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Abstract: In the realm of decision-making, the delineation of uncertainty and ambiguity within data is a pivotal
challenge. This study introduces a novel approach through complex intuitive hesitant fuzzy sets (CIHFS), which offers
a unique multidimensional perspective for data analysis. The CIHFS framework is predicated on the concept that
membership degrees reside within the unit disc of the complex plane, thereby providing a more nuanced representation
of data. This method stands apart in its ability to simultaneously process and analyze data in a two-dimensional
format, incorporating additional descriptive elements known as phase terms into the membership degrees. The study
is bifurcated into two primary phases. Initially, a possibility degree measure is proposed, facilitating the ranking
of numerical values within the CIHFS context. Subsequently, the development of innovative operational rules and
aggregation operators (AOs) is undertaken. These AOs are instrumental in amalgamating diverse options within
a CIHFS framework. The research dissects and deliberates on various AOs, including weighted average (WA),
ordered weighted average (OWA), weighted geometric (WG), ordered weighted geometric (OWG), hybrid average
(HA), and hybrid geometric (HG). Furthermore, the study extends to the realm of multi-criteria decision making
(MCDM), where it proposes a methodology utilizing intricate intuitive and fuzzy information. This methodology
emphasizes the objective management of weights, thereby enhancing the decision-making process. The study’s
findings hold significant implications for the optimization of resources and decision-making strategies, providing a
robust framework for the application of CIHFS in practical scenarios.

Keywords: Complex intuitive hesitant fuzzy sets (CIHFS); Multi-criteria decision making (MCDM); Aggregation
operators (AOs)

1 Introduction

The field of MCDM is concerned with the formulation and resolution of decision and planning issues in which
many criteria are taken into consideration concurrently [1]. This subject of decision making (DM) has piqued the
attention of a large number of scholars, who have used a variety of methodologies to study it [2]. The DM procedure
has always provided precise results without checking for errors. It is common practice for MCDM issues to call
for evaluation information on the criteria and the alternatives to be provided in the form of a fuzzy set (FS) [3],
intuitionistic fuzzy set (IFS) [4], hesitant fuzzy sets (HFS) [5], complex intuitionistic fuzzy sets (CIFS) [6], or
other extended sets. In order to more precisely describe the uncertainty and ambiguity in the data, a CIHFS has
been developed as a subset of the intuitionistic hesitant fuzzy sets (IHFS) [7]. The membership degree and non-
membership degree were used to draw each element in these sets, with the goal of ensuring that the total of these
factors does not exceed one [8]. These studies show that there are three essential steps in any DM process, which
are: (1) Methods for obtaining data interpretation standards; (2) Method(s) for compiling an aggregate preference
value by adding up the scores assigned to each attribute; (3) How to order to discover the best option(s).

As a result, this study’s objective is to come up with a creative DM strategy for MCDM problems by combining
CIHFS with strong data ranking using AOs and a probability density measure (PDM). A lot of researchers have
come up with different algorithms to deal with MCDM problems using the FS [9] and IFS [10] theories. These

https://doi.org/10.56578/atams020101


https://www.acadlore.com/journals/ATAMS
https://crossmark.crossref.org/dialog/?doi=10.56578/atams020101&domain=pdf
https://orcid.org/0000-0001-9873-0682
https://orcid.org/0000-0002-8616-8829
https://orcid.org/0000-0002-0243-3868
https://doi.org/10.56578/atams020101
https://doi.org/10.56578/atams020101

algorithms try to use the imperfect information that is available in the decision-making processes (DMPs). Under it,
AO stands for one of the basic rules for combining data using a class of mathematical functions. Therefore, Xu and
Yager [11] provided averaging and geometric (AG) AOs for intuitionistic fuzzy numbers within the context of IFS
(IFNs). Garg and Kumar [12] added the degree of hesitance between MD and NMD pairings to the study, which
led to the granting of AG AOs. In this study, Gou et al. [13]’s IFNs’ exponentially expanding operating regulations
were devised. According to Ye [14], a hybrid AO is formed when an aspect type parameter, an averaging operator,
and a geometric operator are combined. Fan et al. [15] presented the AOs and operational regulations necessary to
address the MCDM challenge as it pertains to IFNs. Beyond this, Huang [16] provide other experiments using AOs
to address the DMPs in the IFS setting. In addition, a score function, or PDM, is required to determine the values
before ranking the provided alternatives. Because of this, researchers have come up with a wide range of ways to
measure the process in the IFS environment. Xu and Yager [11], for instance, published the IFN scoring function.
The PDM approaches for ranking the IFNs were provided by Wei and Tang [17]. Wan and Dong [18] introduced a
PDM-based approach to addressing the MCDM issue. Wei and Tang [17] proposed a method for ranking the IFNs,
while Garg and Rani [19] presented an enhanced PDM that addresses the problems with previous methods. Several
current PDMs were compared to IFSs and interval-valued PDMs by Dammak et al. [20]. Blanco-Mesa et al. [21]
provide a thorough analysis of the AOs, and here the authors provide a concise summary of their findings. Extensive
studies and DMPs have shown that their use is limited to dealing with the uncertainty in the data itself but not with
its oscillations at any given point in time. Data collected through “medical research, a database for biometric and
face identification,” is nevertheless subject to constant evolution as time progresses. So, Ramot et al. [22] came up
with the idea of the complex fuzzy set (CFS) [23] to deal with these kinds of problems. They did this by making
MD’s domain bigger from a real subset to the unit disc of the complex plane. This article introduces the fundamental
characteristics of CFS by Ramot et al. [24]. The CFS and Pythagorean FS were compared and contrasted by Dick et
al. [25].

