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Abstract: The incorporation of fractional calculus into nanofluid models has proven effective in capturing the
complex dynamics of nanofluid flow and heat transfer, thereby enhancing the precision of predictions in this intricate
field. In this study, the dynamics of a viscoelastic second-grade nanofluid model are examined through the application
of the Laplace transform technique on a vertical plate. Initially, the model is formulated as coupled partial differential
equations to describe the second-grade nanofluid system. The governing equations are then rendered dimensionless
using appropriate dimensionless parameters. The non-dimensional model is subsequently generalized by introducing
a modified Caputo fractional derivative operator. To model a homogenous nanofluid, nanoparticles of Al2O3 in
nanometer-sized form are suspended in mineral transformer oil. The Laplace transform is employed to solve the
momentum, energy, and mass diffusion equations, providing analytical solutions. Graphical and tabular analyses
are conducted to assess the influence of various physical parameters—including the fractional order, nanoparticle
volume fraction, and time parameter—on the velocity, thermal, and concentration profiles. The results indicate
that increasing the nanoparticle volume fraction, fractional order, and time parameter significantly enhances the rate
of heat transfer. Additionally, it is observed that the velocity, temperature, and concentration profiles are notably
affected by increasing the volume fraction of nanoparticles. The accuracy and reliability of the obtained solutions are
validated through comparisons with existing literature. This work advances the understanding of nanofluid dynamics
and presents valuable insights for industrial applications, particularly in enhancing heat transfer performance.

Keywords: Generalized Caputo fractional operator; ρ-Laplace transform technique; Mittag-Leffler function; Wright
function; Mineral transformer oil

1 Introduction
The Laplace transform is an integral transform method that is used in many fields to solve differential equations

and analyze dynamic systems, such as fluid dynamics. The Laplace transform technique converts a time-dependent
function into a complex-variable function, that is denoted by s. In this way, differential equations can be transformed
into algebraic equations, allowing complex mathematical problems to be solved more easily. The utilization of the
Laplace transform method is extremely advantageous in the field of fluid dynamics as it enables a comprehensive
comprehension of temporary occurrences and the production of solutions in the time domain for differential equations
that dictate fluid flow and heat transfer processes. One can solve Navier-Stokes equations and energy equations more
easily by applying the Laplace transform to these equations. Various flow configurations and boundary conditions
can be investigated under this model in order to determine the dynamics of transient phenomena such as variations
in velocity and temperature distributions over a specific time period. A combination of the Laplace transform, and
fractional calculus can help us better understand fluid dynamics. Fractional calculus deals primarily with derivatives
and integrals of non-integer orders. It provides a more general method for representing fractal-like patterns, memory
effects, and non-local behaviors. Fractional derivatives better represent non-Newtonian behaviors, anomalous
diffusion, and viscoelastic effects of fluid dynamics than integer-order derivatives. It is possible to improve the
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accuracy of mathematical models that represent real-world fluid flow processes when fractional derivatives and the
Laplace transform method are both considered at the same time. Sub-diffusion, super-diffusion, non-Newtonian
flows and other complex phenomena in fluids of fractional order can be investigated with this approach. When
dealing with complex fluid systems such as viscoelastic fluids and flows through porous media, fractional Laplace
transforms are a powerful tool for finding solutions and evaluating fractional differential equations. To summarize,
the combination of fractional calculus and Laplace transforms provides a comprehensive way to explain fluid dynamic
processes. By incorporating fractional derivatives and transforming differential equations into algebraic equations,
a more comprehensive understanding of complex flow processes, non-local effects and unsteady behaviors in many
fluid systems can be obtained [1–5].

The wide range of applications of fractional calculus in science and engineering has made it one of the most
important topics in mathematics. Fractional calculus offers new ways of describing the dynamics of non-local
complex systems. It has been observed that fractional differential operators with non-locality exhibit a stronger
memory effect [6–10]. Therefore, a variety of systems have been considered as candidates for applying these
operators in order to comprehend the ramifications of non-locality more fully [11–17]. In a recent study conducted by
Jarad and Abdeljawad [18], a modified version of the Laplace transform was introduced to accommodate two distinct
categories of generalized fractional operators, namely the Riemann and generalized Caputo fractional operators. For
the time being, there is no updated Laplace transform for Caputo-Fabrizio and Atangna-Baleanu in the literature. As
a result, we used the modified Laplace transform for the generalized Caputo fractional derivative operator to solve
a fluid flow problem in a sports phenomenon. Some useful and fruitful studies that are relevant to non-Newtonian
problems can be found in the studies [19–21]. In the present work, the authors analyzed the viscoelastic second grade
Al2O3 based mineral transformer oil nanofluid on a vertical plate. The fractional mathematical model has been
developed through the operator of generalized Caputo derivative and then solved by means of the novel ρ-Laplace
transform technique. For validation of the present model and obtained solution, the authors compared their results
with the already published work.

