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Abstract: Efficient classification of interval data presents considerable challenges, particularly when group overlaps
and data uncertainty are prevalent. This study introduces an innovative two-stage Mixed Integer Programming
(MIP) framework for discriminant analysis (DA), which is designed to minimize misclassification of vertices while
effectively addressing the problem of overlapping groups. By incorporating interval data structures, the proposed
model captures both the shared characteristics within groups and the distinct separations between them. The
first stage of the model focuses on the identification of group-specific boundaries, while the second stage refines
classification by incorporating probabilistic estimates of group memberships. A Monte Carlo simulation is employed
to evaluate the robustness of the model under conditions of imprecision and noise, and the results demonstrate
its superior capability in handling overlapping data and classifying uncertain observations. Validation through
numerical experiments illustrates the model’s effectiveness in accurately resolving group overlaps, thereby improving
classification performance. The approach offers significant advantages over traditional methods by probabilistically
estimating group memberships, thus enhancing decision-making processes in uncertain environments. These findings
suggest that the proposed MIP framework holds substantial promise for applications across a range of complex
decision-making scenarios, such as those encountered in finance, healthcare, and engineering, where data imprecision
is a critical concern.

Keywords: Interval data; Discriminant analysis (DA); Data envelopment analysis (DEA); Mixed integer programming;
Monte Carlo method; Data classification

1 Introduction

Discriminant analysis (DA) is a statistical technique used to predict the group membership of a new observation.
A set of known observations is employed to estimate the weights or parameters, as well as to compute the discriminant
score, which serves to categorize the observations into two groups, G1 and G2. The method typically involves either
minimizing the total deviations of misclassified observations or maximizing the total deviations of correctly classified
observations. A new observation is classified into one of the groups by comparing its discriminant score to the
evaluation score derived from the discriminant function.

Data envelopment analysis (DEA) evaluates the relative efficiency of a set of homogeneous decision-making units
(DMUs) [1]. DEA is particularly effective when multiple inputs and outputs are involved, as traditional methods may
struggle to assess efficiency in such complex scenarios [2]. It is especially valuable when conventional approaches,
such as ratios (e.g., cost per unit), are insufficient due to the multifaceted nature of the inputs and outputs [3]. Despite
their differences, there are notable similarities between DEA and DA. DA is used to differentiate two sets based on
prior knowledge, whereas DEA categorizes two sets into efficient and inefficient classifications without the need for
prior knowledge [4]. The goal programming method can be applied within each of these frameworks to improve
their efficacy [5].

A novel non-parametric discriminant analysis approach has recently been proposed, which is capable of generating
a set of weights for a linear discriminant function, thereby producing an assessment score to determine the group
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membership of observations [6, 7]. This non-parametric approach is referred to as DEA/DA. However, the original
DEA/DA method does not accommodate negative data. To address this limitation, an extended version of DEA/DA
has been introduced, known as extended DEA/DA, which can handle negative data effectively [8].

The extended DEA/DA approach aims to minimize the overall discrepancies in misclassified observations. In
contrast, the primary criterion for evaluating a DA model is the total number of observations that it classifies correctly.
Sueyoshi [9] proposed a novel MIP technique to extend the DEA formulation [10, 11], which estimates weights by
minimizing the total number of misclassified observations.

However, none of Sueyoshi’s models address the classification of imprecise data. Jahanshahloo et al. [12]
introduced a method that overcomes a limitation of Sueyoshi’s models. Furthermore, Jahanshahloo et al. [13]
proposed a method for classifying interval data using DA models by minimizing the sum of the external deviations
of all misclassified vertices in the interval data. In recent years, numerous scholars have developed and implemented
innovative models and applications of DEA, extending its use to a variety of fields, including energy efficiency,
healthcare management, and sustainability assessment [14–21]. These advancements underscore the versatility of
DEA in addressing complex decision-making and performance evaluation challenges across multiple industries.

This research presents an alternative formulation of MIP aimed at reducing the overall number of misclassified
vertices in interval data, extending the work mentioned above.

