi

Qimax

× 100%, i = 1, 2, . . . ,m (11)

Step 6: Ranking of Alternatives. Alternatives are ranked based on the value of Ui, where a higher value
indicates a better option.

3 Results

Implementing the MCDM model delineated in Figure 1, the initial phase of the process commenced with its
first step. This involved identifying five general criteria crucial for defining the optimal COA, as corroborated by
references [30, 63] and displayed in Table 1. These criteria were methodically ranked based on their importance, in
descending order from the most to the least significant, a ranking upon which the panel of experts reached consensus.
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Table 1. Criteria for selecting an optimal COA

Criterion Criterion Description

C1− The time required
to complete the task

This criterion focuses on the necessity of accomplishing each task
within the shortest possible time or within a predetermined duration. It is

quantitative and categorized as a Cost type, measured in hours.

C2− Risk level

Risk represents the likelihood and impact of events causing harm to
valuable resources. In combat operation planning, it’s essential to consider the

potential consequences on engaged resources, encompassing personnel, weaponry,
and other combat systems. This criterion is linguistic and classified as a Cost type.

C3− Required resources
The execution of tasks demands the mobilization of specific forces and combat assets.

However, the overarching aim of each operation is to minimize resource utilization.
This criterion is linguistic and falls under the Cost type.

C4− Expected effects

This criterion relates to the outcomes envisaged by the operation’s objectives.
It evaluates the extent to which each COA addresses the assigned tasks, considering

factors like completeness, partial fulfillment, and other positive impacts. It is
linguistic and categorized as a Benefit type.

C5− Reliability
Reliability pertains to the probability of fully accomplishing the task
and achieving the expected outcomes through a specific COA. This

criterion is linguistic and identified as a Benefit type.

Table 2. Relationships between criteria defined by experts

E1 E2 E3 E4 E5

π1/2 1.10 1.20 1.40 1.10 1.30
π2/3 1.30 1.50 1.50 1.20 1.50
π3/4 1.50 1.70 1.60 1.50 1.70
π4/5 1.60 2.00 1.70 1.70 2.00

Table 3. Values of criteria weights calculated for each of the experts

C1 C2 C3 C4 C5

E1 0.2519 0.2290 0.1938 0.1679 0.1574
E2 0.2787 0.2322 0.1858 0.1639 0.1393
E3 0.2782 0.1987 0.1855 0.1739 0.1637
E4 0.2502 0.2274 0.2085 0.1668 0.1472
E5 0.2838 0.2183 0.1892 0.1669 0.1419

After the establishment of the criteria pivotal for selecting the optimal COA, the process progressed to Step
2 of Phase 1, focusing on the determination of the criteria’s weight coefficients. This calculation was conducted
utilizing the FUCOM, with the involvement of five field experts (E = {E1,E2,E3,E4,E5}). Each expert assessed
the criteria, and the interrelations defined between adjacent criteria are delineated in Table 2.

Employing Eq. (2), the weight coefficients for the criteria were computed for each expert, with the results
presented in Table 3.

Upon the determination of criteria weights by each expert, the next step involves aggregating these individual
results to ascertain the final values of the weight coefficients for the criteria. This aggregation was achieved by
utilizing the EWAA operator, specifically through the application of Eq. (3). In this process, the competence
coefficients of the experts are denoted as ωe = (0.20, 0.18, 0.22, 0.22, 0.18). The aggregation led to the derivation
of the final weight coefficients for each criterion, which are detailed in Table 4.

Table 4. The final values of the weight coefficients of the criteria (ωj)

Criterion ωj

C1 0.2679
C2 0.2207
C3 0.1929
C4 0.1680
C5 0.1505
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Having determined the weight coefficients, the focus shifts to Phase 2, which involves selecting the optimal COA
from a range of feasible alternatives. This selection process employed the COPRAS-G method, a variant of the
COPRAS method integrated with Grey theory. The first step in this phase is to define the alternatives (COAs). While
in practical scenarios the number of COAs is typically limited to a manageable count, often around three as suggested
in the study [1], this research adopts a model featuring five alternatives A = {COA1,COA2, . . . ,COA5}. This
approach allows for a more comprehensive presentation of the results and facilitates the application of this model in
evaluating multiple COAs for military staff training, education, and future research.