This article is centered on the CIHFS since it has been shown to be the most effective and helpful technique for
dealing with the ambiguity and fuzziness inherent in real-world MCDM challenges. As a result, we created a novel
MCDM framework that incorporates CIHFS as the preference data. The management of decision-making has been
receiving more and more attention as of late, prompting this essay, in which the challenge of choosing among viable
MCDM strategies is examined from a sustainability viewpoint. Even though several MCDM techniques have been
developed for CIHFS, no research has been released on how to evaluate and choose the best DM option using the
expanded framework with aggregation operators for this purpose. This article proposes a unique paradigm to deal
with this problem by addressing the ambiguity and unpredictability of decision experts (DEs)’ views. The following
are some of the contributions made by this article: (1) Developed a brand-new method known as CIHFS and applied
it to the IHF environment; (2) A new formula was made and used to figure out the weights of the DEs in a CIHF
setting; (3) A technique known as agreegations, which is based on CIHFS, is used in order to assess the attribute
weights; (4) Presented a real-life case study of choosing an alternative for managing healthcare waste in the context
of CIHFS to show that the proposed approach is useful for aggregation operators. The case study focused on picking
an alternative for managing healthcare waste; (5) Following this, a comparison analysis and a sensitivity analysis are
carried out in order to confirm the result that was produced by using the newly proposed method.

The remaining portions of this article are structured as described below. In Section II, the fundamental ideas
of CIHFS are laid forth. In Section III, the aggregation operators for CIHFS are discussed, along with an example.
Within the context of the CIHFS, Section IV covers the algorithm for the aggregation operator technique. The
established technique is put to use in a case study of choosing a suitable healthcare waste management option in the
context of Section V, which proves the applicability and power of the given methodology. In addition, Section VI
contains the contrastive analysis and sensitivity tests that prove the technique described is consistent and reliable.
The article is finished with its seventh and final section.

Since CFS does not provide any knowledge of the object’s discords, the resulting approaches are always
constrained [26]. To broaden the scope of the CIFS paradigm, the complex-valued MD of the unit disc was
added.

As an extension of the IHFS, the CIHFS uses the amplitude term to characterize the scope of an object’s
properties, just as the time period of the phase characterizes its periodicity. CIHFS is unique from conventional
IHES theories due to the use of these phase terms. With IHFS theory, data is handled by compensating just for the
degree of possessions, while the periodicity component is disregarded altogether.

2 Preliminaries

Definition 1. A FS form:

A={<® () >|ze X}



with a condition 0 < @ 4(z) < 1, where ® 4(x) shows the membership of Ain X. Throughout this article, the
collection of all Fuzzy Numbers on X is denoted by F'S(.X).
Definition 2. A CFS A is of the form:

A={<® ) >z ecX}

where, @ ;(z) = T ;().8*"(r4(®) shows the complex membership in the form of polar coordinate, where,

L ;(x), pr4(z) € [0,1]. )
Definition 3. A IFS A is of the form:

A={<®4(z), 5(z) >| z € X}

where, ® 4 (), A4 (z) : X — [0,1] shows the degree of membership and degree of non membership of x in A and
its value lies between zero and one sach that ® ;1 + A ; < 1 and the pair < ® 5, A ; > is called IFN.

Definition 4. A HFS [27] is a set that, when applied to a given set, x, and defined using the function X, produces
a subset that is comprised of the values 0 and 1. HFS is expressed as a mathematical symbol for clarity:

é:{@ﬂ@@»|x€X}

where, h (x) is a collection of numbers in [0, 1] that represent the potential degrees of membership of the element
z € X to the set &. H is the collection of all HFEs, and h = hg (x) is a hesitant fuzzy element (HFE). Several
ope{ati0n§ on the three HFEs fz, le, and 712 have been defined as follows:

(D h1Uha =Uy e yoeh, max{n, o}

@ b e = Uy, g, gaeh, min {en, 42}

(3) b= U, {1 =}
Definition 5. A CHFS G is of the form:

G ={(z,&(2))|x € X}

where,

#
gf;, (.’E) _ U {qbk (x)éi27r(wd>k- (T))} _ {¢1 éi271'(w¢1)7 ¢2'€'z27r(w¢2)7 d)s éz?ﬂ(w¢3)7 . ¢# ézzﬂ(w¢#)}
k=1
represented the complex-valued truth grade which is subset of unit disc in complex plane with a condition ¢, , we, €
[0, 1].
Definition 6. A CIHFS F'is of the form:

g2, (@) 72, )y

A ()€

J

F={{z,¢ (2)

La2m(we; ) La2m(wa; ) . .. . .
where, §; (v)é B and A (x)é hs” are the complex hesitant conditional membership and non-membership
J J

grades that 0 < {max <§h ) + min ()\,:L (x))} < 1land 0 < {max (wgz (a:)) + min (w,\}; (a:))} < 1 such that
J J ) 19
&i s A s we, ,wy, are the subset of the unit interval [0, 1].
J J J a2

x € X}

. La2m(we; ) La2m(wa; ) e .
For simplicity we express [’ = {5;376 ks 7)\;l7e hy } be the complex intuitionistic hesitant fuzzy
number (CIHEN).
72 - .12 -
Let F, = {fﬁ](l‘)é W(ws’w), Ah, (x)é ﬂ(wkha)} (= 1,2) be any two CIHFNs, then
(¢ (b ) 2w (max (wd)i; ’w‘i’jé >>
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is called a accuracy function.