The structure of the study is as follows: Section 2 presents the concepts of interval data and a method for
classifying them into two groups. Sueyoshi’s two-stage model is also reviewed at the end of this section. Section 3
develops a reformulation of Jahanshahloo’s model using the MIP approach. Section 4 provides a numerical example
to demonstrate the application of the model. Finally, Section 5 concludes with a summary of the findings and remarks
on the analyzed model.

2 Background
2.1 Concepts on Interval Data and Discriminant Analysis

Suppose that there are n observations, (Xj , Yj) , (j = 1, . . . , n), in which Xj = (x1j , . . . , xmj) is the jth

input vector (j = 1, . . . , n) and Yj = (y1j , . . . , ysj) is the jth output vector (j = 1, . . . , n). Consider each
observation has k independent factors, shown by (x1j , . . . , xmj , y1j , . . . , ysj), and m + s = k. Also, assume that
all observations (Xj , Yj) , (j = 1, . . . , n) are interval data, i.e., xij ∈

[
xL
ij , x

U
ij

]
, (i = 1, . . . ,m), (j = 1, . . . , n)

and yrj ∈
[
yLrj , y

U
rj

]
, (r = 1, . . . , s), (j = 1, . . . , n) with positive constant lower and upper bounds of the interval.

These observations can be classified into G1 and G2 groups, with n1 and n2 observations. In addition, we assume
n1 + n2 = n and G1 ∪G2 = G.

Let J1 = {j | (Xj , Yj) ∈ G1} and J2 = {j | (Xj , Yj) ∈ G2}. All we need to do is to find a hyperplane
(α, β)t(X,Y ) = d, in which (α, β)t(X,Y ) ≥ d for (X,Y ) ∈ G1 and (α, β)t(X,Y ) ≤ d − ε for (X,Y ) ∈ G2.
Note that (α, β)t(X,Y ) is a linear discriminant function, d and d− ε are the first and second groups’ discriminant
scores, respectively. A small positive number is utilized to prevent a trivial solution, specifically where all weights
are equal to zero. Consequently, we have:

m∑
i=1

αixij +
s∑

r=1

βryrj ≥ d, j ∈ J1

m∑
i=1

αixij +
s∑

r=1

βryrj ≤ d− ε, j ∈ J2

m∑
i=1

αi +
s∑

r=1

βr = 1− 2u, u ∈ {0, 1}

αi, βr, d : unrestricted , i = 1, . . . ,m, r = 1, . . . , s

(1)

We assume the vector (α, β) is normalized. Note that all (xij , yrj) (i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n)

in system (1) have certain values. Otherwise, they are formed as xij ∈
[
x
Lij

ij , x
Uij

ij

]
, (i = 1, . . . ,m, j = 1, . . . , n),

and yrj ∈
[
y
Lrj

rj , y
Urj

rj

]
, (r = 1, . . . , s, j = 1, . . . , n). Therefore, we have:

m∑
i=1

αi

[
x
Lij

ij , x
Uij

ij

]
+

s∑
r=1

βr

[
y
Lrj

rj , y
Urj

ij

]
≥ d, j ∈ J1

m∑
i=1

αi

[
x
Lij

ij , x
Uij
ij

]
+

s∑
r=1

βr

[
y
Lrj

rj , y
Urj

rj

]
≤ d− ε, j ∈ J2

m∑
i=1

αi +
s∑

r=1

βr = 1− 2u, u ∈ {0, 1}

αi, βr, d : unrestricted , i = 1, . . . ,m, r = 1, . . . , s

(2)

170



The satisfaction of the preceding system is evident when the conditions of the foregoing system (3) are met. Let
us first define

Γ−
j = {tij | tij ∈ {Lij , Uij} , i = 1, . . . ,m}

Γ+
j = {trj | trj ∈ {Lrj , Urj} , r = 1, . . . , s}

Therefore, system (2) can be changed to
m∑
i=1

αix
tij
ij +

s∑
r=1

βry
trj
rj ≥ d, j ∈ J1, tij ∈ Γ−

j , trj ∈ Γ+
j

m∑
i=1

αix
tij
ij +

s∑
r=1

βry
trj
rj ≤ d− ε, j ∈ J2, tij ∈ Γ−

j , trj ∈ Γ+
j

m∑
i=1

αi +

s∑
r=1

βr = 1− 2u, u ∈ {0, 1}

αi, βr, d : unrestricted , i = 1, . . . ,m, r = 1, . . . , s

(3)