2 Theory of ρ-Laplace Transform Technique
This section of the manuscript devoted to the fundamental definitions, theorems, and Lemmas of the ρ-Laplace

transform technique, which is organized as follow:
Definition 2.1: Let η : [0,∞) → ℜ be a real-valued function then ρ-Laplace transform of η is defined by [18]:

£ρ{η(τ)}(q) =
∫ ∞

0

exp

(
−q

tρ

ρ

)
η(τ)

dτ

τ1−ρ
; ρ > 0 (1)

for all values of q, the integral is valid.
Theorem 2.2: Let η : [0,∞) → ℜ be a real-valued function such that its ρ-Laplace transform exists. Then

£ρ{η(τ)}(q) = £
{
η(ρτ)ρ

−1
}
(q) (2)

where, £{η} is the ordinary Laplace transform η.
Convolution Lemma 2.3: Let η and ζ be two piecewise continuous functions at each interval [0, τ ] and of

exponential order, then their ρ∗ convolution product of η and ζ is given by [18]:

(η ∗ ζ) (τ) =
∫ τ

0

η (τρ − tρ)
−ρ

ζ(τ)
dt

t1−ρ
(3)

Then the commutatively of the ρ∗ convolution of two function is

(η ∗ ζ) (τ) = (ζ ∗ η) (τ) (4)

ρ-Laplace transform of some elementary functions.
Lemma 2.4: As given in the study [18]:

£ρ{1}(q) =
1

q
, q > 0 (5)

£ρ {τρ} (q) = ρ
p
ρ

Γ
(
1 + p

ρ

)
q1+

p
ρ

, p ∈ R, q > 0 (6)

£ρ
{
exp

(
λ
τρ

ρ

)}
(q) =

1

q − λ
, q > λ (7)
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2.1 Mittag-Leffler Function
The Mittag-Leffler function, a broader form of exponential functions, plays a crucial role in fractional order

calculus. This paper embarks on analyzing the fractional mathematical model of the Navier-Stokes problem, aiming
to derive a solution in terms of the Mittag-Leffler function. Therefore, establishing a link between the ρ-Laplace
transform and the Mittag-Leffler function is imperative as an initial phase. In fluid dynamics, the Mittag-Leffler
function carries substantial physical significance across various domains. The mathematical depiction of the Mittag-
Leffler function for a single variable is illustrated in the study [18].

Eδ(z) =

∞∑
l=0

zl

Γ(lδ + 1)
, z ∈ C,R(δ) > 0 (8)

In more general form, it is given as [18]:

Eδ,γ(z) =

∞∑
l=0

zl

Γ(lδ + γ)
, z ∈ C,R(δ) > 0 (9)

From Eqs. (8) and (9), the relation Eδ,1(z) = Eδ(z) is obvious.
Lemma 2.5: Assume R(δ) > 0 and

∣∣∣ λqδ ∣∣∣ < 1, then:

£ρ

{
Eδ

(
λ

(
τρ

ρ

)δ
)}

=
qδ−1

qq − λ
(10)

£ρ

{(
τρ

ρ

)δ−1

Eδ,δ

(
λ

(
τρ

ρ

)δ
)}

=
(
qδ − λ

)−1 (11)

2.2 Generalized Left and Right Caputo Fractional Operator
The left and right generalized Caputo fractional operators are modified as shown in the study [18].

(ca℘
γ,ρη) (τ) =

1

Γ(n− γ)

∫ τ

z

(
τρ − vρ

ρ

)n−γ−1

βnη(v)
dv

v1−ρ
(12)

(c℘γ,ρ
b η) (τ) =

1

Γ(n− γ)

∫ b

τ

(
vρ − τρ

ρ

)n−γ−1

(−βn) η(v)
dv

v1−ρ
(13)

It is worth mentioning that the derivative defined in Eqs. (12) and (13) become Caputo fractional derivative
when ρ = 1, but for ρ → 0 the derivatives in (12) and (13) approaches to Caputo-Hadamard fractional derivative
respectively.

2.3 ρ-Laplace Transform of the Generalized Caputo Fractional Operator
The ρ-Laplace transform of generalized Caputo fractional derivative is given in the following form [22]:

£ρ {(℘γ,ρ
C η) (τ)} (q) = qγ

£ρ{η(τ)} −
n−1∑
j=0

q−j−1
(
χjη
)
(0)

 (14)

3 Physical Description of the Phenomena
The current research delves into the time-dependent, magnetohydrodynamic (MHD)-free convection flow of a

viscoelastic second-grade nanofluid along a vertical plate. The plate is described as an exponentially accelerated
isothermal infinite vertical surface, wherein both temperature and mass diffusion undergo variations due to heat
absorption. The fluid’s conductivity has been scrutinized at a microscopic level, yielding a magnetic Reynolds
number below one and a transverse magnetic field surpassing the induced magnetic field. The influence of viscous
dissipation and joule heating on the energy equation is deemed negligible. The geometrical representation of the
proposed study along with the assumptions is given in Figure 1.