Subsequently, each of the five experts is required to construct their own decision-making matrix. This involves
evaluating each alternative against every criterion. While Criterion C1 is quantitative in nature, the others are
linguistic. To effectively quantify these linguistic criteria, Grey theory is applied to develop linguistic scales. These
scales are illustrated in Table 5.

Table 5. Linguistic descriptors

C2 C3 C4 C5 Grey Number

High (H)
Very large resources

(VLR)
Fully with other

positive effects (FO)
Absolutely reliable

(AR) [9,10]

Significant (S) Large resources
(LR) Fully (F) Very reliable

(VR) [6,9]

Moderate (M) Medium resources
(MR)

Partially with other
positive effects (PO) Reliable (R) [3,6]

Low (L) Small resources
(SR) Partially (P) Partially reliable

(PR) [1,3]

The decision matrices, as formulated by each of the experts, are compiled and displayed in Table 6.

Table 6. Decision matrices of experts

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

E1

COA1 8.0 S SR F R

E3

COA1 8.0 S SR F VR
COA2 8.5 M MR F VR COA2 9.0 S LR PO VR
COA3 8.0 S SR FO R COA3 8.0 M MR F VR
COA4 9.0 S MR F VR COA4 9.0 S MR F R
COA5 7.5 M MR PO R COA5 8.0 M MR PO R

E2

COA1 7.5 S SR PO VR

E4

COA1 8.0 S SR PO VR
COA2 8.0 S SR F R COA2 8.5 S MR F VR
COA3 8.0 S MR F R COA3 8.0 S MR F R
COA4 8.5 S MR F R COA4 8.5 S MR F R
COA5 7.0 S MR PO R COA5 8.0 S MR PO R

E5

COA1 8.5 S MR PO R
COA2 8.5 M MR F R
COA3 8.0 S SR F R
COA4 8.5 S MR PO VR
COA5 8.0 M SR F VR

To prepare the input data for the COPRAS-G method, the individual decision matrices from each expert (as
shown in Table 6) must be aggregated. This aggregation is conducted using the EWA) operator, as per Eq. (3). It’s
important to note that the competence coefficients of the experts for this aggregation are consistent with those used
earlier in defining the weight coefficients of the criteria. Following this aggregation process, the consolidated initial
decision matrix is obtained, the details of which are presented in Table 7.

With the assembly of the initial decision matrix, the first step in applying the COPRAS-G method is completed.
The process then progresses to the second step, which involves creating a normalized matrix (⊗Nij). This nor-
malization is achieved using Eqs. (4) and (5). The results of this step, showcasing the normalized matrix, are
comprehensively detailed in Table 8.

In the third step of the COPRAS-G method, Eq. (7) is employed alongside the weight coefficients of the criteria
(as outlined in Table 4) to calculate the weighted normalized matrix (⊗Vij). The outcomes of this calculation,
detailing the weighted normalized matrix, are presented in Table 9.

In the fourth step of the COPRAS-G method, the relative importance of the alternatives (Qi) is determined. This
is achieved by applying Eqs. (9)–(11). The results of these calculations, which establish the relative importance of

153



each alternative, are displayed in Table 10.

Table 7. Initial decision matrix (⊗Xij)

C1 C2 C3 C4 C5

COA1 8.0005 8.0005 6.0000 9.0000 1.3844 3.5586 4.2832 7.2732 4.8777 7.8710
COA2 8.5205 8.5205 4.8777 7.8710 3.3397 6.1456 5.3504 8.3470 4.9373 7.9308
COA3 8.0000 8.0000 5.3504 8.3470 2.2569 4.8777 6.6101 9.2007 3.6818 6.6709
COA4 8.7103 8.7103 6.0000 9.0000 3.0000 6.0000 5.4690 8.4661 4.1623 7.1527
COA5 7.7208 7.7208 4.2228 7.7514 2.6479 5.4690 3.5586 6.5493 3.5586 6.5493