2.2 Classification and Overlap Handling of Interval Data

The primary procedures for identifying overlaps in interval data are as follows:
Stage 1. Classifying and Identifying Overlap
The identification of overlap concerning system (3) is shown as follows:

Minϕ =
∑
j∈G1

∑
(t1j ;...,tmj)∈Γ−

s
+t1j ,...,tmj

1j +
∑
j∈G2

∑
(t1j ;...,tsj)∈Γ+

s
−t1j ,...,tsj
1j

s.t
m∑
i=1

αix
tij
ij +

s∑
r=1

βry
trj
rj + s

+t1j ,...,tmj

1j − s
−t1j ,...,tsj
1j = d, j ∈ J1; (t1j , . . . , tmj) ∈ Γ−

j , (t1j , . . . , tsj) ∈ Γ+
j

m∑
i=1

αix
tij
ij +

s∑
r=1

βry
trj
rj + s

+t1j ,...,tsj
2j − s

−t1j ,...tmj

2j = d− ε, j ∈ J2; (t1j , . . . , tmj) ∈ Γ−
j , (t1j , . . . , tsj) ∈ Γ+

j

s
+1j ,··· ,tmj

1j , s
−tj ,··· ,tsj
1j , s2j , s

−t1j ,tsj
2j ≥ 0, j = 1, . . . , n, (t1, . . . , tm) ∈ Γ−

j , (t1, . . . , ts) ∈ Γ+
j

m∑
i=1

αi +

s∑
r=1

βr = 1− 2u, u ∈ {0, 1}

αi, βr, d : unrestricted, i = 1, . . . ,m, r = 1, . . . , s

(4)

In model (4), s+t1j ,...,tmj

1j and s−t1j ,...fsj
1j are respectively positive and negative deviations of the linear discriminant

function
∑m

i=1 αixij +
∑s

r=1 βryrj from the discriminant score (d) in G1. The positive deviation (s1j
+t1j ,...,tmj >

0, j ∈ G1, (t1j , . . . , tmj) ∈ Γ−
j ) is utilized to minimize the incorrect classification of the jth observation in

G1. Simultaneously, the negative deviation
(
s
−t1j ,...,tsj
1j > 0, j ∈ G1, (t1j , . . . , tsj) ∈ Γ+

j

)
indicated the correct

classification of the jth observation in G1. Furthermore, s2j+t1j ,...fmj and s
−t1j ,...,tsj
2j are respectively positive and

negative deviations of the same linear discriminant function
∑m

i=1 αixij +
∑s

r=1 βryrj from the discriminant score
(d − ε) in G2. The positive number is employed to circumvent an evident solution (all weights equal to zero).
In the present case, the negative deviation

(
s
−t1j ,...,tsj
2j , j ∈ G2, (t1j , . . . , tsj) ∈ Γ+

j

)
indicates an incorrect group

classification, while the positive deviation
(
s
+t1j ,...,tmj

2j , j ∈ G1, (t1j , . . . , tmj) ∈ Γ−
j

)
shows a correct one.

Here, let α∗, β∗ and d∗ be the above model optimal solutions. Accordingly, a new observation,(Xp, Yp) ∈([
X

Lp
p , X

Up
p

]
,
[
Y

Lp
p , Y

Up
p

])
can be classified as follows:

(1) If ∀tip ∈ [Lip, Uip] ∧ ∀trp ∈ [Lrp, Urp] and
m∑
i=1

α∗
i x

tip
ip +

s∑
r=1

β∗y
trp
rp ≥ d∗ then p ∈ J1

(2) If ∀tip ∈ [Lip, Uip] ∧ ∀trp ∈ [Lrp, Urp] and
m∑
i=1

α∗
ix

tip
ip +

s∑
r=1

β∗
ry

trp
rp ≤ d∗ − ε then p ∈ J2

(3) If

(
∃tip ∈ [Lip, Uip] ∨ ∃trp ∈ [Lrp, Urp] and

m∑
i=1

α∗
i x

tip
ip +

s∑
r=1

β∗
ry

trp
rp < d∗

)

and

(
∃t′ip ∈ [Lip, Uip] ∨ ∃t′ip ∈ [Lrp, Urp] and

m∑
i=1

α∗
i x

t′ip
ip +

s∑
r=1

β∗
ry

t′ip
rp > d∗

)
(5)
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then part of the new observation belongs to G1 and its rest belongs to G2.
Theorem 1. The model (4) always has bounded optimal solution.
Refer to the study [4] for the proof.
Theorem 2. Assume thatC (G1) andC (G2) be the convex hulls ofG1 andG2. Accordingly, C (G1)∩C (G2) =

