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Abstract: This study introduces an advanced framework for picture fuzzy linear programming problems (PFLPP), deploying picture fuzzy numbers (PFNs) to articulate diverse parameters. Integral to this approach are the three cardinal membership functions: membership, neutral, and non-membership, each contributing distinctly to the formation of the PFLPP. Emphasis is placed on employing these degrees to formulate the PFLPP in its most unadulterated form. Furthermore, the research delineates a novel optimization model, tailored specifically for the resolution of the PFLPP. A meticulous case study, accompanied by a numerical example, is presented, demonstrating the efficacy and robustness of the proposed methodology. The study culminates in a comprehensive discussion of the findings, highlighting pivotal insights and delineating potential avenues for future inquiry. This exploration not only advances the theoretical underpinnings of picture fuzzy sets but also offers practical implications for the application of linear programming in complex decision-making scenarios. 
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1 Introduction

The linear programming problem (LPP) is the most well-known, straightforward, and widely applied paradigm in mathematical programming. The LPP model’s simplicity makes it easily adaptable to a wide range of practical applications, including supply chain management, supplier selection, assignment issues, and challenges with transportation. Over several decades, the extension and development of standard LPP have been discussed. Examples of expanded LPP include goal LPP, multi-objective LPP, bi-level or multi-layer LPP, etc. 

Many studies also use the widely used LPP, which accounts for uncertainty. Initially, Bellman and Zadeh [1]

invented the fuzzy set (FS) theory, which served as the foundation for the development of fuzzy LPP (FLPP). 

Zimmermann [2] initially introduced the fuzzy programming technique to address the multiobjective LPP in a fuzzy setting. The goal of the fuzzy optimization technique is to maximize the marginal satisfaction of each fuzzy decision set element (belongingness degree, membership functions, etc.). 

It was later demonstrated that only taking membership degrees (MD) into consideration was insufficient to adequately convey the marginal attainment of an element within the fuzzy decision set. Atanassov [3] initially presented the intuitionistic fuzzy set (IFS) theory as a means of extending or examining the fuzzy set. The degree of MD and NMD of an element in the IFS decision set are addressed by the IFS theory. The first person to suggest IF

optimization strategies based on IF decision sets in decision-making issues was Angelov [4]. 

The literature on fuzzy and IF environments has greatly benefited from the work of numerous authors. Furthermore, when applying IFS theory to the multi-criteria decision-making (MCDM) problem, it is occasionally discovered that its performance is limited in a variety of situations. For example, suppose the decision-maker(s) gives alternatives that satisfy the requirements a score of 0.6 and those that don’t a score of 0.7. Given that the values of the degrees for MD and NMD are both between 0 and 1, they are unrelated to each other. The case is not covered by the IF decision set since it requires the sum of MD and NMD to be less than or equal to 1. 

To get around some of the issues in real-world situations with FSs [5] and IFSs, Cuong presented the picture fuzzy set (PFS) as a new idea for issues with computational intelligence to handle this circumstance [6, 7]. Due to
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its significance, several researchers have added to the idea of PFS information in actual decision-making. Wei [8]

defined weighted AOs in this manner to aggregate PFS data. Wei [9] analyzed the entropy of PFS information and applied this idea to create a MADM model. Later, Wei employed the Hamacher AOs and built picture-fuzzy Hamacher AOs using this concept [10]. Additionally, Peng and Dai [11] created an approach for creating distance-based MADM issues in a PFS. Singh [12] studied the coefficient of the correlation measure using PFS arguments. 

New inference systems for PFS were proposed by Son et al. [13, 14]. When developing decisions, Son [15] used distribution-based picture fuzzy clustering. Thong et al. [16–20] focused on the clustering approach to analyzing complicated dates and weather forecasting in PFS environments. In order to create customer requirements, Ping et al. [21] used a novel quality function deployment (QFD) environment. Projections-based MADM issues in a PFS are discussed by Wei et al. [22]. The dice similarity measure approach was employed in PFSs by Wei and Gao to create MADM models [23]. Wei proposed new similarity measures in a picture-fuzzy environment in the study [24]. In the same setting, weighted Dombi AOs were proposed by Jana et al. [25] and utilized to build a MADM

technique. Readers are referred to the following sources for more details on the decision-making process connected to the PFS [26–30]. Several study approaches have been employed to model MADM difficulties, from which we have accurately discovered a viable solution. The TODIM technique [31], the TOPOSIS approach [32, 33], the CODAS approach [34], the VIKOR approach [35], the ELECTRE approach [36], the PROMETHEE approach [37], 

and other MADM approaches were examined in the earlier, well-known studies. First presented by Pamučar and Ćirović [38], the multi-attributive border approximation area comparison (MABAC) is a unique MADM approach that may consider competing attributes while making decisions. In a model of MABAC structures, the fuzzy decision-theoretic environment and the intangibility of decision-makers (DMs) are taken into account so that more concrete and useful aggregate information can be gathered. 