Table 8. Normalized decision matrix (⊗Nij)

C1 C2 C3 C4 C5

COA1 0.1954 0.1954 0.1754 0.2631 0.0716 0.1840 0.1316 0.2234 0.1700 0.2743
COA2 0.2081 0.2081 0.1426 0.2301 0.1727 0.3178 0.1644 0.2564 0.1721 0.2764
COA3 0.1954 0.1954 0.1564 0.2440 0.1167 0.2522 0.2031 0.2826 0.1283 0.2325
COA4 0.2127 0.2127 0.1754 0.2631 0.1551 0.3102 0.1680 0.2601 0.1450 0.2493
COA5 0.1885 0.1885 0.1234 0.2266 0.1369 0.2828 0.1093 0.2012 0.1240 0.2282

Table 9. Weighted normalized matrix (⊗Vij)

C1 C2 C3 C4 C5

COA1 0.0523 0.0523 0.0387 0.0581 0.0138 0.0355 0.0221 0.0375 0.0256 0.0413
COA2 0.0557 0.0557 0.0315 0.0508 0.0333 0.0613 0.0276 0.0431 0.0259 0.0416
COA3 0.0523 0.0523 0.0345 0.0538 0.0225 0.0487 0.0341 0.0475 0.0193 0.0350
COA4 0.0570 0.0570 0.0387 0.0581 0.0299 0.0598 0.0282 0.0437 0.0218 0.0375
COA5 0.0505 0.0505 0.0272 0.0500 0.0264 0.0545 0.0184 0.0338 0.0187 0.0343

Table 10. Values of the importance of the alternatives (Qi)

P i Ri Qi

COA1 0.0633 0.1254 0.2107
COA2 0.0691 0.1442 0.1974
COA3 0.0679 0.1321 0.2079
COA4 0.0656 0.1502 0.1887
COA5 0.0526 0.1296 0.1953

In the final stage of the COPRAS-G method, the degree of utility for each alternative (Ui) is defined. This
is accomplished by utilizing Eq. (11). Based on the values derived from this equation, the final ranking of the
alternatives (COAs) is determined. The calculated utility degrees and the corresponding ranks of the alternatives are
presented in Table 11.

Table 11. Values of the degree of alternatives (Ui) and final rank of alteratives

Ui Rank
COA1 100.0000 1
COA2 93.6469 3
COA3 98.6650 2
COA4 89.5409 5
COA5 92.6517 4

From the data presented in Table 11, it is evident that the optimal alternative is COA1, whereas COA4 is
deemed unsuitable as a solution for this problem. To further validate the reliability and robustness of the proposed
methodology, a sensitivity analysis is conducted in the subsequent section of the article.
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4 Rank Reversal Test and Sensitivity Analysis

Following the guidelines set out in the study [64], a rank reversal test was conducted to evaluate the robustness of
the methodology when faced with the removal of one or more alternatives. This test aimed to observe any potential
impact on the final ranking of the alternatives. The outcomes of this test are documented in Table 12. The results
indicate that the methodology exhibits stability, as there is no significant alteration in the ranking order upon the
exclusion of alternatives.

Table 12. Rank reversal test results

COA1 COA2 COA3 COA4 COA5

Initial rank 1 3 2 5 4
Rank without A4 1 3 2 4

Rank without A4 and A5 1 3 2
Rank without A4, A5 and A2 1 2

Regarding sensitivity analysis, various approaches can be adopted. One such approach, as referenced in the
studies [4, 15, 17], involves analyzing the sensitivity of the methodology to changes in the weight coefficients of
the criteria. For this specific analysis, 20 different scenarios were constructed. The first scenario assigns equal
weights to all criteria. In subsequent scenarios, the weight distribution is altered by reducing the weight of the most
influential criterion and redistributing it equally among the other criteria. This approach and its resulting impact on
the decision-making process are illustrated in Figure 2.

Figure 2. Scenarios of changes in criteria weights

After applying the scenarios in the COPRAS-G method, the ranks of the alternatives are obtained, which are
presented in Figure 3.