ϕ, if ϕ∗ = 0.
Refer to the study [4] for the proof.
Stage 2. Identifying Overlap Using the Monte Carlo Approach
Now, we describe a technique for computing overlap with the use of the Hit and Miss Monte Carlo algorithm [3].

This method quantifies the area within the overlapping zone for any interval data. Consider P th observation,
(Xp, Yp) ∈

([
X

Lp
p , X

Up
p

]
,
[
Y

Lp
p , Y

Up
p

])
, as an interval data satisfying part (3) of (5). We consider xip ∈[

x
Lip

ip , x
Uip

ip

]
, (i = 1, . . . ,m) and yrp ∈

[
y
Lrp
rp , y

Urp
rp

]
, (r = 1, . . . , s). Accordingly, the whole region measure

concerning the P th observation is
∏m

i=1

(
x
Uip

ip − x
Lip

ip

)∏s
r=1

(
y
Urp
rp − y

Lrp
rp

)
. A vector is generated by generating

random numbers as
(
X̄p, Ȳp

)
= (x̄1p, . . . , x̄mp, ȳ1p, . . . , ȳsp), where for each i(i = 1, . . . ,m), x̄ip ∼ U

(
x
Lip

ip , x
Uip

ip

)
,

indicates that x̄ip is distributed uniformly on
(
x
Lip

ip , x
Uip

ip

)
, that is, x̄ip = x

Lip

ip +
(
x
Lip

ip − x
Uip

ip

)
where ui ∼

U(0, 1). Similarly, for each r, (r = 1, . . . , s), ȳrp ∼ U
(
y
Lrp
rp , y

Urp
rp

)
, indicates that ȳrp is distributed uniformly

on
(
y
Lrp
rp , y

Urp
rp

)
, that is, ȳrp = y

Lrp
rp +

(
y
Lrp
rp , y

Urp
rp

)
where, ur ∼ U(0, 1). Here, consider the P th observation(

X̄p, Ȳp

)
= (x̄1p, . . . , x̄mp, ȳ1p, . . . , ȳsp).

(a) If
m∑
i=1

α∗
i x̄ip +

s∑
r=1

β∗
r ȳrp ≤ d∗, then the P th observation

(
X̄p, Ȳp

)
is in the overlapped region of G1 (6)

(b) If
m∑
i=1

α∗
i xip +

s∑
r=1

β∗
ryrp > d∗, then the P th observation

(
X̄p, Ȳp

)
is in the overlapped region of G2 (7)

Using inequalities (6) and (7) and counting the number of Hits, we can estimate the measure of the overlapped
region of the P th observation with the relation below:

VP =
NH

N
(8)

where, NH indicates the vector number
(
X̄p, Ȳp

)
satisfying conditions (6) or (7), and N stands for vector number.

2.3 MIP Method of Extended DEA/DA

Sueyoshi [9] introduced a novel two-stage MIP formulation as an extension of the extended DEA/DA model
aimed at decreasing the overall count of misclassified observations:

Stage 1: Classifying and Identifying Overlap
The initial phase of extended DEA/DA is redefined as follows:

Min s

s.t.
∑k

i=1

(
λ+
i − λ−

i

)
zij − d+ s ≥ 0, j ∈ J1∑k

i=1

(
λ+
i − λ−

i

)
zij − d− s ≤ 0, j ∈ J2∑k

i=1

(
λ+
i + λ−

i

)
= 1,

NLC : ξ+i ≥ λ+
i ≥ εξ+i & ξ−i ≥ λ−

i ≥ εξ−i , i = 1, . . . , k
ξ+i + ξ−i ≤ 1, i = 1, . . . , k

NZC :
∑k

i=1

(
ξ+i + ξ−i

)
= k, ξ+i , ξ

−
i ∈ {0, 1}

d, s : unrestricted, all other variables ≥ 0

(9)

where, Z = (X,Y ).
Now, let’s consider that λ∗

i

(
= λ+∗

i − λ−∗
i

)
, d∗ and s∗ to be model (9) optimal solution.

