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Abstract: In the field of graph theory, the exploration of connectivity patterns within various graph families is
paramount. This study is dedicated to the examination of the neighbourhood degree-based topological index, a
quantitative measure devised to elucidate the structural complexities inherent in diverse graph families. An initial
overview of existing topological indices sets the stage for the introduction of the mathematical formulation and
theoretical underpinnings of the neighbourhood degree-based index. Through meticulous analysis, the efficacy
of this index in delineating unique connectivity patterns and structural characteristics across graph families is
demonstrated. The utility of the neighbourhood degree-based index extends beyond theoretical graph theory, finding
applicability in network science, chemistry, and social network analysis, thereby underscoring its interdisciplinary
relevance. By offering a novel perspective on topological indices and their role in deciphering complex network
structures, this research makes a significant contribution to the advancement of graph theory. The findings not only
underscore the versatility of the neighbourhood degree-based topological index but also highlight its potential as
a tool for understanding connectivity patterns in a wide array of contexts. This comprehensive analysis not only
enriches the theoretical landscape of graph descriptors but also paves the way for practical applications in various
scientific domains, illustrating the profound impact of graph theoretical studies on understanding the intricacies of
networked systems.

Keywords: Neighbourhood degree-based index; Graph theory; Connectivity patterns; Topological index; Network
analysis

1 Introduction and Preliminaries

Graph theory, a branch of discrete mathematics, has found extensive applications across diverse scientific and
technological domains. In bioinformatics, the analysis of biological networks, including protein-protein interaction
networks, has significantly benefited from graph theory methodologies [1]. Graph-based algorithms play a crucial role
in identifying functional modules and predicting protein functions [2]. Moreover, in epidemiology, graph models are
employed to study the spread of infectious diseases, where nodes represent individuals and edges represent potential
transmission pathways [3]. The applications of graph theory extend into social network analysis, a field where
the structure of relationships between individuals or entities is of paramount importance. Graph algorithms aid in
identifying influential nodes, detecting communities, and understanding the dynamics of information propagation
in online social networks [4, 5]. In the realm of transportation engineering, graph theory is essential for modeling
and optimizing transportation networks. Algorithms such as Dijkstra’s algorithm and the Minimum Spanning
Tree algorithm contribute to route optimization, traffic flow analysis, and infrastructure planning [6]. Similarly,
in telecommunication networks, graph theory provides tools for designing efficient communication networks,
optimizing data routing, and ensuring robust connectivity [7].

The applications of graph theory are not limited to traditional scientific disciplines. In cybersecurity, graph-based
models are employed for detecting and analyzing network vulnerabilities, identifying potential threats, and devising
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strategies for securing information systems [8]. Additionally, in recommendation systems, graph-based collaborative
filtering algorithms are used to provide personalized suggestions by modeling user-item interactions as a graph
structure [9]. In chemistry and molecular biology, graph theory is applied to represent molecular structures, with
topological indices serving as descriptors in quantitative structure-activity relationship (QSAR) studies [10]. The
analysis of chemical compounds as graphs enables the identification of structural features influencing biological
activities, which is essential in drug discovery and design. The interdisciplinary nature of graph theory is evident
in its applications across various scientific and technological fields, ranging from biology and epidemiology to
transportation, telecommunications, cybersecurity, and beyond. As new challenges emerge, the versatility of graph
theory continues to contribute valuable insights and solutions across a spectrum of domains.

In the quantitative structure-property relationship (QSPR) and QSAR studies, an integral term widely acknowledged
is that of topological indices (TIs). TIs are numeric invariants considered as transformations that convert graphical
structures into real numbers, expressed as f : G → R+. Functioning as both predictor parameters and molecular
descriptors, TIs play a crucial role in narrating molecular structures. Topological indices, derived from the structural
connectivity of molecules, play a vital role in various scientific disciplines, offering a quantitative representation
of molecular topology. In the field of chemoinformatics, these indices find extensive application in QSAR studies,
aiding in the prediction of the biological activities of chemical compounds based on their molecular structures [11].
Also, topological indices play a big role in drug discovery and design. For example, it’s important to understand how
molecular structure affects pharmacological effects in order to find the best drug candidates [12]. In environmental
chemistry, topological indices are employed to assess the toxicity and environmental impact of chemical substances,
assisting in the identification of environmentally friendly compounds [13]. Additionally, in material science,
topological indices play a role in predicting various physicochemical properties, contributing to the development of
novel materials with tailored characteristics [14]. The usefulness of topological indices can be seen in bioinformatics,
where they are used to study molecular networks and figure out how living things are connected [15–17].