In that direction, we have seen various innovative MADM techniques. From this angle, Wu and Liao [39]

investigated a novel outranking strategy that measured gains and losses in dominance scores (GLDS). The GLDS

approach measured the “group utility” and the individual regret score at the same time. Subsequently, Peng and Yang [40] investigated the enlarged MABAC technique in a Pythagorean scenario. After that, the original MABAC

approach was improved by Pamuvčar et al. [41].Pamuvcar et al. examined the hybrid IR-AHP-MABAC model once more. Sun et al. [42] presented the Extended MABAC approach with HFLNs, which is used to establish patient priority levels. A likelihood-based MABAC technique employing intuitionistic trapezoidal linguistics (ITLNs) was developed by Yu et al. [43]. Wang et al. [44] examined the MABAC method in an orthopair context with fuzzy Q-rungs. The MABAC approach was investigated in a visual 2-tuple linguistic context by Zhang et al. [45]. The goal of this work is to close the information gap regarding PFN decision-making difficulties and the LPP approach. 

This work set up a fuzzy linear programming problem procedure and constructed a PFLPP model that was based on a conventional LPP model that included PFS information. We wrap up by presenting some numerical examples to talk about a few PFLLP models in a PFN setting. 

The article’s remaining sections are arranged as follows: A review of some previous research is done in Section 2. In Section 3, talk about the fuzzy linear programming problem and its evolution. Update the fuzzy optimization model for the picture in Section 4. To examine the proposed method, some PFLPP instances are solved in Section 5. In the concluding Section 6, include the document that contains the future working directions. 

2 Preliminaries

In this section, we annotate some essential ideas of PFSs. 

Definition 2.1 [6, 7] A PFS Rf over the fixed set L is written as Rf = {⟨Yf (l), AU (l), Nf (l)⟩ | l ∈ L} , 

Yf (l) : L → [0, 1], Af (l) : L → [0, 1] and Nf (l) : L → [0, 1] in a picture fuzzy set, are displayed in the following order: positive membership degree (PMD), neutral membership degree (NMD), and negative membership degree of Rf , where, 0 ≤ Yf (l) + Af (l) + Nf (l) ≤ 1 for l ∈ L. Also, for refusal membership degree is denoted for l as πR (l) = 1 − Y

f

f (l) − Af (l) − Nf (l). The pair (Yf , Af , Nf ) is named as picture fuzzy numbers (PFNs) or picture fuzzy values (PFVs). 

Cuong et al. [6] introduced some basic operations on PFSs given as: Definition 2.2 [6] Let R1 = (Y1(l), A1(l), N1(l)) and R2 = (Y2(l), A2(l), N2(l)) be any two PFNs over the set L. The operations between two PFNs are below:

(i)

R1 ⊆ R2, if Y1(l) ≤ Y2(l), A1(l) ≤ A2(l) and N1(l) ≥ N2(l) for all l ∈ L, (ii)

R1 = R2 if R1 ⊆ R2 and R2 ⊆ R1, 

(iii)

R1 ∪ R2 = {⟨l, max {Y1(l), R2(l)} , min {A1(l), A2(l)} , min {N1(l), N2}⟩ | l ∈ L}, (iv)

R1 ∩ R2 = {⟨l, min {Y1(l), Y2(l)} , max {A1(l), A2(x)} , max {N1(l), N2}⟩ | l ∈ L}, 23

(v)

R1 = {⟨l, N1(l), A1(l), Y1(l)⟩ | l ∈ L} for all l ∈ L. 

Wei [8] offered various operations on PFNs in the definition below, depending on the operations on IFSs. 