3 Aggregation Operators for Complex Intuitionistics Hesitant Fuzzy Information

Yager [28] presented ordered weighted averaging aggregation operations, which have gained increasing interest
since their introduction. Below is a list of CIHFS aggregation providers:
. Li2m(be, ) La2m(wa, )
For a collection of CIHFS F), = {{;L] (x)é EIERYS (z)é "7} (9 =1,2), then
1. The complex intuitionistic hesitant fuzzy weighted averaging (CIHFWA)operator:
n
CIHFWA(Fy, Fy, ... F,) = P (@,F)

J=1

(1-T0 (1 -Tr)™) & <1_ o (1_%%)1@)

“)

U )
B @y 2T H_”'zl(% )
Dy €€h Py €80y Pk, €ER,, Hynzl <¢F%) € ’ k
wd)iél Ew€i11 Md)%z €w§i12 ...wd,kn EUJ&EH
where, @ = (w1, @3, ..., @,)" is the weight vector of Fy=(y=12.n)withw, € [0,1]and 3.7 w, = 1.
2. The complex intuitionistics hesitant fuzzy weighted geometeric (CIHFWG) operator:



CIHFWG (F\, Fs, ..., F,) = ® (F=) =
J=1

“

e () 27 ()
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where, @ = (@1, @, ..., w,) " is the weight vector of Fy=(y=12.n)withw, € [0,1]and 3.7, w, = 1.
3. The complex intuitionistic hesitant fuzzy ordered weighted averaging (CIHFOWA) operator:
CIHFOWA(Fy, Fy, ... F,) = @ (w,Fs(,))

J=1

o H;L:I (1 B FFB'R’:)WJ éﬂﬂ(lin-?:l (17“’1“1-“;3@ )wj) )
= U T 22w | <W¢F% ) 7

n
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n

where, Fg is the jth largest 3, = nw Fi (1 = 1,2,...,n) , @ = (w1, wa, ..., wn)T with ww, € [0,1] and Z;L:1 w, =
1. is the vector that is related to aggregation such that @, € [0,1],7=1,2,...,n, and 2?21 w, = 1.
4. The complex intuitionistic hesitant fuzzy ordered weighted geometric (CIHFOWG) operator:

CIHFOWG (Fy, Fy, ..., F,) = é) (Féﬂ(b)
g=1

“3
W, "5277 H;Lzl (wFFB" )
k

| Urs) € ’
Y ()
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where, Fjg is the jth largest 3, = nw Fi (1 = 1,2,...,n) , @ = (w1, wa, ..., wn)T with ww, € [0,1] and Z;L:1 w, =
1. is the vector that is related to aggregation such that @, € [0,1],7=1,2,...,n, and 2?21 w, = 1.
5. The complex intuitionistic hesitant fuzzy hybrid averaging (CIHFHA) operator:

n
CIHFHA(F\, Fy, ... F,) =P (wJF5(1)>

J=1
“
@, ;277(1 ;lzl (1 wp; ) )
n - B
1-1T, 1_F13 é k ,
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@
U @ zzﬂH§;1 we
Py €60y Piy EChy P, €y T | ¢ 8 Fay
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kq h1 ko ho ken hn Fﬁjé

where, . is the jth largest F} = nw F; (1=1,2,....,n), w = (w1, wa, ...,wn)T is the weight vector of F, =
By

(7=1,2.n)withw, € [0,1],7=1,2,...,n, E;;l w, = land w = (w1, wa, ..., is the vector that is related
to aggregation such that w, € [0,1],7=1,2,...,n, and Z?zl w, = 1.
6. The complex intuitionistic hesitant fuzzy hybrid geometric (CIHFHG) operator:

n
CIHFHG (Fy, Fa, .. Fy) R (F;;('j)) -

J=1



U
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where, e is the gth largest F; = nwF; (1=1,2,...,n), w = (w1, @2, ..., wn)T is the weight vector of F;, =
8y

(7=1,2..n)withw, € [0,1],7=1,2,...,n, E;l:l w, =landw = (wy, wo, ...,wn)T is the vector that is related
to aggregation such that @, € [0,1],7=1,2,...,n, and Z?:l w, = 1.
Example 1. Let

F = <<0.1~ég27r(0.2),0.7é;27r(0.3)’0.4é;27r(0.16667)) ’ (0‘3&2#(0.1)7O’2é;2w(0.8)>>

F2 — <(O.3é;2‘n’(0.2)7 0.5'6';271'(0.4)) ; (O.Ié;Qﬂ'(O.l)’ 0.2é527'r(0.8)7 056527T(04))>

be two CIHFS and @ = (0.4,0.6)" be the corresponding weight vector of F,(3=1,2).

2
CIHFWA(Fy, Fy) = P (w,F)) = = {&, (@), X, (2)}
=1
U (11, - 1= 0 ),
= @y
¢kl €5B1,¢k26552..4¢kn€£ﬁn (H;ll ((bk) '6'527‘— H]:l (w¢jé) >
w¢k1 Ewgﬂl ,w¢k2 €w§ﬁ2 ...w(%" Ewgﬂn

12#{1 (1-0.2)04 % (1— 02)06}

0.6 . sz{l (1-0.2)0-4 % (1 04)06}

12#{1 (1-0.3)0-4 5 (1 04)06} )