Among the distance-based topological indices, the Weiner index [18] stands out as the oldest and most extensively
studied. Its significance in elucidating molecular structures has been well established. Recent advancements in the
field have been marked by the introduction of novel distance-based TIs known as status neighborhood indices, as
inaugurated by Kulli [19]. This development adds to the evolving landscape of topological indices, opening new
avenues for understanding and predicting molecular properties. The continuous exploration and application of these
indices underscore their pivotal role in advancing the field of chemical informatics. To study research work on these
graph topology descriptors, we refer to the studies [20–23].

Let G be a connected graph with E(G) and V (G) edge and vertex set respectively. Degree of vertex ν is number
of vertices adjacent to ν and distance is length of shortest path between two vertices ν1 and ν2, denoted by d(ν) and
d(ν1, ν2) respectively. For vertex ν, sum of all distances of all other vertices is called status of ν denoted by σn(ν).
We refer the study [24] for undefined notions and terms. Now we define status sum of neighbor vertices:

σn(u) =
∑

u∈N(ν)

σ(u)

where, N(ν) = NGν = {ν : uν ∈ E(G)}. Kulli [25] introduced first and second status neighbouredhood indices
of a graph defined as:

SNI1 =
∑

ν1ν2∈E(G)

[σn(ν1) + σn(ν2)] and SNI2 =
∑

ν1ν2∈E(G)

[σn(ν1).σn(ν2)]

Kulli [19] introduced some new indices defined. Atom bond connectivity (ABC) status neighborhood index,
geometric-arithmetic (GA) status neighborhood index and arithmetic-geometric (AG) status neighborhood index for
a graph G are defined as:

ABCSNI(G) =
∑

ν1ν2∈E(G)

√
σn(ν1) + σn(ν2)− 2

σn(ν1)× σn(ν2)

GASNI(G) =
∑

ν1ν2∈E(G)

2
√
σn(ν1)× σn(ν2)

σn(ν1) + σn(ν2)

AGSNI(G) =
∑

ν1ν2∈E(G)

σn(ν1) + σn(ν2)

2
√
σn(ν1)× σn(ν2)

Harmonic status neighborhood index and its polynomial are defined as:

HSN I(G) =
∑

ν1ν2∈E(G)

2

σn(ν1) + σn(ν2)
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HSN I(G, x) =
∑

ν1ν2∈E(G)

x
2

σn(ν1)+σn(ν2)

Symmetric division status neighborhood index and its polynomial are defined as:

SDSNI(G) =
∑

ν1ν2∈E(G)

σn(ν1)

σn(ν2)
+

σn(ν1)

σn(ν2)

SDSNI(G, x) =
∑

ν1ν2∈E(G)

x

(
σn(ν1)

σn(ν2)
+

σn(ν1)

σn(ν2)

)

Inverse sum index status neighborhood index and its polynomial are defined as:

ISSNI(G) =
∑

ν1ν2∈E(Gn)

σn(ν1)× σn(ν2)

σn(ν1) + σn(ν2)

ISSNI(G, x) =
∑

ν1ν2∈E(G)

x
σn(ν1)×σn(ν2)

σn(ν1)+σn(ν2)

The augmented status neighborhood index and its polynomial are defined as:

ASNI(G) =
∑

ν1ν2∈E(G)

[
σn(ν1)× σn(ν1)

σn(ν1) + σn(ν1)− 2

]3

ASNI(G, x) =
∑

ν1ν2∈E(G)

x

[
σn(ν1)×σn(ν1)

σn(ν1)+σn(ν1)−2

]3

This article talks about neighborhood degree-based graph descriptors and their M-polynomials as an alternative
to traditional valency-based descriptors that can be used to describe chemical structures in more detail. These
indices were used on a number of well-known graph families to see how well they worked at capturing changes in
the topological features of chemical structures. The results were then presented graphically to enhance clarity and
comprehension.