Definition 2.3 [8] Let R1 = (Y1(l), A1(l), N1(l)) and R2 = (Y2(l), A2(l), N2(l)) be any two PFNs over the set L, then more operations are as follows:

(i)

R1 = {⟨l, N1(l), A1(l), Y1(l)⟩ | l ∈ L}, 

(ii)

R1 ∧ R2 = {⟨l, min {Y1(l), Y2(l)} , max {A1(l), A2(l)} , max {N1(l), N2}⟩ | l ∈ L}, (iii)

R1 ∨ R2 = {⟨l, max {Y1(l), Y2(l)} , min {A1(l), A2(l)} , min {N1(l), N2}⟩ | l ∈ L}, (iv)

R1 ⊕ R2 = (⟨Y1 + Y2 − Y1Y2, A1A2, N1N2⟩), 

(v)

R1 ⊗ R2 = (⟨Y1Y2, A1 + A2 − A1A2, N1 + N2 − N1N2⟩), 





(vi)

λR1 = 1 − (1 − Y1)λ , Aλ, N λ

1

1

, 



(vii)

Rλ = Yλ, 1 − (1 − A

1

1

1)λ , 1 − (1 − N1)λ. 

Definition 2.4 [25] Let R1 = (Y1, A1, N1) be PFNs, then score Λ(R1) and accuracy Φ(R1) for PFN are defined as follows:

1 + Y1 − N1

Λ (R1) =

, 

Λ (R1) ∈ [0, 1], 

2

(1)

Φ (R1) = Y1 − N1, 

Φ (R1) ∈ [−1, 1]. 

3 Some Models on Picture Fuzzy LPP

The LPP is a well-liked and often utilised kind of mathematical programming. Numerous researchers have thoroughly examined the various extensions of the linear programming problem, including fuzzy LPP, IFs-LPP, and neutrosophic LPP [46–50]. 

The picture fuzzy linear programming problem (PFLPP), which introduces the image fuzzy concept, is used to investigate the further extension of the LPP. First, the PFLPP is presented in the Model I. The picture fuzzy number only represents the co-efficient of the goal function; all other parameters are taken to be real numbers. 

Model I

ϖ

Optimize M = P Cf lf . 

f =1

Subject to

ϖ

X agf lf ≤, =, ≥ bg, ∀g = 1, 2, . . . , ξ

f =1

lf ≥ 0, 

∀f = 1, 2, . . . , ϖ

where, the parameters agf , bg are real integers and Cf is a PFN. In the second PFLPP model, a real number represents the co-efficient of the objective function, whereas picture fuzzy numbers represent the co-efficient of constraints variables and right sides. Consequently, an analogous model is as follows: Model II

ϖ

Optimize M = P Cf lf . 

f =1

Subject to

ϖ

X agf lf ≤, =, ≥ bg, ∀g = 1, 2, . . . , ξ

f =1

lf ≥ 0, 

∀f = 1, 2, . . . , ϖ

where, agf , bg is a PFN, and Cf is a real number. 

In the third model, which is a fully PFLPP, each parameter is represented by a PFN. 

Model III

ϖ

Optimize M = P Cf lf . 

f =1

Subject to

ϖ

X agf lf ≤, =, ≥ bg, ∀g = 1, 2, . . . , ξ

f =1
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lf ≥ 0, 

∀f = 1, 2, . . . , ϖ

where, Cf , agf , and bg are PFNs. 

The membership function Yf for PFN Rf can be defined as follows:



l−Y1 , Y

 Y

1 ≤ l ≤ Y2



2 −Y1

Y

Y2−l

f (l) =

, 

Y

(2)

Y

2 ≤ l ≤ Y3

3 −Y2



0

otherwise

The NuMF Af for PFN Rf can be defined as follows:



l−A1 , A

 A

1 ≤ l ≤ A2



2 −A1

A

A2−l

f (l) =

, 

A

(3)

A

2 ≤ l ≤ A3

3 −A2



0

otherwise

The NMF Nf for PFN Rf can be defined as follows:



l−N1 , N

 N

1 ≤ l ≤ N2



2 −N1

N

N2−l

f (l) =

, 

N

(4)

N

2 ≤ l ≤ N3

3 −N2



0

otherwise

First, we establish the upper and lower bounds for each MF using the following formulae in order to define the PMF, NMF, and negative non-MF for the objective function under the PFN concept: M Y = max {M (l

= min {M (l

U

f )} and M Y

θ

f )}

(P M F )

(5)

M A = M A + P M Y − M Y  

= M Y

(N uM F )

U

θ

and M A

(6)

U

θ

θ

θ

M N = M Y

= M Y + Q M Y − M Y  

(N M F )

U

and M N

(7)

U

L

θ

U

L

where, P, Q ∈ [0, 1] are predetermined real numbers. 