(a) If s∗ ≤ 0 (no overlap), the MIP computation is terminated since the whole observation set is classified
obviously into G1 and G2 by

∑k
i=1 λ

∗
iZi = d∗.

(b) If s∗ > 0 (an overlap), the subsequent phase can commence.
Stage 2: Handling Overlap:
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Assume that:

C1 =

{
j ∈ J1 |

k∑
i=1

λ∗
i zij > d∗ + s∗

}
, C2 =

{
j ∈ J2 |

k∑
i=1

λ∗
i zij < d∗ − s∗

}
(10)

and

D1 = J1 − C1 (11)

D2 = J2 − C2 (12)

Since the observations’ group membership in the overlap {(Xj , Yj) | j ∈ D1 ∪D2} is unknown, we need to
reformulate stage two as follows:

Min
∑

j∈D1
yj +

∑
j∈D2

yj

s.t.
∑k

i=1

(
λ+
i − λ−

i

)
zij − c+Myj ≥ 0, j ∈ D1∑k

i=1

(
λ+
i − λ−

i

)
zij − c−Myj ≤ 0− ε, j ∈ D2∑k

i=1

(
λ+
i + λ−

i

)
= 1

NLC : ξ+i ≥ λ+
i ≥ εξ+i & ξ−i ≥ λ−

i ≥ εξ−i , i = 1, . . . , k
ξ+i + ξ−i ≤ 1, i = 1, . . . , k

NZC :
∑k

i=1

(
ξ+i + ξ−i

)
= k, ξ+i , ξ

−
i ∈ {0, 1}

c: unrestrictes, all other variables ≥ 0

(13)

where, M represents a specified large number. A key characteristic of stage two is that its goal function seeks
to minimize the quantity of misclassified observations. The binary variable yj signifies the presence of such
misclassifications. The classification of a recently sampled observation Zr = (z1r, . . . , zkr), is as follows:

First, we verify the below states.
(a-1) If

∑k
i=1 λ

∗
i zir > d∗ + s∗, then the observation belongs to G1.

(b-1) If
∑k

i=1 λ
∗
i zir < d∗ − s∗, then the observation belongs to G2.

(c-1) If d∗ − s∗ ≤
∑k

i=1 λ
∗
i zir ≤ d∗ + s∗, the observation group membership is unknown because it belongs to

the overlapped region, then we verify two cases below:
(a-2) If

∑k
i=1 λ

∗
i zir > c∗, then the observation belongs to G1.

(b-2) If
∑k

i=1 λ
∗
i zir ≤ c∗ − ε, then the observation belongs to G2.

3 Modified MIP Approach

With regard to presented models (9) and (13) above, it can be seen that the sets of constraints ξ+i + ξ−i ≤ 1, (i =

1, . . . , k) and
∑k

i=1

(
ξ+i + ξ−i

)
= k are equivalent to the constraints ξ+i + ξ−i = 1, i = 1, . . . , k.

Therefore, two models (9) and (13) reformulated as follows, respectively:

Min s

s.t.
∑k

i=1

(
λ+
i − λ−

i

)
zij − d+ s ≥ 0, j ∈ J1∑k

i=1

(
λ+
i − λ−

i

)
zij − d− s ≥ 0, j ∈ J2∑k

i=1

(
λ+
i + λ−

i

)
= 1− 2u,

NLC : ξ+i ≥ λ+
i ≥ εξ+i & ξ−i ≥ λ−

i ≥ εξ−i , i = 1, . . . , k
ξ+i + ξ−i = 1, i = 1, . . . , k, ξ+i , ξ

−
i , u ∈ {0, 1}

d, s : unrestricted, all other variables ≥ 0

and
Min

∑
j∈D1

yj +
∑

j∈D2
yj

s.t.
∑k

i=1

(
λ+
i − λ−

i

)
zij − c+Myj ≥ 0, j ∈ D1∑k

i=1

(
λ+
i − λ−

i

)
zij − c−Myj ≤ 0− ε, j ∈ D2∑k

i=1

(
λ+
i + λ−

i

)
= 1− 2u,

NLC : ξ+i ≥ λ+
i ≥ εξ+i & ξ−i ≥ λ−

i ≥ εξ−i , i = 1, . . . , k
ξ+i + ξ−i = 1, i = 1, . . . , k, ξ+i , ξ

−
i , u ∈ {0, 1}

c : unrestrictes, all other variables ≥ 0
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4 The Proposed Algorithm