2 Results

In our quest to extract meaningful insights from molecular structures, we employ a diverse array of computational
strategies to compute topological indices. Our approach involves leveraging sophisticated techniques such as the
vertex partition strategy, where the molecular graph is systematically partitioned into subsets of vertices based on
specific criteria. Additionally, we employ edge partition techniques, meticulously categorizing the graph’s edges to
unveil intricate patterns that contribute to the overall molecular connectivity. We use expository strategies to make the
results easier to understand and to capture important structural details. This gives us a full picture of how the different
molecular parts are connected. In the pursuit of a thorough analysis, we harness sum of degrees of neighboring
techniques, which involves summing the degrees of adjacent vertices to derive valuable information about the
molecular environment. Degree checking techniques further refine our computations, allowing us to scrutinize the
distribution of vertex degrees and identify pivotal nodes within the molecular structure. Combinatorial techniques,
an integral part of our methodology, enable the exploration of combinatorial properties within the molecular graph,
providing deeper insights into the graph’s topological characteristics. Table 1 delineates the different edge types
in the Gear graph, organized based on their neighborhood vertex degrees and respective frequencies. Each set of
edges was subjected to the application of the specified index formulas, and the resulting values were determined by
multiplying them with the corresponding frequencies. Maple software was utilized for the computation of extensive
summations. Similar approaches were employed for Table 2, which presents neighborhood degree-based vertex
and edge partitions for the generalized Helm graph. Matlab was subsequently used to assess the numeric values of
calculated formulas within the specified range in Tables 3 and 4.

2.1 Results for Generalized Gear Graph

A Gear graph is obtained by replacing each edge on the perimeter of wheel graph Wn by a path of length 2 and
denoted by Gn. The Gear graph contains 3n edges and 2n+ 1 vertices. In this graph, there are two tyoes of edges
as given below:

E1 = {ν1ν2 ∈ E(Gn)|dGn
(ν1) = 2 dGn

(ν2) = 3} |E1 = 2n|

54



E2 = {ν1ν2 ∈ E(Gn)|dGn(ν1) = 3 dGn(ν2) = n} |E2 = n|
Therefore by calculation, there are two types of status edges as follows:

E1 = {ν1ν2 ∈ E(Gn)|σ(ν1) = 5n− 5 σ(ν2) = 7n− 10} |E1 = 2n|

E2 = {ν1ν2 ∈ E(Gn)|σ(ν1) = 5n− 5 σ(ν2) = 3n} |E2 = n|
By calculation, there are two types of status neighborhood edges given in Table 1.

Table 1. Status neighborhood edge partition of Gn

σn (ν1) , σn (ν1) Number of Edges
(10(n− 1), 17n− 20) 2n
(17n− 20, n(5n− 5)) n

By using status neighborhood edge partition of Gear graph Gn given in Table 1, we compute the following:
• Atom bond vonnectivity (ABC) status neighborhood index:

ABCSNI(Gn) =
∑

ν1ν2∈E(Gn)

√
σn(ν1) + σn(ν2)− 2

σn(ν1)× σn(ν2)

= 2n

(
10(n− 1) + (17n− 20)− 2

10(n− 1)(17n− 20)

) 1
2

+ n

(
(17n− 20) + 5n(n− 1)− 2

(17n− 20).5n(n− 1)

) 1
2

= 2n

(
27n− 32

170n2 − 370n+ 200

) 1
2

+ n

(
5n2 + 12n− 22

85n3 − 185n2 + 100n

) 1
2

• Geometric-arithmetic (GA) status neighborhood index:

GASNI(Gn) =
∑

ν1ν2∈E(Gn)

2
√
σn(ν1)× σn(ν2)

σn(ν1) + σn(ν2)

= 2n.
2
√

10(n− 1)(17n− 20)

10(n− 1) + (17n− 20)
+ n.