The PMF, NuMF, and NMF for the objective function can be obtained using Eqs. (5) to (7) as follows:

1, 

if m ≥ mY



U





Y

m−mY

(M (l)) =

θ

, 

if mY ≤ m ≤ mY

mY −mY

θ

U

U

θ





0, 

if m ≤ mY

θ

1, 

if m ≥ mA





U



A(M (l)) =

m−mA

θ

, 

if mA ≤ m ≤ mA

mA−mA

θ

U

θ

θ





0, 

if m ≤ mA

θ

1, 

if m ≥ mN





U



N (M (x)) =

m−mN

θ

, 

if mN ≤ m ≤ mN

mN −mN

θ

U

U

θ





0, 

if m ≤ mN

θ

where, Y(M (l)), A(M (l)), and N (M (l)) are PMF, NuMF and NMF of objective function. 

Following is a description of the PMF for Cth constraints in a PFS:

f



ϖ

P



1, 

if bg ≥

(agf + dgf )lf







f =1





ϖ



P



b

a



g −

gf lf

ϖ

ϖ

Y (C

f =1

P

P

f (l)) =

, 

if

a

(a

ϖ

gf lf ≤ bg ≤

gf + dgf )lf

P



dgf lf

f =1

f =1





f =1





ϖ



P





0, 

if bg ≤

agf lf



f =1
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

ϖ

P



1, 

if bg ≥

(agf + dgf )lf







f =1





ϖ



P



b

d



g −

gf lf

ϖ

ϖ

A(C

f =1

P

P

f (l)) =

, 

if

a

(a

ϖ

gf lf ≤ bg ≤

gf + dgf )lf

P



agf lf

f =1

f =1





f =1





ϖ



P





0, 

if bg ≤

agf lf



f =1



ϖ

P



0, 

if bg ≥

(agf + dgf )lf







f =1





ϖ



P



(a



gf +dgf )lf −bg

ϖ

ϖ

N (C

f =1

P

P

f (x)) =

, 

if

a

(a

ϖ

gf lf ≤ bg ≤

gf + dgf )lf

P



dgf lf

f =1

f =1





f =1





ϖ



P





1, 

if bg ≤

agf lf



f =1

where, dgf ∈ [0, 1] is the jth constraint’s pre-set tolerance limit. 

4 Picture Fuzzy Optimization Model

PF optimisation techniques can be used to solve the PFLP model (Section 3) that was previously discussed. We have taken into account the maximisation of PMF and the minimization of NuMF and NMF under the PF decision set in the suggested PF optimisation model. Consequently, the following statement represents the PF optimisation model:

max Y (M (l)), min A(M (l)), min N (M (l))

Subject to

Y (M (l)) ≥ A(M (l)), Y (M (l)) ≥ N (M (l)), 

0 ≤ Y (M (l)) + A(M (l)) + N (M (l)) ≤ 1, 

Y (M (l)), A(M (l)), N (M (l)) ≥ 0, l ≥ 0. 

where, Y (M (l)), A(M (l)), and N (M (l)) represent the PMF, NuMF, and NMF of the picture fuzzy objective optimization function and constraint. 

The aforementioned problem can be converted into the following optimisation model: max ϕ, min φ, min ψ

Subject to

Y (M (l)) ≥ ϕ, A(M (l)) ≤ φ, N (M (l)) ≤ ψ, 

ϕ ≥ φ, φ ≥ ψ, 

0 ≤ ϕ + φ + ψ ≤ 1, x ≥ 0. 

where, ϕ, φ and ψ respectively represents the minimal degree of acceptance of PMF, maximal degree of acceptance of NuMF, and maximal degree of acceptance of NMF. 

The PF optimisation model can be converted into the following model equivalently: max(ϕ − φ − ψ)

Subject to

Y (M (l)) ≥ ϕ, A(M (l)) ≤ φ, N (M (l)) ≤ ψ, 

ϕ ≤ φ, φ ≥ ψ, ϕ, φ, ψ ≥ 0, 

0 ≤ ϕ + φ + ψ ≤ 1, x ≥ 0. 

The above-discussed PF optimisation model covers the more realistic aspects of parameter uncertainty and can solve the PFLPP with a variety of picture fuzzy parameters. 
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5 Numerical Examples

The usefulness and viability of the picture fuzzy optimisation model are demonstrated by the forthcoming numerical examples. The different picture fuzzy parameters are converted into the crisp version for each decided-upon membership level using Eqs. (2) to (4). 