1) x (1-03)7

1—01) X (1—05)
) ( )O 21\—{1 (1-0.3)0-4 5 (1— 02)06}
7)< ( )

x (1 — 0 5 0.6 .
n ( )04 5 ¢ 106

1_(1_04)04X(1 )06 a2 {1 1-0.16667)04 x (1—0.2 }7

0.6 ..527’{1—(1—0.16667)0-4X(1_0_4)0.6}

1—(1-04)""%x(1-05)"%
0.30-4 x 0.10-6) ¢
0.304 x 0.206) &

(0 )€
( )€
(0304><0506)e
( )€
( )€

0.204 x 0,106
0.204 x 0.206) ¢
I (0.204 x 0.506) e‘“(o'

0_2260'6';277(0.2000)’ 0_3675é;27r(0.3268) , 0-5012'67271'(0.2416)

< ,0.5924¢:27(0-3618) () 3419¢27(0.1881) () 4629¢i2m(0.3168)

= 0.1552&,2#(0.1000), 0.2352(5;2#(0.3482), 0'4076'6'5277(0.2297)
< , ().1320('3'527&'(0‘2297)7 0.2000652ﬂ(0'8000), 0.3466¢727(0.5278) >

S@) :( {%{%Z?:lffz( )+ Zl_l %(ws" (w))}}x{%{ 21_1)\ 41 Zfl a2m (W (z))}} )




1 ( 0.2260 + 0.3675 + 0.5012+ > N
1) 6\ 0.5924 4 0.3419 + 0.4622
2\ ( 0.2000 + 0.3268 + 0.2416+
6\ 0.3618+0.1881 + 0.3168
0.1552 + 0.2352 + 0.4076+
0.1320 + 0.2000 + 0.3466
1 ( 0.1000 + 0.3482 + 0.2297+
6 ( 0.2297 + 0.8000 + 0.5278 )

by using score function = 0.1064

N[
o=

Example 2. Let

F = <<0.1~e-g27r(0.2)’0.7(-,:;;2#(0.3)’0'4é527r(0.16667)) 7 (0.3&27:(0.1)70.2éi2w(0.8))>

Py = (0,320, 05652700 ) | (0152700 0.26527(09), 0, 5:27(0) ) )

be two CIHFS and @ = (0.4,0.6)" be the corresponding weight vector of F,(3=1,2).
By Definition 2.7, we calculate the score values of I} and F5:

{ { (0.1+0.7+0.4) + 2 1 572m(0.2+0.3+0.16667) }}x
{3{5¢( 03+02)+ 1gs2m(0.140.8)11

{3{3(03+0.5)+ ’e’ﬂ”<02+0~4>}}><
{% 01+02+05)+ 1 727 (0. 1+O.8+0.4)}}
(

Fy) = 0.1089, S (Fy) = 0.1225

(R = ( {

Since S (F3) > S (F1), then

1
2
S

Fs,, =S (Fy) = <(0.3éf2”(0'2), 0.5éi2”<0~4>) : (0.1@?2”“11), 0.26727(0:8), 0.5éf2ﬂ<0-4))>

Fay = S (F1) = <(0.1é52w(0.2)7O.7~e~;2ﬂ-(0.3)70.4~e~;27r(0.16667)) : <0.3é;27r(0.1)’0-2é527r(0.8))>

n

CIHFOWA(F\,Fs, ... F,) = P (=,F5(,))
J=1
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0.1861¢:27(0-2000) () 579()z27(0-2616) () 361827 (0-1802)

< ,0.1000£727(0-2870) [ 5344¢727(0-3419) ' 2944¢:27(0-2693)
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0.1861 4 0.5790 + 0.3618+

0.3482 + 0.8000 + 0.6063

1 6 0.1000 + 0.5344 + 0.2944 y
2 1 ( 0.2000 + 0.2616 + 0.1802+
6 0.2870 + 0.3419 + 0.2693 . Lo
L ( 01933+ 0.2551 + 0.3680+ . by using score function = 0.0928
1) 6 0.1516 4 0.2000 + 0.2885
2 L ( 0.1000 + 0.2297 + 0.1741+ )
6

Example 3. Let
_ <<0.1é¢27r(0.2)’ 0.76127(03), 0'4é;27r(0.16667)) 7 (0.3é52ﬂ'(0.1)7 0.2éi27r(0.8))>

_ <(O.3~é;27r(0.2)70.5~é;27r(0.4)) ’ (O.léﬂﬂ'(o.l)70.2é;27r(0,8)70.5é527r(0.4))>

be two CIHFS and @ = (0.4,0.6)" be the corresponding weight vector of F,(3=1,2) and the aggregation-

associated vector is @ = (0.6,0.4)” the we can obtained

01)2*04 2m(1—(1— 02)’-’*04)

1-(
< 1_( 07)2*04 727 (1—(1— 003)2*04) >’

1:—,1 _ 1—(1—o0. 4)2*04 22m(1—(1—0.16667)%*0" 4)
< —0.3) 240.6 27 (1 (1-0.1) 20" 6) >
~02) 2x0. 6 27 (1—(1—0.8)2*% 6)
< 1-(1- 2*0 4 gi2m(1-(1-0.2)>0%)
. 1— (1 2*O4el2ﬂ—(1 (1-0.4)2*° 4) )
Fy = 1— (1 0. 1 2%0.6 . 27r(17(170.1)2"0 6)’
< 1—(1-0. 2)2*06 ~2vr<1 (1-0.0.8)*°0%) >
—(1-0. 5)2*0 6 gi2m(1-(1-0.4)7%%)
=:27(0.1635)
Py = < gjgfggzizﬂomz)’ > < 0.3482'6:12;(0.2349)’ >
0.3355¢2m01357) [ 1\ 0-5647EFTOIY

0.1188¢:2m(0-1188)

N 5727 (0.0808) ’
Fy = < %.21%22;7%(0.7241)’ >7 0.2349¢72(0-8550),
-1090¢ 0.5647¢27(0-4583)