The mathematical model that corresponds to the considered phenomena under consideration is provided in the
study [23].
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Figure 1. Geometrical description of the flow

ρnf
∂u(y, t)

∂t
= µnf

∂2u(y, t)

∂y2
+ α1

∂3u(y, t)

∂t∂y2
− σnfB

2
0u(y, t) + g (ρβT )nf (T (y, t)− T∞)+

g (ρβC)nf (C(y, t)− C∞)

(15)

(ρCp)nf
∂T (y, t)

∂t
= knf

∂2T (y, t)

∂y2
(16)

∂C(y, t)

∂t
= Dnf

∂2C(y, t)

∂y2
(17)

Subjected to the following physical conditions.

u(y, 0) = 0, T (y, 0) = T∞,

u(0, t) = U0H(t) exp
(
a tρ

ρ

)
, T (0, t) = Tw + (Tw − T∞)Atρ,

u(∞, t) = 0, T (∞, t) = T∞,
C(y, 0) = C∞,

C(0, t) = Cw + (Cw − C∞)Atρ,
C(∞, t) = C∞.


(18)

The correlations between regular fluid, nanofluid and suspended nanoparticles are mathematically stated as [24–
27].

Dynamic viscosity:

µnf =
µf

(1− ϕ)2.5
(19)

Density:

ρnf = (1− ϕ)ρf + ϕρs (20)

Mass volumetric expansion:

(ρCp)vf = (1− ϕ) (ρCp)f + ϕ (ρCp)s (21)
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Thermal volumetric expansion:

(ρβT )nf = (1− ϕ) (ρβT )f + ϕ (ρβT )s (22)

Electrical conductivity:

σnf = σf

1 + 3
(

σs

σf
− 1
)
ϕ(

σs

σf
+ 2
)
−
(

σs

σf
− 1
)
ϕ

 (23)

Thermal conductivity:

knf = kf

[
ks + 2kf − 2ϕ (kf − ks)

ks + 2kf + 2ϕ (kf − ks)

]
(24)

The experimental values of the thermos-mechanical characteristics of the base fluid mineral transformer oil and
suspended nanoparticle aluminum dioxide are given in Table 1.

Table 1. Thermo-mechanical characteristics of regular fluid and nanoparticles [28–30]

ρ
(
kg/m3

)
Cp(J/kgK) K(W/mK) βT × 10−5

(
K−1

)
σ(Ωm)−1

Mineral Transformer Oil 861 1860 0.157 0.75 1.57× 10−8

Al2O3 3970 1860 40 0.86 10−10

3.1 Generalization of the Local Model
This portion of the current study will provide a detailed explanation of the process involved in transforming the

localized mathematical model into a non-local (generalized) model. The first step involves making the dimensional
mathematical model dimensionless by using similarity values. Subsequently, the model is transformed into a time-
fractional model by the inclusion of the non-local time derivative, namely the generalized Caputo derivative, in
place of the local time derivative [18]. It is essential to note that the non-local model is more advantageous and
comprehensive in comparison to the local model for elucidating the memory impact and flow behavior.

Following are the similarity variables for making the system of equations unit less:

u∗ =
u

U0
, ξ =

U0

v
y, τ =

U2
0

v
t, Θ =

T − TS

Tp − Ts
, Φ =

C − Cs

Cp − Cs
(25)

Inserting the above-addressed similarity quantities together with nanofluid expressions; Eqs. (15)–(18) will
adopt the shape.

∂u(ξ, τ)

∂τ
= b4

∂2u(ξ, τ)

∂ξ2
+ α∗

1

∂3u(ξ, τ)

∂t∂ξ2
− d0u(ξ, τ) + d1Θ(ξ, τ) + d2Φ(ξ, τ) (26)

∂Θ(ξ, τ)

∂τ
= λ4

∂2Θ(ξ, τ)

∂ξ2
(27)

∂Φ(ξ, τ)

∂τ
= λ5

∂2Φ(ξ, τ)

∂ξ2
(28)

with

u(ξ, 0) = 0,Θ(ξ, 0) = 0,Φ(ξ, 0) = 0,

u(0, τ) = H(τ)ea
τρ

ρ
,Θ(0, t) = τρ,Φ(0, τ) = τρ,

u(∞, τ) = 0,Θ(∞, τ) = 0,Φ(∞, τ) = 0.