2
√
(17n− 20).5n(n− 1)

(17n− 20) + 5n(n− 1)

= 4n

√
170n2 − 370n+ 200

27n− 30
+ 2n

√
85n3 − 185n2 + 100n

5n2 + 12n− 20

• Arithmetic-geometric (AG) status neighborhood index:

AGSNI(Gn) =
∑

ν1ν2∈E(Gn)

σn(ν1) + σn(ν2)

2
√

σn(ν1)× σn(ν2)

= 2n.
10(n− 1) + (17n− 20)

2
√
10(n− 1)(17n− 20)

+ n.
(17n− 20) + 5n(n− 1)

2
√
(17n− 20).5n(n− 1)

= n
27n− 30√

170n2 − 370n+ 200
+ n

5n2 + 12n− 20

2
√
85n3 − 185n2 + 100n

• Harmonic status neighborhood index and its polynomial:

HSN (Gn) =
∑

ν1ν2∈E(Gn)

2

σn(ν1) + σn(ν2)

= 2n

(
2

10(n− 1) + (17n− 20)

)
+ n

(
2

(17n− 20) + 5n(n− 1)

)
=

4n

27n− 30
+

2n

5n2 + 12n− 20

HSN (Gn, x) =
∑

ν1ν2∈E(G)

x
2

σn(ν1)+σn(ν2)

= 2n.x
2

(10n−10)+(17n−20) + n.x
2

(17n−20)+(5n2−5n)

= 2n.x
2

27n−30 + n.x
2

5n2+12n−20
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• Symmetric division status neighborhood index and its polynomial:

SDSNI(Gn) =
∑

ν1ν2∈E(G)

σn(ν1)

σn(ν2)
+

σn(ν1)

σn(ν2)

= 2n

(
10n− 10

17n− 20
+

17n− 20

10n− 10

)
+ n

(
17n− 20

5n2 − 5n
+

5n2 − 5n

17n− 20

)
= 2n

(
389n2 − 880n+ 500

170n2 − 370n+ 200

)
+ n

(
25n4 − 50n3 + 314n2 − 680n+ 400

85n3 − 185n2 + 100n

)

SDSNI(Gn, x) =
∑

uv∈E(Gn)

x

(
σn(ν1)

σn(ν2)
+

σn(ν1)

σn(ν2)

)

= 2nx(
10n−10
17n−20+

17n−20
10n−10 ) + nx

(
17n−20

5n2−5n
+ 5n2−5n

17n−20

)

= 2nx

(
389n2−880n+500

170n2−370n+200

)
+ nx

(
25n4−50n3+314n2−680n+400

85n3−185n2+100n

)

• Inverse sum indeg status neighborhood index and its polynomial:

ISSNI(Gn) =
∑

ν1ν2∈E(Gn)

σn(ν1)× σn(ν2)

σn(ν1) + σn(ν2)

= 2n
(10n− 10)(17n− 20)

10n− 10 + 17n− 20
+ n

(17n− 20)(5n2 − 5n)

17n− 20 + 5n2 − 5n

= 2n

(
170n2 − 370n+ 200

27n− 30

)
+ n

(
85n3 − 185n2 + 100n

5n2 + 12n− 20

)

ISSN (Gn, x) =
∑

ν1ν2∈E(Gn)

x
σn(ν1)×σn(ν2)

σn(ν1)+σn(ν2)

= 2nx
(10n−10)(17n−20)
10n−10+17n−20 + nx

(17n−20)(5n2−5n)

17n−20+5n2−5n

= 2nx

(
170n2−370n+200

27n−30

)
+ nx

(
85n3−185n2+100n

5n2+12n−20

)

• Augmented status neighborhood index and its polynomial:

ASNI(Gn) =
∑

ν1ν2∈E(G)

[
σn(ν1)× σn(ν1)

σn(ν1) + σn(ν1)− 2

]3

= 2n

[
(10n− 10)(17n− 20)

10n− 10 + 17n− 20− 2

]3
+ n

[
(17n− 20)(5n2 − 5n)

17n− 20 + 5n2 − 5n− 2

]3
= 2n

[
170n2 − 370n+ 200

27n− 32

]3
+ n

[
85n3 − 185n2 + 100n

5n2 + 12n− 22

]

ASNI(Gn, x) =
∑

ν1ν2∈E(G)

x

[
σn(ν1)×σn(ν1)

σn(ν1)+σn(ν1)−2

]3

= 2nx[
(10n−10)(17n−20)
10n−10+17n−20−2 ]

3

+ nx

[
(17n−20)(5n2−5n)