By Definition 7, we calculate the score values of F'; and F's:

CIHFHA (F\, Fs, ..., F,) = @ (—@Fﬁ(]))

1-1T" (I—F. >WJ‘6'2W(1 71(1%%) )

=1

- U Tro2m [Ty | we,
Py €84y 1 Piiy €€y - Piiy, €81, Hn é 8 Pa.
;Tﬁié

We., EWg, ,Wg¢., EWg, ..Wp. EWe. =1
¢k1 £h1’ (bkz ghz d)kn Shn 7




— 0.2482)%C % (1 — 0.0808)° ¢ 12#{1 (1-0.0808)0-6 x (1-0.1635)0 4}7

27\'{1 (1—0.0808)0-6 x (1—0.2482)0- 4}

( ) ( )

(1—0.2482)%° x (1 —0.6183)"" & :

( —o 2482)0'6 " (1 _0 3355)0 4. 727\—{1—(1—0.0808)0‘6><(1—0.1357)0‘4}
—(1-10.1635)"° x (1 — 0.0808) ,
27\'{1 (1—0.7241)0-6 x (1-0.2482)0- 4}

( ) (

( (

0.4 . 12#{1 (1—0.7241)0-6 % (1-0.1635)0- 4} ’
—0.1635)"% x (1 —0.6183)°" ¢

—(1-0.1635)"°% x (1 —0.3355)"* ¢
(0.1188%6 x 0.348204) ¢
(0.1188%6 x 0.5647°4) é
(0.2349%6 x 0.34820-4) &'
( )¢
( )¢

7277{1 (1-0.7241)0-6 % (1 01307)04}

2 (0118806 x0.23490-4

277(0 118896 x0.45830-4

27r(0.85500'6><0,23490'4)
277(0 855006 x0.45830" 4)

0.23499-6 % 0.5647°4) ¢
0.56470-6 % 0.348204) ¢ 2”(0 45830-6 % 0.23490-4

Z27r(0.45830'6><0,45830'4)

(0.5647%6 x 0.564704) &

0.1852¢727(0-1148) () 4267¢:27(0-1518) () 2844¢:27(0-1032)

< ,0.1314¢727(0-5700) () 3888127(0.5880) () 23772 (0-5644)

- 0.1827éi2”(0'1560), 0_2216&2“(0»2039)’ 0.2750¢727(0.5100)
< 0.3336£727(0-6663) (. 4654¢:27(0-3508) () 5647¢:27(0-4583) >

S(ﬁ)z( {%{%Zfﬂ&h( J+ Ly E Ws,wu))}}x{é{lzzl_l R 2m(ws, u))}})

1 { 0.1852 + 0.4267 + 0.2844+
6 ( 0.1314 + 0.3888 + 0.2371 )
1 ( 0.1148 +0.1518 + 0.1032+
6\ 0.5700 + 0.5880 + 0.5644
0.1827 + 0.2216 + 0.2750+
0.3336 + 0.4654 + 0.5647
L ( 0.1560 + 0.2039 + 0.5100+ )
6

N[ =
=2}

by using score function = 0.1141

—

(SIS
[}

0.6663 + 0.3508 4 0.4583

Theorem 1. Let p, (7= 1,2, ...,n) be a collection of CIHFS then their aggregated valued calculated using the
CIHFWA operator using the CIHFWA operator is an CIHFWA (Fy, Fs, ..., F},),

CIHFWA(Fy, Fy, ... F,) = D (w,F)
7=1
“
n 271'(1 IT- 1(1 Wrp. ) )
_ U 1- HJ:l ( FF ) =, * ’
n La2m [0 (w
Biy €84y 1 Piiy €€y Py, €81, (Hg—l ((ka) ( r ) )
w¢%1 ngﬁl ,w¢k2 ngﬂq '”w¢ién Ewgﬁn
Proof.
w1 -
wy 27| 1—(1-wr. ) FL o we.
w F) = 17(17%) 8 < (1-ers,) , (%) ¢ (+,)
2 <1 (1 >w2) 2 -
wy 47| 1=\ 1l—wr. “ 27| we..
woFy = 1_(1_1_‘%2) 2é kg , (¢k2) & < ¢k2)
we have



1— (1 -T, )“’1 .e.f% (1—(1—wr-k-,1 ) ) (%1)“’1 S (w% )wl
i) [yt
for n = [, other words CIHFWA
LT (1) e (T () ) } }

{ ’ <H§-1 (6,)7 & n_al(%)“’f)

CIHFWA (Fy\,Fy,....F} Fi41) = (@ (w;E)) D (=1 Firn) = {6, (2) Ay (@)

=1

then, whenn =1+ 1,

w

1-TT_, (1-T,)™ 2 (1T (1) )
S [ e
bi;, €61y P, €6y P, €6R,

Py Sy TR, S Ty € A, Ty € By, T € B

!