 (29)

137



The constants and unitless parameters that are produce during calculi are

α∗
1 =

α1U
2
0

ρfvfb0
, Gr =

g (βT )f vf (Tp − Ts)

U3
0

, Gm =
g (βC)f vf (Cp − Cs)

U3
0

, M =
σfB

2
0vf

ρfU3
0

,

Pr =
µf (Cp)f

kf
, Sc =

vf
Df

, b0 = (1− ϕ) + ϕ
ρs
ρf

, b1 = µf (1− ϕ)−2.5, b2 = (1− ϕ) + ϕ
(ρβT )s
(ρβT )f

,

b3 = (1− ϕ) + ϕ
(ρβc)s
(ρβC)f

, b4 = 1 +
3
(

σs

σf
− 1
)
ϕ(

σs

σf
+ 2
)
−
(

σs

σf
− 1
)
ϕ
, b5 =

b1
b0
, b6 =

b4
b0
, b7 =

b2
b0
, b8 =

b3
b0
,

d0 = Mb5, d1 = b7Gr. d2 = b8Gm, λ1 = (1− ϕ) + ϕ
(ρCp)s
(ρCp)f

, λ2 =
ks + 2kf − 2ϕ (kf − ks)

ks + 2kf + 2ϕ (kf − ks)
,

λ3 =
λ2

λ1
, λ4 =

λ3

Pr
, λ5 =

(1− ϕ)

Sc
.

where, α∗
1, Gr,Gm,M,Pr and Sc are second grade parameter, thermal Grashof number, mass Grashof number,

Magnetic (resistive) parameter, Prandtl number and Schmidth number respectively, while b0, b1, b2, b3, b4, b5, b6,
b7, b8, d0, d1, d2, λ1, λ2, λ3, λ4 and λ5 are constants. The non-local generalized Caputo model of the unitless
governing Eqs. (26)–(28) is given as:

c℘τ,ρ
τ u(ξ, τ) = b4

∂2u(ξ, τ)

∂ξ2
+ α∗c

1 ℘τ,ρ
τ

(
∂2u(ξ, τ)

∂ξ2

)
− d0u(ξ, τ) + d1Θ(ξ, τ) + d2Φ(ξ, τ) (30)

c℘γ,ρ
τ Θ(ξ, τ) = λ4

∂2Θ(ξ, τ)

∂ξ2
(31)

c℘γ,ρ
τ Φ(ξ, τ) = λ5

∂2Φ(ξ, τ)

∂ξ2
(32)

Here the operator of generalized Caputo fractional derivative is defined as

c℘γ,ρ
τ η(ζ, τ) =

1

Γ(n− γ)

∫ τ

a

(
τρ − tρ

ρ

)n−γ−1

δnη(u)
du

u1−ρ
(33)

3.1.1 Solution of the concentration equation
Through the application of the ρ-Laplace transform method to the generalized energy equation outlined in Eq.

(32); we derive the resulting expression.

qγΦ̄(ξ, q)−
n−1∑
k=0

qλ−k−1
(
χkΦ

)
(0)− λ5

d2Φ̄(ξ, q)

dξ2
= 0 (34)

with

Φ̄(0, q) = ρ
p
ρ

Γ
(
1 + p

ρ

)
ρ1+

p
ρ

, Φ̄(∞, q) = 0

 (35)

Upon solving the summation within the differential Eq. (34) and subsequently applying both the initial and
transformed boundary conditions, Eq. (34) can be formulated within the domain of the ρ-Laplace transform.

Φ̄(ξ, q) = ρ
p
ρ

Γ
(
1 + p

ρ

)
ρ1+

p
ρ

exp

(
−ξ

√
λ−1
5

√
qγ
)

(36)

Applying the inversion technique of ρ-Laplace technique on Eq. (36) by keeping in view the convolution theorem,
we reached at Φ(ξ, τ) =

∫ τ

0
(t− τ)ρf(τ)dτ .

Here Ψ is a Wright’s function and f(τ) = 1
tΨ

(
0,−γ

2 ,−ξ
√

λ−1
5 τ − γ

2

)
.
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3.1.2 Solution of the energy equation
Through the application of the ρ-Laplace transform method to the generalized energy equation presented in Eq.

(31); we derive the resulting expression.

qγΘ̄(ξ, q)−
n−1∑
k=0

qλ−k−1
(
χkΘ

)
(0)− λ4

d2Θ̄(ξ, q)

dξ2
= 0 (37)

with

Θ̄(0, q) = ρ
p
ρ

Γ
(
1 + p

ρ

)
ρ1+

p
ρ

, Θ̄(∞, q) = 0

 (38)

Applying the inversion technique of ρ-Laplace technique on Eq. (37) by keeping in view the convolution theorem,
we reached at Θ(ξ, τ) =

∫ τ

0
(t− τ)ρg(τ)dτ .