Consider a decisional case with two Groups (G1 and G2) of interval observations which alternatively have n1

and n2 observations. The number of both groups’ observations reaches n and every observation is characterized by
m independent input factors and s independent output factors, denoted by (xij , yrj) for i = 1, . . . ,m, r = 1, . . . , s
and j = 1, . . . , n.

Mathematically, the MIP approach for the interval data has the following two-stage computational process.
1: Classifying and Identifying Overlap.
2: Handling Overlap.

4.1 Classifying and Identifying Overlap

To classify the observations and identify the presence or absence of the overlapped region in between them, we
solve the following Mathematic Programming (MP):

Min s

s.t.
m∑
i=1

αix
tij
ij +

s∑
r=1

βry
trj
rj + s ≥ d, j ∈ J1, tij ∈ Γ−

j , trj ∈ Γ+
j

m∑
i=1

αix
tij
ij +

s∑
r=1

βry
trj
rj − s ≤ d, j ∈ J2, tij ∈ Γ−

j , trj ∈ Γ+
j

m∑
i=1

αi +

s∑
r=1

βr = 1− 2u, u ∈ {0, 1}

α1, βr, d, s : urestricted, i = 1, . . . ..,m, r = 1, . . . , s

(14)

Now, let α∗, β∗, d∗ and s∗ be the optimal solution of the previous MP.
(a) If s∗ ≤ 0 (no overlap), the MIP computation is stopped since the observations are classified thoroughly into

G1 or G2 by α∗X + β∗Y = d∗.
(b) If s∗ > 0 (an overlap), the following step starts.

4.2 Handling Overlap

At this stage, it is obvious that all or some vertices of some interval observations belong to the overlapped region.
To handle the classification of such observations, we first define the following sets, V1 and V2, to be the sets of the
vertices of the observations belonging to G1 and G2, respectively.

V1 =
{(

x
tij
ij , y

trj
rj

)
, | j ∈ J1, tij ∈ Γ−

j , trj ∈ Γ+
j

}
V2 =

{(
x
tij
ij , y

trj
rj

)
, | j ∈ J2, tij ∈ Γ−

j , trj ∈ Γ+
j

} (15)

Also, suppose that

K1 =

{(
x
tij
ij , y

trj
rj

)
∈ V1 |

M∑
i=1

α∗
i x

tij
ij +

s∑
r=1

β∗
ry

trj
rj > d∗ + s∗, j ∈ J1

}

K2 =

{(
x
tij
ij , y

trj
rj

)
∈ V2 |

m∑
i=1

α∗
i x

tij
ij +

s∑
r=1

β∗
ry

trj
rj < d∗ − s∗, j ∈ J2

} (16)

to be the sets of vertices that are correctly classified into G1 or G2. Now, assume that:

Q1 = {j | (Xj , Yj) ∈ V1 −K1} , Q2 = {j | (Xj , Yj) ∈ V2 −K2} (17)

Thus, the HO stage is formulated as follows:

Min
∑
j∈Q1

yj +
∑
j∈Q2

yj

s.t
m∑
i=1

αix
tij
ij +

s∑
r=1

βry
trj
rj ≥ c−Myj , j ∈ Q1, tij ∈ Γ−

j , trj ∈ Γ+
j

m∑
i=1

αix
tij
ij +

s∑
r=1

βry
trj
rj ≤ (c− ε) +Myj , j ∈ Q2, tij ∈ Γ−

j , trj ∈ Γ+
j

m∑
i=1

αi +

s∑
r=1

βr = 1− 2u, u ∈ {0, 1}

αi, βr, c, d : unrestricted, i = 1, . . . .,m, r = 1, yj ∈ {0, 1}, j ∈ Q1, j ∈ Q2, all other variables ≥ 0

(18)
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A significant characteristic of the model (18) is its ability to minimize the quantity of misclassified vertices. The
binary variable yj signifies the misclassified vertices presence.