1o, (1= et () )
b= (-, )= e (o))

w

_<1‘H5 L1y e (e () J>)

w

w

1-(1-T,)7 (- (1*:#1“) ). D
()7 ™)

|T; € F

w
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)

[1 — Hiill (1 _ Fk)wj é;2w(1—n§§§(1_wrk) >
K“ﬁi (6,) 7 & (o0) )1

|F1€F1,F2€FQ ...... 7Fl€Flv»Fl+1€E+1

So we obtain the required result.
Theorem 2. Let p, (7 = 1,2, ...,n) be a collection of CIHFS, then their aggregated valued calculated using the
CIHFWG operator using the CIHFWG operator is an CIHFWG (Fy, Fs, ..., F},),

CIHFWG (Fy, Fy, ... F,) = Q) (F7)

=1

kst
— U | (FFE)WJ g (wer) ’

d)kl 65}11 ,(%2 eEiLZ (z)kn eé’ln a2l <1—H;1:1(1—w¢1~“;; )WJ>

w
woy, Sy, oy, S, e (1 [T (1—9r,) "¢
Proof. .
@1
W 72 . w P27 <1_<1_W1‘.. > )
w1 F1 = <¢E1) s 7r<w¢kl) ’1_(1_F%1) 1é iy
w5 -
2 ogm (“’<i>~ ) wo 72T (1_<1_wri€' > )
wats = (gbiéz) é "2 ;1 — (1 — F%) é 2
we have

= - w1
@i = { (o)) ) oo e o))

w1

) ) e )]

w2

1_ (1 _ I1}51>1ﬂl ézQTr (1-(1—&11“%1 >W1>
w3
1 (1 B F}éz)wz éiQﬂ' (17(17w1~i€_2) )
-1 (1 - Fkl)ml ém(l_(l_wh)
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for n = [, other words CIHFWG

{Kilwg%gﬁné4WJW>J_IIO_Fng%G—zﬁ@w%fyl}

then, whenn =1+ 1,

CIHFWG(F17F2,...,F1’H+1) = ( (Fjwa)> ®(wl+lFl+1)

=1
=3
l =1 g2n [T .
<H31 (6,) €% ) > ’
= W‘]
U ! ..;2W<17Hl: l1—wr, )
Piy €€y 1Pisy €Ehy - Picr, 6, 1-— Hj=1 (1 — Fie)wj & 7 1( k)
w¢j;1 Ewshl ’w‘bj;z Ewsﬁg '”w‘tj;«n Ewsh” | I'ne Fi,I'y € Fy...... I € F

<(¢L+1)WJ éﬂw(wm*l)wj) )
L 1-(1-1,,)" (- 0er) )

|Pl€ﬂ

(Hklwg”a%ﬂé&waw>
(0" ete™) |

1T, (=1 & (e (oen) )
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[1 - a-r)™ 'e'ﬂ”(l‘mill(l‘%) >] ,

®

1-(1-T

141

7=1
| Tye Fi,Tye Fy....,Ti € Fi, T € Figg

Theorem 3. Let p, (7 = 1,2, ...,n) be a collection of CIHFS then their aggregated valued calculated using the
CIHFOWA operator using the CIHFOWA operator is an CITHFOWA (Fi, Fb, ..., F},),

CIHFOW A (Fy, Fs, ..., Fy) = €D (w,Fs(,)) =

J=1

LTI, (- = U ) )
- y

w3
" = 2Tl (s, )
bisy €€hy Py €€, - Pty EER,, HJ:1 (‘bﬁz-,) € .

wd)i{'l Ewgle 7“)4);-‘2 6“’{22 "'W¢E Ewﬁgn

Proof.

w1y w1
- ”;271— (1 (1741.@‘3;é ) ) @y “527r<w¢ﬁ__ >
wiFi=¢1- <1 - Fﬂk ) € 1 ’ <¢B ) ¢ N
1

kg
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we have

for n = [, other words CIHFOWA

)

l

=3
1-— 1_[1 (1 _ F%)W] éz27r (I—Hézl (I—WFﬁjé > ) ’ ]%[1 ((b%)w’ é;27r Hézl (w(b%)
7= i

then, whenn =1+ 1,

J

CIHFOWA (Fy, Py, ..., F1 Fi1) = (EB (%ﬂ)) D @i11F41) = {4, (@), A, (@)}
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=1
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e k
. N . N . R =1 By
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)
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[ @, 2r(1-TT'_,(1-wr, wj)
17H§:1<17F5k_> i ( ? ( %)

w3
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Bryt
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w3
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Ty € Fi,Ts € Fyooo.. , I € F, , Tipy €141
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-5 (1-1, ) e ( (e, )

J=1

@3

(o) ¢ (+2)

|ITye Fi,Toe By, I € Fy,, Ty € Fig

This is the the complete the proof.
Theorem 4. Let p, (7= 1,2, ...,n) be a collection of CIHFS then their aggregated valued calculated using the
CIHFOWG operator using the CIHFOWG operator is an CIHFOWG (F}, Py, ..., F},),

n

CIHFOWG (Fy, Fs, ..., F,) = ® (F?(Z))

@3

w] 2r 7 (wr )
H P =1 (“Trs,

_ U ’

Pisy €€hy 1Py €0y Py, €€, T 1 "
w Cwe. ,We, EWe. ...Wgs. Ewe. -
by, SR, W Ehy Wy SYE 9= 1 ﬂk

ko
w1 27| wy
) & ( Fiey )

;277(1—1‘[;;1(1—%,3__ )wj>
e k

Proof.

w1

@1
@1 ";271' (1(1wrﬁkl) )
- (1 ~Tp, ) 8
1

P = (¢ﬂ..

ws @2
- =2 52w <w¢5_' ) w2 ..5271— <1_ <1_wFB-k-"2> >
o= ()70 Y
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4 Algorithm

Consider an MCDM with complex intuitionistic hesitant fuzzy information and assume that p is different
alternatives A = (A, Ag, Az, Ay, A5, ..., A)) s F = (1,2,3...,9) and g criteria K = {k1, K2, K3,K4,...,Kq}
;¢ = (1,2,3...,d) and the weight vectors for the criteria is w = {wy, w2, ws,...,wq}, where w, > 0 and

d
Zq:l Wq = L.