Example (Model I)

Maximize M = C1l1 + C2l2 + C3l3

Subject to

0.3l1 + 0.5l2 + 0.7l3 ≤ 12

0.4l1 + 0.4l2 + 0.6l3 ≤ 15

0.5l1 + 0.8l2 + 0.2l3 ≤ 16

l1, l2, l3 ≥ 0

where, 

C1 = (0.4, 0.1, 0.3), 

C2 = (0.6, 0.0, 0.3), 

C3 = (0.5, 0.1, 0.2)

Here C1, C2 and C3 are PFNs. The values of PFNs C1, C2 and C3 are transferred into crisp by using Eq. (1). 

The following steps can be taken to obtain the PFLPP (Model I) in crisp form: Maximize M = 0.5l1 + 0.6l2 + 0.6l3

Subject to

0.3l1 + 0.5l2 + 0.7l3 ≤ 12

0.4l1 + 0.4l2 + 0.6l3 ≤ 15

0.5l1 + 0.8l2 + 0.2l3 ≤ 16

l1, l2, l3 ≥ 0

The following are the solution’s outcomes: l1 = 30.34, l2 = 0, l3 = 4.13, and Max M = 17.65. 

Example (Model II)

Maximize M = 50l1 + 60l2 + 20l3

Subject to

a11 l1 + a12l2 + a13l3 ≤ b1

a21 l1 + a22l2 + a23l3 ≤ b2

a31 l1 + a32l2 + a33l3 ≤ b3

l1, l2, l3 ≥ 0

where, 

a11 = (0.4, 0.1, 0.3), 

a12 = (0.5, 0.1, 0.3), 

a13 = (0.5, 0.2, 0.2)

a21 = (0.6, 0.2, 0.1), 

a22 = (0.8, 0.0, 0.1), 

a23 = (0.4, 0.2, 0.3)

a31 = (0.7, 0.1, 0.1), 

a32 = (0.3, 0.2, 0.2), 

a33 = (0.2, 0.1, 0.4)

b1 = (0.6, 0.0, 0.2), 

b2 = (0.5, 0.3, 0.1), 

b3 = (0.7, 0.1, 0.1)

Here, a11, a12, a13, a21, a22, a23, a31, a32, a33, b1, b2, and b3 are all PFNs. They are transferred into crisp by using score function defined in Eq. (1). The following steps can be taken to obtain the PFLPP (Model II) in crisp form:

Maximize M = 50l1 + 60l2 + 20l3

Subject to

0.55 l1 + 0.60l2 + 0.65l3 ≤ 0.70

0.75 l1 + 0.85l2 + 0.55l3 ≤ 0.70

0.80 l1 + 0.55l2 + 0.40l3 ≤ 0.80

l1, l2, l3 ≥ 0

The following are the solution’s outcomes: l1 = 0.00, l2 = 0.82, l3 = 0.00, and Max M = 49.41. 

Example (Model III)

Maximize M = C1l1 + C2l2 + C3l3

Subject to

a11 l1 + a12l2 + a13l3 ≤ b1
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a21 l1 + a22l2 + a23l3 ≤ b2

a31 l1 + a32l2 + a33l3 ≤ b3

l1, l2, l3 ≥ 0

where, 

C1 = (0.7, 0.0, 0.3), 

C2 = (0.6, 0.1, 0.1), 

C3 = (0.8, 0.1, 0.1)

a11 = (0.4, 0.1, 0.1), 

a12 = (0.3, 0.1, 0.2), 

a13 = (0.7, 0.1, 0.1)

a21 = (0.6, 0.1, 0.3), 

a22 = (0.5, 0.2, 0.2), 

a23 = (0.5, 0.2, 0.1)

a31 = (0.6, 0.1, 0.2), 

a32 = (0.4, 0.2, 0.2), 

a33 = (0.6, 0.1, 0.2)

b1 = (0.6, 0.0, 0.1), 

b2 = (0.8, 0.1, 0.1), 

b3 = (0.4, 0.1, 0.1). 

Here, C1, C2, C3, a11, a12, a13, a21, a22, a23, a31, a32, a33, b1, b2, and b3 are all PFNs. They are transferred into crisp by using score function defined in Eq. (1). The following steps can be taken to obtain the PFLPP (Model III) in crisp form:

Maximize M = 0.70l1 + 0.75l2 + 0.85l3

Subject to

0.65l1 + 0.55l2 + 0.80l3 ≤ 0.75

0.65l1 + 0.65l2 + 0.70l3 ≤ 0.85

0.70l1 + 0.60l2 + 0.70l3 ≤ 0.65

l1, l2, l3 ≥ 0

The following are the solution’s outcomes: l1 = 0.00, l2 = 1.08, l3 = 0.00, and Max M = 0.81. 