17n−20+5n2−5n−2

]3

= 2nx

[
170n2−370n+200

27n−32

]3
+ nx

[
85n3−185n2+100n

5n2+12n−22

]3
2.2 Results for Helm Graph

A graph obtained by adjoining a pendant edge at each vertex of cycle of wheel graph is called the Helm graph
and denoted by Hn. The Helm graph contains 3n edges and 2n+ 1 vertices. In this graph, there are three tyoes of
edges as given below:

E1 = {ν1ν2 ∈ E(Hn)|dHn
(ν1) = 1 dHn

(ν2) = 4} |E1 = n|
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E2 = {ν1ν2 ∈ E(Hn)|dHn(ν1) = 4 dHn(ν2) = 4} |E2 = n|

E3 = {ν1ν2 ∈ E(Hn)|dHn
(ν1) = 4 dHn

(ν2) = 5} |E3 = n|

Therefore by calculation, there are three types of status edges as follows:

E1 =
{
ν1ν2 ∈ E(Hn)|σ(ν1) = 10n2 − 63n+ 112 σ(ν2) = 5n− 7

}
|E1 = n|

E2 = {ν1ν2 ∈ E(Hn)|σ(ν1) = 5n− 7 σ(ν2) = 5n− 7} |E2 = n|

E3 = {ν1ν2 ∈ E(Hn)|σ(ν1) = 5n− 7 σ(ν2) = 3n} |E3 = n|

By calculation, there are three types of status neighborhood edges given in Table 2.

Table 2. Status neighborhood edge partition of Hn

σn (ν1) , σn (ν1) Number of Edges(
5n− 7, 5n2 − 15n+ 38

)
n(

5n2 − 15n+ 38, 5n2 − 15n+ 38
)

n(
5n2 − 15n+ 38, n(5n− 7)

)
n

By using status neighborhood edge partition of Helm graph Hn given in Table 2, we compute the following:
• Atom bond connectivity (ABC) status neighborhood index:

ABCSNI(Hn) =
∑

ν1ν2∈E(Hn)

√
σn(ν1) + σn(ν2)− 2

σn(ν1)× σn(ν2)

= n

(
(5n− 7) + (5n2 − 15n+ 38)− 2

(5n− 7)(5n2 − 15n+ 38)

) 1
2

+ n

(
(5n2 − 15n+ 38) + (5n2 − 15n+ 38)− 2

(5n2 − 15n+ 38)(5n2 − 15n+ 38)

) 1
2

+ n

(
(5n2 − 15n+ 38) + (5n2 − 7n− 2)− 2

(5n2 − 15n+ 38)(5n2 − 7n− 2)

) 1
2

= n

(
5n2 − 10n+ 29

25n3 − 110n2 + 295n− 266

) 1
2

+ n

(
10n2 − 30n+ 74

25n4 − 150n3 + 605n2 − 1140n+ 1444

) 1
2

+ n

(
10n2 − 22n+ 36

25n4 − 110n3 + 295n2 − 266n

) 1
2

• Geometric-arithmetic (GA) status neighborhood index:

GASNI(Hn) =
∑

ν1ν2∈E(Hn)

2
√

σn(ν1)× σn(ν2)

σn(ν1) + σn(ν2)

= n.
2
√
(5n− 7)(5n2 − 15n+ 38)

(5n− 7) + (5n2 − 15n+ 38)

+ n.
2
√
(5n2 − 15n+ 38)(5n2 − 15n+ 38)

(5n2 − 15n+ 38) + (5n2 − 15n+ 38)

+ n.
2
√
(5n2 − 15n+ 38)(5n2 − 7n)

(5n2 − 15n+ 38) + (5n2 − 7n)

= n+ n

√
25n4 − 110n3 + 295n2 − 266n

5n2 − 11n+ 19

+ 2n

√
25n3 − 110n2 + 295n− 266

5n2 − 10n+ 31
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• Arithmetic-geometric (AG) status neighborhood index:

AGSNI(Hn) =
∑

ν1ν2∈E(Hn)

σn(ν1) + σn(ν2)

2
√
σn(ν1)× σn(ν2)

= 2n.
(5n− 7) + (5n2 − 15n+ 38)

2
√
(5n− 7)(5n2 − 15n+ 38)

+ n.
(5n2 − 15n+ 38) + (5n2 − 15n+ 38)