The procedure of the presented MCDM technique by using CIHFES is provided below of help in the selection of
best alternative.
Step 1. We will gather the information in complex Intuitionistic hesitant fuzzy form by the experts as follows:

S= [<ES‘(H)7 )‘S'(H»P(I]Jd iREeX
Step 2. Create the CIHF-decision matrix that is combined. In order to compute the CIHF-DM, it is necessary
for the DEs to make use of views in order to aggregate all of the individual matrices into one group decision matrix.
Operators using CIHF-weighted averaging may achieve this
CIHFWA(Fy, Fy, ... F,) = D (@,F)

J=1

w3
(1 ST, (- FFE)WJ) 5 (1—11;:1(1_%%) >
= U @ 32w H;‘=1 <‘“¢F%>wj

Dy €80y Py €80y - Py, €6, H;lzl (¢Fk) e

w¢ié1 nghl ,w¢k2 €w§h2 ...w(bk nghﬂ
n 3

are similar CIHFWG,CIHFOWA,CIHFOWG,CIHFHA,CIHFHG.
Step 3. Utilize the CIHF technique to calculate the criterion weights. how to use the CIHF model to evaluate
attribute weights.

)

Step 4. First, the score values S (ﬁj) of CIHFs are calculated using Definition 2.7.

Step 5. We will rank the alternative in the descending
Note that the alternative ranking order varies when the modified the values of the parameters. The flowchart of
the proposed algorithm is shown in Figure 1.
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Collecting information about Evaluation of alternatives

alternatives to criteria based on subjective criteria

Apply the Aggregation Operators
CIHFWA,CIHFWG,
CIHFOWA,CIHFOWG,
CIHFHA,CIHFHG

Construct CIHFS Decision
Making Matrix

Apply Score Function

Ranking

Figure 1. Flowchart of the proposed algorithm

5 Case Study

The vast amounts of healthcare waste (HCW) produced by hospitals and other healthcare institutions pose a
threat to the health of patients, healthcare workers, and the general public, as well as to the quality of the surrounding
environment. Over the last few months, there has been alarming news about the rise of HCW [29]. As a result,
HCW management (HCWM) has become a worldwide environmental and public health concern, especially in
developing countries where HCW use is on the rise [30]. incorporates MSW as a common kind of differentiation.
In its definition of healthcare waste, the World Health Organization (WHO) notes that it “includes a wide variety
of items, from used needles and syringes to soiled dressings, body parts, diagnostic samples, blood, chemicals,
medications, medical equipment, and radioactive materials” [31]. According to the WHO, only around 15% of
HCW pose arisk because of their potentially infectious, poisonous, or radioactive nature. If not handled or disposed
of properly, approximately 15% of HCW poses a number of environmental and health risks. Therefore, it is crucial
that biomedical waste be separated out at the point of production, stored appropriately, and disposed of in a methodical
manner. The environment and public health are negatively impacted when HCW are treated improperly [32]. This
is why HCWM has garnered so much interest from scientists, policymakers, and activists in the environmental,
academic, and professional communities [33]. Healthcare facility waste management (HCWM) systems assess
several transportation modes and routes for delivering trash to treatment facilities, as well as providing assistance
in deciding which treatment method and final disposal location to choose. The potential negative effects of HCW
on the economy and the environment have made it a priority throughout the world to evaluate the best possible
HCW treatment (HCWT) [34]. Decision experts must balance a number of conflicting material and immaterial
factors in order to settle on the optimal HCWT solution. Performance ratings for each HCWT option are calculated
individually using a variety of metrics. However, there is no one HCWT solution that outperforms the others on every
criterion [35]. Due to the presence of several alternatives and evaluation criteria, evaluating HCWT possibilities is
seen as a difficult MCDM challenge. Since this is an issue that needs to be solved, an effective and precise method
for evaluating HCWTs is essential [36].

In this study, Pakistan’s options for getting rid of medical waste are looked at using the CIHFS framework.
Pakistan’s healthcare system, particularly its super-speciality hospitals, has expanded rapidly during the last decade.

17



As more people have access to health care, hospitals and clinics produce more biological waste. Because there are
more people in hospitals and clinics, the amount of biological waste they make has gone up. However, the current
healthcare waste treatment alternatives are inadequate to deal with such massive quantities of medical waste, and as
a result, a lot of it ends up in landfills. Further, due to ineffective treatment alternatives and a dearth of appropriate
authorizations for disposing of biological waste, a significant amount of healthcare waste gets disposed of as general
trash [37].

Therefore, it is crucial to develop and implement alternative methods of treating HCW disposal. Since different
treatment methods may significantly affect the economy, the environment, and the general public, identifying the
optimal approach is crucial for handling medical waste. We did this by investigating and reviewing the various
methods already in use for treating medical waste. We also talked to ecologists, government officials, and university
professors who study waste management [38] to find out what they thought about how HCW is managed in Pakistan
right now. Five potential methods for dealing with HCW were evaluated after an initial assessment was made.
Treatment options for medical waste include: A; = autoclave sterilization; A = thermal decomposition of plasma;
A3 = microwave; A4 = eliminating germs using chemicals; and A; = sanitary landfill. Assume we need to evaluate
four distinct parameters: k., = (; = 1,2,3,4). Using the four specified qualities from the balanced scorecard
technique (it should be emphasized that they are all of the maximizing type), it is required to compare these
healthcare waste treatment measures in order to identify the most significant of them and to arrange them based on
their significance. k1 = waste residuals; ko = energy consumption; «3 = treatment effectiveness; and x4 = public
acceptance. These professionals come from a variety of backgrounds and industries and include a waste-treatment
company expert, an HCWM specialist, an industrial engineer, and an environmental engineer. The steps required
to implement the CIHFS strategy in this context are outlined below. Consider the attribute weight vector to be

= (0.15,0.3,0.2,0.35)T.