6 Conclusions

This is the first discussion of LPP that takes into consideration the recently announced picture fuzzy set. The PFS makes it easy to collect inaccurate and inconsistent data, which makes decision-making even more difficult. In this chapter, we therefore introduce PFLPP in a picture fuzzy context, which consists of decreasing neutral and non-membership functions inside the picture fuzzy decision set and maximizing membership. By employing membership, neutral, and non-membership degrees, respectively, the deterministic form of PFLPP is generated. Additionally, several numerical examples are provided to show how appropriate the suggested SFLPP solution methodology is. 

The PFLPP also solves two distinct real-world problems: production planning and purchasing strategy. 

The LPP duality theory might be presented in this context to analyze future research attempts in the fuzzy picture domain. Moreover, the suggested approach can be expanded to address issues related to fractional programming, nonlinear programming, etc. Researchers have a variety of possibilities when it comes to applying PFLPP to real-world issues such as supply chain management, inventory control, portfolio management, and transportation-related issues. 
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Abstract: This study introduces an advanced framework for picture fuzzy linear programming problems (PFLPP),
deploying picture fuzzy numbers (PENs) to articulate diverse parameters. Integral to this approach are the three
cardinal membership functios membership, neutral, and non-membership, each contributing distinctly to the
formation of the PFLPP. Emphasis is placed on employing these degrees to formulate the PFLPP in its most
unadulterated form. Furthermore, the research delineates a novel optimization model, tailored specifically for the
resolution of the PELPP. A meticulous case study, accompanied by a numerical example, is presented, demonstrating
the efficacy and robustness of the proposed methodology. The study culminates in a comprehensive discussion of the
findings, highlighting pivotal insights and delineating potential avenues for future inquiry. This exploration not only
advances the theoretical underpinnings of picture fuzzy sets but also offers practical implications for the application
of linear programming in complex decision-making scenarios.

Keywords: Picture fuzzy numbers (PFNs); Linear programming optimization; Membership functions; Decision
making analysis

1 Introduction

The linear programming problem (LPP) is the most well-known, straightforward, and widely applied paradigm
in mathematical programming. The LPP model’s simplicity makes it easily adaptable to a wide range of practical
applications, including supply chain management, supplier selection, assignment issues, and challenges with
transportation. Over several decades, the extension and development of standard LPP have been discussed. Examples
of expanded LPP include goal LPP, multi-objective LPP, bi-level or multi-layer LPP, etc.

Many studies also use the widely used LPP, which accounts for uncertainty. Initially, Bellman and Zadeh [1]
invented the fuzzy set (FS) theory, which served as the foundation for the development of fuzzy LPP (FLPP).
Zimmermann [2] initially introduced the fuzzy programming technique to address the multiobjective LPP in a fuzzy
setting. The goal of the fuzzy optimization technique is to maximize the marginal satisfaction of each fuzzy decision
set element (belongingness degree, membership functions, etc.).

It was later demonstrated that only taking membership degrees (MD) into consideration was insufficient to
adequately convey the marginal attainment of an element within the fuzzy decision set. Atanassov [3] initially
presented the intuitionistic fuzzy set (IFS) theory as a means of extending or examining the fuzzy set. The degree of
MD and NMD of an element in the IFS decision set are addressed by the IFS theory. The first person to suggest IF
optimization strategies based on IF decision sets in decision-making issues was Angelov [4].

The literature on fuzzy and IF environments has greatly benefited from the work of numerous authors. Furthermore,
when applying IFS theory to the multi-criteria decision-making (MCDM) problem, it is occasionally discovered that
its performance is limited in a variety of situations. For example, suppose the decision-maker(s) gives alternatives
that satisfy the requirements a score of 0.6 and those that don’t a score of 0.7. Given that the values of the degrees for
MD and NMD are both between 0 and 1, they are unrelated to each other. The case is not covered by the IF decision
set since it requires the sum of MD and NMD to be less than or equal to 1.

To get around some of the issues in real-world situations with FSs [5] and IFSs, Cuong presented the picture
fuzzy set (PFS) as a new idea for issues with computational intelligence to handle this circumstance [6, 7]. Due to
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