Here Ψ is a Wright’s function and g(τ) = 1
tΨ

(
0,−γ

2 ,−ξ
√
λ−1
5 τ − γ

2

)
.

Upon solving the summation within the differential Eq. (37) and subsequently applying both the initial and
transformed boundary conditions, Eq. (37) can be expressed within the domain of the ρ-Laplace transform.

Θ̄(ξ, q) = ρ
p
ρ

Γ
(
1 + p

ρ

)
q1+

p
ρ

exp
(
−ξ
√

λ4

√
qγ
)

(39)

3.1.3 Solution of the momentum equation
Using ρ-Laplace transform to unit less non-local momentum Eq. (30), we reached to

qγ ū(ξ, q)−
n−1∑
k=0

qλ−k−1
(
χku

)
(0)− b4

d2ū(ξ, q)

dξ2
+ α∗

1

(
qγ −

n−1∑
k=0

qλ−k−1
(
χk
)
(0)

)
d2ū(ξ, q)

dξ2

+ d0ū(ξ, q)− d1Θ̄(ξ, q)− d2Φ̄(ξ, q) = 0

(40)

with

ū(0, q) =
1

q − λ
, ū(∞, q) = 0

}
(41)

Upon solving the summation within the differential Eq. (40) and subsequently applying both the initial and
transformed boundary conditions, Eq. (40) can be expressed within the domain of the ρ-Laplace transform.

ū(ξ, q) =


1

q−λ +
d1ρ

p
ρ Γ(1+ p

ρ )

q
1+

p
ρ [(λ4qγ)(b4+α∗

1q
γ)−(qγ+d0))

]
+

d2ρ
p
ρ Γ(1+ p

ρ )

q
1+

p
ρ [(λ−1

5 qγ)(b4+α∗
1q

γ)−(qγ+d0)]

 exp

(
−ξ

√
qγ + d0

b4 + α∗
1q

γ

)

−
d1ρ

p
ρΓ
(
1 + p

ρ

)
q1+

p
ρ [(λ4qγ) (b4 + α∗

1q
γ)− (qγ + d0)]

exp
(
−ξ
√
λ4

√
qγ
)

−
d2ρ

p
ρΓ
(
1 + p

ρ

)
q1+

p
ρ
[(
λ−1
5 qγ

)
(b4 + α∗

1q
γ)− (qγ + d0)

] exp(−ξ

√
λ−1
5

√
qγ
)

(42)

Since Eq. (42) in ρ-Laplace transformed domain and in very complex form so it is very difficult to find its
inverse ρ-Laplace transform analytically therefore, to obtain the solution of the velocity equation in the time domain,
numerical inverse ρ-Laplace transform will be used.

3.2 Nusselt Number
The Nusselt number is a dimensionless parameter used in fluid dynamics to quantify the ratio of convective heat

transfer to conductive heat transfer. It plays a crucial role in characterizing the heat transfer behavior between a fluid
and a solid surface. The Nusselt number is defined differently for various flow regimes and boundary conditions,
but generally, it represents the enhancement or suppression of heat transfer due to convective effects compared to

139



pure conduction. The relative significance of convective heat transmission over conductive heat transfer can be
quantified using the Nusselt number. Convective heat transfer mechanisms in different systems can be evaluated for
effectiveness by engineers by comparing Nusselt numbers under various flow conditions. Designing and improving
cooling systems, heat exchangers, and other thermal devices requires an understanding of the Nusselt number. Nusselt
number correlations are used by engineers to forecast the rates of heat transfer. The dimensionless Nusselt numbers
can be expressed mathematically as follows:

Nu = λ2
∂Θ

∂ξ

∣∣∣∣
ξ=0

(43)

Table 2 presents the computed rate of heat transfer (Nusselt number, Nu) with respect to fractional order, time,
and volume fraction parameters. The table indicates both increasing and decreasing trends for different parameters.
The Nusselt number decreases with increasing fractional order and time, while it increases as the volume fraction
increases. The fractional order is associated with the memory effect and non-local behavior in the system. As
the fractional order increases, the system exhibits stronger memory, meaning the current state depends more on its
past behavior. This tends to slow down the transfer of heat, reducing the Nusselt number. Similarly, for the time
parameter, heat transfer often decreases over time in transient systems as they approach thermal equilibrium. The
volume fraction represents the concentration of nanoparticles in the fluid. When the volume fraction increases, more
nanoparticles are suspended in the base fluid, which enhances its thermal conductivity. This leads to an increased
rate of heat transfer, reflected in a higher Nusselt number. This trend is particularly important in applications where
improving heat dissipation is crucial, such as in cooling systems and energy storage. These behaviors highlight
the balance between thermal enhancement (via nanoparticles) and the complexity introduced by non-local effects in
fractional systems.