2
√

(5n2 − 15n+ 38)(5n2 − 15n+ 38)

+ n.
(5n2 − 15n+ 38) + (5n2 − 7n)

2
√
(5n2 − 15n+ 38)(5n2 − 7n)

= n+ n
5n2 − 10n+ 31√

25n3 − 110n2 + 295n− 266
+ n

5n2 − 11n+ 19

2
√
25n4 − 110n3 + 295n2 − 266n

• Harmonic status neighborhood index and its polynomial:

HSN I(Hn) =
∑

ν1ν2∈E(Hn)

2

σn(ν1) + σn(ν2)

= n

(
2

(5n− 7) + (5n2 − 15n+ 38)

)
+ n

(
2

(5n2 − 15n+ 38) + (5n2 − 15n+ 38)

)

+ n

(
2

(5n2 − 15n+ 38) + (5n2 − 7n)

)
=

2n

5n2 − 10n+ 31
+

n

5n2 − 15n+ 38
+

n

5n2 − 11n+ 19

HSN I(Hn, x) =
∑

ν1ν2∈E(Hn)

x
2

σn(ν1)+σn(ν2)

= n.x
2

(5n−7)+(5n2−15n+38) + n.x
2

(5n2−15n+38)+(5n2−15n+38)

+ n.x
2

(5n2−15n+38)+(5n2−7n)

= n.x
2

5n2−10n+31 + n.x
2

5n2−15n+38 + n.x
2

5n2−11n+19

• Symmetric division status neighborhood index and its polynomial:

SDSNI(Hn) =
∑

ν1ν2∈E(Hn)

σn(ν1)

σn(ν2)
+

σn(ν1)

σn(ν2)

= n

(
5n− 7

5n2 − 15n+ 38
+

5n2 − 15n+ 38

5n− 7

)
+ n

(
5n2 − 15n+ 38

5n2 − 15n+ 38
+

5n2 − 15n+ 38

5n2 − 15n+ 38

)
+ n

(
5n2 − 15n+ 38

5n2 − 7n
+

5n2 − 7n

5n2 − 15n+ 38

)
= 2n+ n

(
25n4 − 150n3 + 630n2 − 1210n+ 1493

25n3 − 110n2 + 295n− 266

)
+ n

(
50n4 − 220n3 + 654n2 − 1140n+ 1444

25n4 − 110n3 + 295n2 − 266n

)

SDSNI(Hn, x) =
∑

ν1ν2∈E(Hn)

x
σn(ν1)

σn(ν2)
+

σn(ν1)

σn(ν2)

= nx

(
5n−7

5n2−15n+38
+ 5n2−15n+38

5n−7

)
+ nx

(
5n2−15n+38

5n2−15n+38
+ 5n2−15n+38

5n2−15n+38

)

+ nx

(
5n2−15n+38

5n2−7n
+ 5n2−7n

5n2−15n+38

)

= nx2 + nx

(
25n4−150n3+630n2−1210n+1493

25n3−110n2+295n−266

)
+ nx

(
50n4−220n3+654n2−1140n+1444

25n4−110n3+295n2−266n

)
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• Inverse sum indeg status neighborhood index and its polynomial:

ISSNI(Hn) =
∑

ν1ν2∈E(Hn)

σn(ν1)× σn(ν2)

σn(ν1) + σn(ν2)

= n
(5n− 7)(5n2 − 15n+ 38)

(5n− 7) + (5n2 − 15n+ 38)
+ n

(5n2 − 15n+ 38)(5n2 − 15n+ 38)

(5n2 − 15n+ 38) + (5n2 − 15n+ 38)

+ n
(5n2 − 15n+ 38)(5n2 − 7n)

(5n2 − 15n+ 38) + (5n2 − 7n)

= n

(
25n3 − 110n2 + 295n− 266

5n2 − 10n+ 31

)
+

1

2
n(5n2 − 15n+ 38)

+
n

2

(
25n4 − 110n3 + 295n2 − 266n

5n2 − 11n+ 19

)

ISSNI(Hn, x) =
∑

ν1ν2∈E(Hn)

x
σn(ν1)×σn(ν2)

σn(ν1)+σn(ν2)

= nx
(5n−7)(5n2−15n+38)