Figure 3. Rankings of alternatives obtained by applying scenarios

From the insights gleaned from Figure 3, it is evident that the ranking of the optimal alternative, COA1, remains
constant, while COA4 consistently occupies the lowest position, reinforcing its status as an inadmissible option.
This consistency in ranking, particularly under varied scenarios, underscores the robustness and stability of the
methodology. The subsequent section of the text is devoted to a comparative analysis, examining the output results
of the methodology in relation to other decision-making approaches.
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5 Comparative Analysis

The comparative analysis entails juxtaposing the outcomes of the proposed methodology with those of other
established methods, a crucial step for model validation [65–67]. This comparison encompasses results from several
methodologies, including Grey EDAS (Evaluation Based on Distance from Average Solution) [68], Grey MARCOS
(Measurement of Alternatives and Ranking according to the Compromise Solution) [69], Grey OCRA (OCcupational
Repetitive Action) [70], COPRAS [44], and Fuzzy COPRAS [71]. The ranking of alternatives as determined by each
of these methods, along with the proposed methodology, is depicted in Figure 4. An examination of these results
reveals a consistent trend across the different methods. There is a minor deviation observed in the rankings given by
the Fuzzy COPRAS method, particularly for the lowest and second-lowest ranked alternatives. Notably, alternative
COA1 consistently secures the top rank in all methodologies, reinforcing the validity of the proposed model.

Figure 4. Rankings of alternatives obtained by other MCDM methods and COPRAS-G

6 Conclusions

In the contemporary military milieu, decision-making regarding the optimal COA in combat operations presents
a formidable challenge. This research is dedicated to enhancing military decision support through the integration of
advanced decision analysis methods. The initial phase, crucial in its scope, involved identifying key criteria for the
evaluation and ranking of various COAs, ensuring that decisions encompass all pertinent factors.

Subsequently, the determination of weight factors for these criteria was undertaken, utilizing the FUCOM. This
method, reliant on expert assessments, gauged the relative significance of each criterion. A pivotal aspect of this
research was the meticulous aggregation of expert opinions through the EWAA operator. This step ensured a
consensus in criteria evaluation, affirming that weight coefficients were grounded in collective expert judgement in
the realm of military decision-making.

Following the successful definition of criteria weights, the selection of the optimal COA was addressed using
the COPRAS-G method. This method’s consideration of uncertainty and inaccuracies is vital in the fluid and
unpredictable context of military operations. Additionally, expert ratings were aggregated using the EWAA operator
to foster consensus and minimize individual biases in the final decision.

The results of this study underscore the developed model’s consistency, stability, and reliability, a significant
achievement that instills confidence in COA selection. The model was subjected to rigorous testing, including
rank reversal tests, sensitivity analyses regarding weight factor variations, and comparative analyses with other
methodologies. These evaluations uniformly corroborated the model’s effectiveness and efficiency as a decision-
making tool in military contexts.

In summary, this paper constitutes a noteworthy contribution to military decision-making and decision science.
By leveraging advanced analytical techniques and incorporating expert opinions, it offers a systematic approach to
COA selection. Extensive testing and validation underscore its practical applicability. Military leaders can utilize
this methodology to enhance decision-making, leading to more effective military operations.

In an era where precision and expediency are paramount in decision-making, the described methodology markedly
enhances military leaders’ capacity to navigate the complexities and uncertainties of modern military conflicts with
confidence and accuracy. This contributes significantly to the success of military operations and the safeguarding of
resources.

A notable limitation of this study lies in the exclusion of the “civilian aspect” in criteria definition, particularly the
impact of COAs on civilian populations, material and cultural assets, and the environment. Addressing this aspect
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is an imperative for future research, potentially incorporating methods and theories adept at managing imprecision
and uncertainty in decision-making processes.
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48–64, 2023. https://doi.org/10.52602/mtl.1220345
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[27] D. Božanić, S. Karović, and D. Pamučar, “Adaptive neural network for the selection of course of action as a
prerequisite of the cost price estimate of an offensive army operation,” Vojno delo, vol. 66, no. 4, pp. 148–162,
2014. https://doi.org/10.5937/vojdelo1404148b
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