Table 2. Nusselt number variation against rooted parameters

γ τ ϕ Nu
0.4 1 0.02 9.92286
0.6 1 0.02 9.90569
0.4 1.5 0.02 9.89259
0.4 1 0.4 10.7407

4 Graphical Analysis
This section of the article focuses on analyzing the physical attributes of the fundamental parameters related to

dimensionless momentum, heat, and the diffusion equation. The non-dimensional governing equations have been
solved using the ρ-Laplace transform technique.

In Figure 2, the impact of fractional order γ on the mass diffusion profile of the fluid is demonstrated. In the
context of concentration fields, the use of a fractional order derivative offers an improved capacity for understanding
intricate phenomena, such as anomalous diffusion or non-local interactions. Traditional integer order derivatives
describe instantaneous rates of change, but fractional order derivatives account for memory effects and long-range
interactions. Consider a hypothetical scenario involving a diffusion phenomenon wherein particles exhibit non-
standard movement patterns. In order to achieve a more precise representation of this behavior, the utilization of
fractional calculus proves to be beneficial. The utilization of fractional order models allows for the representation of
sub-diffusive or super-diffusive phenomena that cannot be adequately explained by integer order models. Classical
models make suppositions of those diffusion processes where the rate of diffusion is fixed/constant. In contrast
to this, the fractional order model discusses both the standard diffusion (rate of diffusion is fixed) and anomalous
diffusion (rate of diffusion is not constant). When the γ < 1, then the spread rate of the particle is slower
than expected and it indicates sub-diffusivity, conversely, when γ > 1, then the spread rate of the particle is
faster than the theoretically expected and it represents super-diffusivity. Fractional order calculus offers a refined
approach to characterizing temporal variations in concentrations, particularly in scenarios where the conventional
principles of classical calculus may be inadequate. The presence of a more versatile instrument allows for enhanced
accommodation to the complexities inherent in specific procedures. Moreover, in the classical derivative, only one
mass diffusion profile can be drawn for the fluid under consideration, while in the fractional-order derivative, several
mass diffusion profiles can be drawn for the fluid under consideration. Consequently, the non-integer order derivative
can provide a variety of fluid layers for fluid analysis. To effectively evaluate their findings, experimentalists should
equate their findings to the appropriate layer. The impact of nanoparticles on mass diffusion is determined by the
volume fraction ϕ, which affects various factors like surface area, concentration gradients, diffusion channel lengths,
and interactions between nanoparticles and the surrounding medium, as displayed in Figure 3. As the concentration
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of nanoparticles increases, the surface area available for interactions with other substances proportionally increases.
The increased surface area has the potential to boost the adsorption and desorption processes, hence influencing the
mass diffusion of different species. It is important to consider that, based on these considerations, one can readily
deduce that a rise in the volume fraction of nanoparticles results in an increase in the surface area available for
contact. This, in turn, leads to an enhancement in the profile of mass diffusion. In Figure 4, the influence of ρ on the
concentration field was assessed, with all other parameters held constant. Based on the data presented in the figure,
it can be inferred that the concentration field exhibits an increasing trend as the order ρ increases. As the value of
the order parameter ρ increases, there is an observed increase in the concentration field.

Figure 2. Variation in concentration profile against fractional order γ

Figure 3. Variation in concentration profile against volume fraction ϕ

Figure 4. Variation in concentration profile against variable order ρ of Laplace transform
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In Figure 5, the impact of fractional order γ on the heat distribution in the fluid is demonstrated. Heat conduction
equations traditionally involve integer-order derivatives (e.g., first-order or second-order derivatives). Heat transfer
phenomena can be described more nuancedly using fractional order derivatives. These methods have the potential
to capture non-local, memory-dependent effects in materials, which may be crucial in certain circumstances. For
example, in materials with anomalous heat conduction behavior, where the rate of heat transfer depends on the
entire history of temperature changes, fractional order calculus might be more suitable. This is due to the fact that
fractional derivatives provide a more thorough description of the behavior of the system by taking into account both
the system’s current state and its previous states. Fractional order calculus can be useful in temperature profile
models of materials or systems where non-local or memory-dependent effects are important for heat transport. It
allows for a more accurate representation of complex thermal behaviors. Moreover, in the classical derivative, only
one thermal profile can be drawn for the fluid under consideration, while in the fractional-order derivative, several
thermal profiles can be drawn for the fluid under consideration. Consequently, the non-integer order derivative can
provide a variety of fluid layers for fluid analysis.