Subsequently, consider the newly Sampled P th observation (Xp, Yp) with Xp ∈
[
X

Lp
p , X

Up
p

]
and Yp ∈[

Y
Lp
p , Y

Up
p

]
. Going through stage one, we assume to have α∗, β∗, d∗ and s∗, as the optimal solution.

(1) If ∀ (tip, trp) ∈
(
Γ−
p ,Γ

+
p

)
, and

m∑
i=1

α∗
i x

tip
ij +

∑
r=1

β∗
ry

trp
rp > c∗ then (Xp, Yp) ∈ G1

(2) If ∀ (tip, trp) ∈
(
Γ−
p ,Γ

+
p

)
, and

m∑
i=1

α∗
i x

tip
ij +

s∑
r=1

β∗
ry

trp
rp < c∗ then (Xp, Yp) ∈ G2

(19)

Otherwise, all or parts of the P th observation pertain to the overlapped region. Therefore, stage two starts to
decide whether this observation would pertain to G1 or G2.

In this case,

(1) If ∀ (tip, trp) ∈
(
Γ−
p ,Γ

+
p

)
, and

m∑
i=1

α∗
i x

tip
ij +

s∑
r=1

β∗
ry

trp
rp > c∗ then (Xp, Yp) ∈ G1

(2) If ∀ (tip, trp) ∈
(
Γ−
p ,Γ

+
p

)
, and

m∑
i=1

α∗
i x

tip
ij +

s∑
r=1

β∗
ry

trp
rp < c∗ then (Xp, Yp) ∈ G2

(20)

Here, since ε is a very small number, we withdraw it.
(3) Otherwise, some vertices of the arbitrary interval data (Xp, Yp) pertain to G1 and the rest pertain to G2.
To overcome this, we assume A1 to be part of (Xp, Yp) that pertains to G1 and A2 part of (Xp, Yp) that belongs

to G2.
Now, we use the Monte Carlo method to measure how much of the observation (Xp, Yp) pertains to G1 and G2

by counting the number of Hits (NH1 or NH2 ) of all the arbitrary vectors (N) that pertain to one of our Groups (G1

or G2).
Let VP1 =

NH1

N be the overlapped region that belong to G1.

(3. a) If VP1 ≥ 1

2
, then (Xp, Yp) ∈ G1 and ∆ = 1− VP1

(3. b) If VP1 <
1

2
, then (Xp, Yp) ∈ G2 and ∆ = VP1

(21)

where, ∆ indicates the error by which (Xp, Yp) can be assumed to belong to one of the Groups. In other words,
we intend to measure the probability under which the interval observations (Xp, Yp), belong to either group. Also,
since N is a given large number, it is not practically possible for NH1 to reach to half of N , exactly. Therefore, we
can withdraw the probability of Vp1

< 1
2 , and we do not consider it.

5 Examples
5.1 Example 1

Suppose G1 and G2 are two interval data groups with one input and output, as listed in Table 1.

Table 1. Input and output sets of Example 1

Groups DMUj X
Lj

j X
Uj

j Y
Lj

j Y
Uj

j

Group1 (G1)
P1 4 5 4 5
P2 2 3 5 6

Group2 (G2)
P3 1 2 3 4
P4 4 5 1 3

Using model (15) for the classification of the observations P1, P2, P3 and P4, we obtain the following:

α∗ = 0.25, β∗ = 0.75, d∗ = 3.75, s∗ = −0.25.