(5n−7)+(5n2−15n+38) + nx
(5n2−15n+38)(5n2−15n+38)

(5n2−15n+38)+(5n2−15n+38)

+ nx
(5n2−15n+38)(5n2−7n)

(5n2−15n+38)+(5n2−7n)

= nx

(
25n3−110n2+295n−266

5n2−10n+31

)
+ nx

1
2 (5n

2−15n+38)

+ nx
1
2

(
25n4−110n3+295n2−266n

5n2−11n+19

)

• Augmented status neighborhood index and its polynomial:

ASNI(Hn) =
∑

ν1ν2∈E(Gn)

[
σn(ν1)× σn(ν1)

σn(ν1) + σn(ν1)− 2

]3

= n

[
(5n− 7)(5n2 − 15n+ 38)

(5n− 7) + (5n2 − 15n+ 38)− 2

]3
+ n

[
(5n2 − 15n+ 38)(5n2 − 15n+ 38)

(5n2 − 15n+ 38) + (5n2 − 15n+ 38)− 2

]3
+ n

[
(5n2 − 15n+ 38)(5n2 − 7n)

(5n2 − 15n+ 38) + (5n2 − 7n)− 2

]3
= n

[
25n3 − 110n2 + 295n− 266

5n2 − 10n+ 29

]3
+ n

[
25n4 − 150n3 + 605n2 − 1140n+ 1444

10n2 − 30n+ 74

]3
+ n

[
25n4 − 110n3 + 295n2 − 266n

10n2 − 22n+ 36

]3

ASNI(Hn, x) =
∑

ν1ν2∈E(Hn)

x

[
σn(ν1)×σn(ν1)

σn(ν1)+σn(ν1)−2

]3

= nx

[
(5n−7)(5n2−15n+38)

(5n−7)+(5n2−15n+38)−2

]3

+ nx

[
25n4−150n3+605n2−1140n+1444

10n2−30n+74

]3

+ nx

[
(5n2−15n+38)(5n2−7n)

(5n2−15n+38)+(5n2−7n)−2

]3

= nx

[
25n3−110n2+295n−266

5n2−10n+29

]3
+ nx

[
25n4−150n3+605n2−1140n+1444

10n2−30n+74

]3

+ nx

[
(5n2−15n+38)(5n2−7n)

(5n2−15n+38)+(5n2−7n)−2

]3

3 Graphical Analysis

In this dedicated section of our research, we conducted a systematic generation of two comprehensive tables
specifically tailored for the generalized Gear and Helm graphs. These tables were derived from the indices
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meticulously evaluated in the preceding section, employing sophisticated MATLAB algorithms designed to ensure
accuracy and efficiency in the computational processes. For the convenience and transparency of interested
researchers, the detailed MATLAB algorithms utilized in the calculations have been made publicly accessible
on our GitHub repository [https://github.com/alleerazza786/MASNI]. The first table intricately lays out the numeric
values corresponding to the generalized Gear graph, denoted as Gn, as the variable n systematically varies from 3
to 15. This comprehensive representation serves as a valuable resource for elucidating the numerical patterns and
variations inherent in Gn across different values of n. In the same way, the second table shows in detail the numerical
values that go with the Helm graph, which is written as Hn. These values help us understand how it behaves when
the variable n changes within the given range. Together, these meticulously crafted tables and the accompanying
MATLAB algorithms form a robust foundation for further analysis, fostering both transparency and reproducibility
in our research endeavors.