Figure 6 illustrates the examination of the temperature profile concerning the magnitude of the volume fraction
of Al2O3. The volume fraction of nanoparticles in a fluid holds significant importance for heat transfer, with
several intriguing phenomena observed as the volume fraction of nanoparticles increases. Notably, the nanofluid’s
thermal conductivity tends to rise, attributed to the small size of nanoparticles, which enhances the fluid’s overall
thermal conductivity. This implies that the fluid will transfer heat more effectively. Therefore, an increasing trend
is seen in the temperature profile for the volume fraction of nanoparticles. The temperature profile demonstrates a
heightened level of heat transfer efficiency in comparison to conventional mineral transformer oil. This enhancement
demonstrates significant efficacy in energy conservation and facilitating cooling across multiple sectors. Figure 7
examines the influence of ρ on the temperature distribution, keeping the other parameters constant. The identical
pattern has been observed, as depicted in Figure 4. The findings demonstrate that the temperature distribution also
exhibits an increase with higher values of the variable ρ.

Figure 5. Variation in temperature profile against fractional parameter γ

Figure 6. Variation in temperature profile against volume fraction ϕ of nanoparticle
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Figure 7. Variation in temperature profile against variable order ρ of Laplace transform

To assess the influence of fractional order on the velocity profile, Figure 8 has been plotted. The velocity profile
exhibits a similar trend as depicted in Figure 2 and Figure 5. Traditional models, like Newtonian and non-Newtonian
fluids, utilized differential equations of integer order to feature the characteristics of viscosity and elasticity of the
fluids. These models assumed a fixed correlation between stress and rate of strain. While fractional calculus enables
us to adjust the order of γ of the differential equations to examine the complex behavior of viscosity and elasticity
more precisely, a fractional order allows for the modeling of memory and hereditary effects, capturing how past
states influence current behavior. Fractional order calculus helps significantly when describing the behavior of
time-dependent viscosity of the fluid, one can easily adjust the fractional order parameter to analyze deeply the
behavior of viscosity. To examine the effect of the second-grade fluid parameter α∗

1 on the velocity profile, Figure 9
has been plotted. As the value of the second-grade fluid parameter increases, the flow characteristics exhibit a greater
level of complexity compared to the linear relationship typically observed in Newtonian fluids. When considering
transformer oil, which is frequently characterized as a non-Newtonian fluid, an augmentation in the second-order
coefficient results in an elevated resistance to shear. The increased resistance to shear exhibited by the oil implies
a reduced propensity to undergo deformation or flow when subjected to external forces. Consequently, the velocity
profile exhibits a rising pattern due to heightened resistance experienced by the fluid in proximity to the walls or
boundaries, resulting in an accumulation of velocity towards the center of the flow. Hence, an upward trend can be
observed in the velocity profile. Figure 10 and Figure 11 are plotted to illustrate variations in the velocity profile
with respect to thermal and mass Grashof number Gr and Gm respectively. In both figures, the velocity profiles
demonstrate increasing variability as the magnitude of Gr and Gm rises. The thermal and mass Grashof numbers
Gr and Gm are dimensionless parameters that describe the ratio of buoyancy forces to viscous forces in a fluid flow
driven by temperature and concentration differences. As the value of Gr and Gm increases, it signifies a stronger
dominance of buoyancy forces relative to viscous forces in the flow. This dominancy of buoyancy forces leads to
convective motion, causing fluid particles to move and rearrange more vigorously. Consequently, the velocity profile
of the fluid becomes more non-uniform, with higher fluid velocities. Now it depends on the situation and requirement
of the researcher or engineer as to what they need, higher viscosity or lower. By using these two parameters, they
can easily control the viscosity of the fluid and achieve their desired result.

Figure 8. Variation in velocity profile against fractional parameter γ
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Figure 9. Variation in velocity profile against second-grade fluid parameter α∗
1

Figure 10. Variation in velocity profile against thermal Grashof number Gr

Figure 11. Variation in velocity profile against mass Grashof number Gm

Figure 12 examines the influence of variable order ρ on the velocity profile, keeping the other parameters
constant. The identical pattern has been observed, as depicted in Figures 4 and 7. The findings demonstrate that
the temperature distribution also exhibits an increase with higher values of the variable order ρ. The impact of the
magnetic parameter is depicted in Figure 13, where the figure displays a diminishing variation in its profile with
increasing magnitude of M . Fluid flow velocity profiles can be influenced by magnetic parameters M , which gauge
the strength of the magnetic field in relation to fluid flow. As the magnetic parameter increases, fluid flow encounters
stronger magnetic forces, augmenting the drag force on the fluid by opposing its motion. This increased drag force
results in a decrease in fluid velocity. Furthermore, when a fluid flows through a magnetic field, it experiences a
Lorentz force perpendicular to both the velocity and magnetic field directions, altering the fluid’s momentum and
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influencing its velocity and direction. Additionally, the magnetic field can induce alignment of the fluid in certain
directions, altering fluid flow behavior and contributing to a reduction in the velocity profile. Magnetic parameters
help a lot to control the fluid velocity in a medium and are tailored to achieve specific requirements.