Here, we put the devised strategy into practice in order to produce a HCWT with the best possible outcome.

Step 1. The decision matrix F' = (p%z)an is shown in Table 1, where p,, (z,7=1,2,3,4) are in the form of
CIHFSs to prevent decision makers from being swayed by one another’s preferences.

Table 1. Basic information Healthcare waste treatment in CIHFSs

Alternative K1 Ko
(O.4éi27r(0.24) 0.5é527r(0.25)) (0.7('3'5271(0.1))
Ay { 727(0.5) ’ } { -727(0.7) 727(0.3)
~2((20436) "~2) (0.2) (056 "~2’ 0(0156) )
Ay (0.5¢72(0:3), 0.3¢r2r(0:2)) | (0.367270:)
(0.4'61127"(0-6)) (0_5'6'127r(0.?)7 0.6é127r(0.4))
As { ..5(22.(?6(‘3;)2“(0'3;)2;(0 3) (O'Qé:%j;(()(;2123,))) ’
(0.56 > ,0.?{6 : ) i (0.36 o )
A, (0_3&2“(0‘3)) , { (0.6&227"(0‘50)70,5é227"(0‘25)) 7
0.2"527r(0.25) 0. 3"52#(0 30)
O.5ZZ2W(O‘5)) , 0 6212#(0 4)
A5 { (0.2‘6‘1727r(0.3)’ 0.5é127r(0.7)) } 36127r(0 4) 0 667,27r(0 2))
Alternative K3 K4

361271'(0 5) 0 567277(0 1)
O 36127r(0 33)
467,271' (0.5) ,0. 26227r(0 3)

(0.5622ﬂ(0‘2)) ,
Ay { (0.16727(0:2) ¢ g¢i2m(0.5)) } { (0. 16127r(0 33))

Al { (0565271(04)) ,

O
O
(0.1é527r(0.1))
0
0.5¢727(0-25)) aw(o 2) (.66727(0.5)
As (0.76727(0-1), 0_3é527r(0.5)) 2 (0. 2) 0.46727 (0. N
(0'1é22w(0.3), 0.3‘6'%27r(0.35)) , 0 28127r(0 25)
(0.2é527r(0‘2)) 0 361% 0.1 0, 56227r(0 45)
{ (0.8672m(0-4) . 772m(0-15557)) } { (0. 15727 00. )Y, }
(0.66727(0-33) 0 172m(0-4)) (0.3¢727(0:35))

Ay

——

As

Step 2. For tasks x; (5= 1,2,3,4),
operator is used to derive the CIHFS p. (;=

the CIHFWA, CIHFWG, CIHFOWA, CIHFOWG, CIHFHA,CIHFHG
1,2,3,4).

Step 3. Compute the score values S iL) = (3=1,2,3,4) of h,(;= 1,2, 3,4) by 2.7. Table 2 presents the score

/—\sx ~—

values for the options. R
Step 4. Based on the rankings of S(h;)(;= 1,2,3,4). Table 2 shows the relative importance of the options .
(7= 1,2, 3,4) as the changed operator.
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Step 5. Using (h,) = (; = 1,2,3), arrange the possible solutions p., (3,7 = 1,2, 3,4) from most preferred to
least preferred. .
Step 6. Sort the available choices p,, (7,7 = 1,2, 3,4) by S(h;)(;=1, 2, 3,4) in descending order

A5>A2>A1>A3>A4
Thus the best alternative is As.

Table 2. Ranking on the alternatives by score value based on the proposed operator

Proposed Opertors Aq Ao As Ay As

CIHFWA 0.1096 0.1120 0.1010 0.0874 0.1582
CIHFWG 0.1194 0.1338 0.1034 0.0841 0.1384
CIHFOWA 0.0956 0.1112 0.0620 0.0732 0.1581
CIHFOWG 0.1161 0.1321 0.0956 0.0729 0.1384
CIHFHA 0.0869 0.1103 0.0881 0.0662 0.1432
CIHFHG 0.1061 0.1120 0.0861 0.0724 0.1315
Ranking:

A5>A2>A1>A3>A4

A5>A2>A1>A3>A4

Ay > Ao > A1 > Ay > Aj

A5 > A2 > A1 > A3 >Ny

A5>A2>A1>A3>A4

A5>A2>A1>A3>A4

The graphical representation of ranking is shown in Figure 2.

The proposed operator's score 1s used to rank

alternatives 1n a graphical representation.

HA, HA, HA; WAy WA

CIHFWA CIHFWG CIHFOWA CIHFOWG CIHFHA CIHFHG

0.15

0.

—

0.

o
h

(=]

Figure 2. Graphical representation of proposed operators

6 Conclusions

This research has conducted a thorough investigation on the utilization of complex intuitionistic, hesitant fuzzy
information aggregation approaches in decision-making. Complex operational rules for intuitionistic hesitant fuzzy
sets have been developed based on their link with hesitant fuzzy sets. A collection of operators has been developed
in various situations, and their interconnections have been examined, all with the aim of combining intricate
intuitionistic, hesitant, and fuzzy information. Furthermore, we have utilized the aggregate operators that we
have constructed to discover unidentified answers to predicaments in the process of making decisions. We have
demonstrated the overall patterns in the development of the output of aggregation operators through the use of a
representative example.
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