Figure 1. ABCSNI for generalized Gear and Helm graphs

Figure 2. AGSNI for generalized Gear and Helm graphs

Figure 3. SDSNI for generalized Gear and Helm graphs
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In Figures 1, 2, and 3, we present a visual representation elucidating the atom bond connectivity index (ABCI),
arithmetic geometric index (AGI), and symmetric division status neighborhood index (SDSNI) for both graphs, all
meticulously derived from the data encapsulated in Tables 3 and 4. These pictures are very helpful for figuring out the
complicated details in the atom bond connectivity, arithmetic geometric, and symmetric division status neighborhood
parts of the graphs we’re looking at. As the graphs unfold, a discernible trend emerges, highlighting the dynamic
relationship between these TIs and the graph’s size and order. Notably, the numeric values of these descriptors
exhibit a consistent increase with each incremental change in the graph size and order. This pattern accurately shows
the natural connection between the topological indices and the changing complexity of the graphs’ structures. It also
gives us useful information about how TIs and graph structure work together. Based on the information in Tables 3
and 4, the graphs are very helpful for not only understanding but also visually interpreting the complex relationships
between ABCI, AGI, and SDSNI in the context of the graphs that were looked at. The correlation between the
indices and the structure of the mentioned graphs serves as a fundamental tool for QSPR and QSAR analyses. This
connection is particularly significant for chemistry researchers, as it significantly reduces the cost and time involved
in predicting the physicochemical properties of numerous chemical compounds. The insights gained from studying
these indices and their relationship with graph structures contribute to more efficient and economical approaches in
the field of chemical research, facilitating quicker and more accurate predictions of properties crucial for various
applications.

Table 3. The evaluated degree based descriptors values for numerous generalized Gear graph

Gn ABCSNI AGSNI GASNI HSNI SDSNI ISSNI
3 2.4424 9.145 8.8584 0.33365 19.174 118.68
4 2.6053 12.247 11.759 0.2792 26.000 254.36
5 2.7821 15.413 14.599 0.25108 33.346 444.59
6 2.9573 18.645 17.379 0.23354 41.253 690.83
7 3.1267 21.942 20.105 0.22141 49.733 993.99
8 3.2896 25.302 22.785 0.21245 58.794 1354.7
9 3.4462 28.723 25.423 0.20553 68.438 1773.2

10 3.5968 32.203 28.025 0.2000 78.667 2250
11 3.7418 35.739 30.595 0.19548 89.481 2785.2
12 3.8819 39.33 33.137 0.1917 100.88 3378.9
13 4.0173 42.974 35.653 0.1885 112.87 4031.3
14 4.1486 46.669 38.146 0.18574 125.45 4742.4
15 4.2759 50.413 40.618 0.18335 138.61 5512.4

Table 4. The evaluated degree based descriptors values for numerous generalized Helm graph

Hn ABCSNI AGSNI GASNI HSNI SDSNI ISSNI
3 2.5899 12.455 8.1967 0.30616 27.526 120.96
4 2.7033 16.346 11.088 0.25437 34.79 268.15
5 2.776 20.817 13.754 0.20734 45.47 517.19
6 2.8304 25.7 16.308 0.17146 58.503 899.42
7 2.8789 30.93 18.79 0.14472 73.666 1445.3
8 2.926 36.469 21.222 0.12453 90.892 2185.2
9 2.9729 42.29 23.616 0.10894 110.16 3148.9
10 3.0199 48.374 25.981 0.096627 131.45 4366.7
11 3.0669 54.705 28.322 0.086706 154.76 5868.5
12 3.1138 61.269 30.643 0.078565 180.08 7684.3
13 3.1604 68.055 32.949 0.071778 207.41 9844.1
14 3.2067 75.054 35.24 0.066042 236.75 12378
15 3.2524 82.256 37.518 0.061134 268.1 15316

4 Conclusions

In conclusion, our study focused on formulating and evaluating general formulas for newly introduced graph
descriptors for the generalized Gear and Helm graphs, well-known families in graph theory. Leveraging MATLAB
algorithms, we computed the numeric values of these indices, allowing for a quantitative analysis of their behavior
concerning graph size and order. The graphical analysis presented in the previous section, based on the calculated
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values and corresponding tables, revealed a consistent increase in descriptor values with the growth of graph size
and order. This visual exploration provided valuable insights into the relationship between topological indices and
the evolving structural complexities of the studied graphs, offering a comprehensive understanding of their interplay.
Our findings contribute both theoretically and practically to the field, establishing a robust framework for further
investigations into the application and interpretation of graph descriptors within diverse graph families.

5 Future Work

The techniques outlined in our article can be applied for the in-depth analysis of the topological aspects of
even more complex chemical structures. Additionally, similar methodologies can be employed to analyze distance
and eccentricity-based descriptors. By extending these approaches, researchers can gain valuable insights into the
structural characteristics and properties of intricate chemical compounds, contributing to a more comprehensive
understanding of their behavior and facilitating advancements in chemical research.
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