Figure 12. Variation in velocity profile against variable order ρ of Laplace transform

Figure 13. Variation in velocity profile against magnetic parameter M

Figure 14. Variation in velocity profile against Schmidt number Sc

Figure 14 has been plotted to examine the fluid motion’s reaction to the Schmidth number Sc. The relationship
between momentum and mass transfer within a fluid is expressed by the Schmidt number, which acts as a dimen-
sionless parameter. It quantifies how easily a substance can move through the fluid in comparison to its capacity to
diffuse momentum, and is mathematically expressed as the ratio of kinematic viscosity to mass diffusivity. When the
Schmidt number falls, it indicates a situation where the ratio of kinematic viscosity to mass diffusivity is relatively
higher. This difference in mass transfer dynamics may noticeably affect the fluid’s velocity profile. A lower Schmidt
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number suggests a more effective mass transfer, demonstrating that a solute moves through a fluid more quickly
than momentum is diffused. Essentially, this increased mass transfer can alter flow patterns by upsetting the typical
velocity profile. The velocity profile was therefore elevated by a higher Schmidt number. Variations in fluid behavior
in the reaction of volume fractions of Al2O3 have been plotted in Figure 15. In instances where volume fractions are
low, the impact on viscosity tends to be negligible, thereby resulting in fluid behavior that closely resembles that of
the base fluid. Nevertheless, with an increase in the volume fraction, the significance of particle-particle interactions
becomes more pronounced. These interactions have the potential to induce alterations in the flow characteristics and
viscosity. Hence, as the volume fraction of nanoparticles increases, there is a corresponding decrease in the velocity
of the fluid.

Figure 15. Variation in velocity profile against volume fraction ϕ of nanoparticle

Figure 16. Concentration comparison with the study [23] (no presence of chemical reaction and nanoparticles)

Figure 17. Velocity comparison with the study [23] (no presence of source of heat, chemical reaction and
nanoparticles)
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Figures 16 and 17 have been plotted for the sake of comparison and validation of the present work and obtained
solutions. The authors have found that the present work has good agreement with already published work [18],
which implies the correctness of the present calculi.

5 Concluding Remarks
The viscoelastic second grade nanofluid has been fractionalized on a vertical flat plate using the generalized

Caputo fractional operator. Aluminium oxide Al2O3 nanomaterial was dispersed in mineral transformer oil to create
a homogeneous mixture of nanofluid. The ρ-Laplace transform technique, which is more versatile than the standard
Laplace transform technique, has been used to find solutions for generalized governing equations. The graphs of
rooted parameters have been physically elaborated and represented by mathematical software for graphical analysis.
The following list includes the main conclusions of the analysis:

• When comparing the classical model to the fractional parameter, it is observed that the latter yields multiple
lines. The phenomenon serves as a demonstration of the memory effect exhibited by the fluid, a phenomenon that is
not adequately explained by the classical model.

• By adjusting the value of ρ, γ and ϕ the obtained solution has been reduced to the already published work,
which shows the correctness and validity of the mathematical model.

• By uniformly dispersing of Al2O3 nanoparticles in mineral transformer oil, the rate of heat transfer enhanced
with 10.7407% as compared to regular MTO.

• Velocity field raised with the greater value of ρ, Gm, Gr and α∗
1 while fall with ϕ, Sc, M and γ.

• Temperature field rises with the higher values of ρ and ϕ while fall with γ.
• Concentration field rises with the higher values of Sc and ϕ while fall with γ.
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Nomenclature

u Velocity component in x-axis
y y-axis
t Time
T Temperature of the fluid
C Concentration of the fluid
T∞ Surrounding temperature
C∞ Surrounding concentration
Tw Temperature of the fluid on plate
Cw Concentration of the fluid on plate
U0 Characteristic velocity
H(t) Heaviside step function
exp(t) Exponential function

Greek symbols

ρ Density
µ Dynamic viscosity
σ Electrical conductivity
ρβT Thermal expansion coefficient
ρβC Volumetric expansion
ρCp Specific heat capacity
k Thermal conductivity
D Mass diffusion coefficient
ϕ Volume fraction parameter
γ Fractional parameter
α∗
1 Second grade fluid parameter

ρ− Variable order of the Laplace transform

Subscripts

nf Nanofluid
f Base fluid
s Nanoparticle
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