Since s∗(= −0.25) is negative, it is obvious that the two groups are separated completely with no overlap between
them. The strongly separating hyperplane is: 0.25X + 0.75Y = 3.75, as shown in Figure 1.
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Figure 1. Without the presence of overlap

Table 2. The coordinates of the new observation of Example 1

New Observation XL XU Y L Y U

P5 2 3 1 2

Now consider the new observation P5 in Table 2.
So, we have:

α∗XL + β∗Y L = (0.25)(2) + (0.75)(1) = 1.25 < 3.75 = d∗

α∗XL + β∗Y U = (0.25)(2) + (0.75)(2) = 2 < 3.75 = d∗

α∗XU + β∗Y L = (0.25)(3) + (0.75)(1) = 1.5 < 3.75 = d∗

α∗XU + β∗Y U = (0.25)(3) + (0.75)(2) = 2.25 < 3.75 = d∗

As can be seen, all the vertices belonging to P5 are located below the line 0.25X+0.75Y = 3.75 and, therefore,
belong to the group G2.

5.2 Example 2

Consider the new observation P6 that has some of its vertices in G1 and the others in G2, as shown in Table 3.

Table 3. The coordinates of the new observation of Example 2

New Observation XL XU Y L Y U

P6 6 7 2 4

Regarding the model optimal solutions and the lower and upper bounds of the independent input and output
factors, we will obtain:

α∗XL + β∗Y L = (0.25)(6) + (0.75)(2) = 3 < 3.75 = d∗

α∗XL + β∗Y U = (0.25)(6) + (0.75)(4) = 4.5 > 3.75 = d∗

α∗XU + β∗Y L = (0.25)(7) + (0.75)(2) = 3.25 < 3.75 = d∗

α∗XU + β∗Y U = (0.25)(7) + (0.75)(4) = 4.75 > 3.75 = d∗

It is clear that two of the vertices belong to G1 and the rest belong to G2.
To handle the case, the second stage of the MIP approach to interval data starts to classify the incorrectly classified

vertices.
By solving model (18) for the overlap handling of the misclassified vertices, we obtain:

α∗ = 0.25, β∗ = 0.75, c∗ = −3.49

Therefore:
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(0.25)(6) + (0.75)(2) = 3.00 > −3.49 = c∗

(0.25)(6) + (0.75)(4) = 4.5 > −3.49 = c∗

(0.25)(7) + (0.75)(2) = 3.25 > −3.49 = c∗

(0.25)(7) + (0.75)(4) = 4.75 > −3.49 = c∗

So we can conclude that P6 belongs to G1.

5.3 Example 3

Consider the two-stage MIP method for classification of 10 observations where P1, P2, P3, P4 and P5 belong
to group G1 and P6, P7, P8, P9 and P10 belong to group G2. The observations are interval data, each with two
independent input factors and two independent output factors. The input and output values of the observations are
listed in Table 4.

Table 4. Input and output sets of Example 3

Groups DMUj X
Lj

j X
Uj

j Y
Lj

j Y
Uj

j

Group1 (G1)

P1 4 6 7 9
P2 9 10 9 10
P3 4 6 13 14
P4 8 11 12 13
P5 12 13 9 10

Group2 (G2)

P6 2 3 4 5
P7 2 3 6 8
P8 1 3 1 2
P9 7 9 6 8
P10 4 5 2 4

The ideal solution for classifying these observations applying model (14) is derived as follows: α∗ = 0, β∗ =
1, d∗ = 7.5, s∗ = 0.5.

Since s∗(= 0.5) is positive, we can conclude that an overlap exists between groups. So, at the COI stage, we
will have the subsets K1 consisting of all the correctly classified vertices of G1,K2 consisting of all the correctly
classified vertices of G2, Q̄1 consisting of all the incorrectly classified vertices of G1, Q̄2 consisting of all the
incorrectly classified vertices of G2.

It is obvious that the overlap area includes all the vertices belonging to Q̄1 ∪ Q̄2 and is restricted between the
lines Y = 7 and Y = 8, as shown in Figure 2.

Figure 2. The presence of overlap

As it is visually depicted in Figure 2, Q̄1 and Q̄2 are recognized as:
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Q̄1 =
{(

XL1
p1
,YL1

p1

)
,
(
XL1

p1
,YU1

p1

)}
Q̄2 =

{(
XL7

p7
,YU7

p9

)
,
(
XU7

p7
,YU7

p7

)
,
(
XL9

p9
,YU9

p9

)
,
(
XU9

p9
,YU9

p9

)}
K1 = V1 − Q̄1

K2 = V2 − Q̄2

Here, V1 and V2 are the sets of the whole vertices belonging to G1 and G2 respectively.
It is also observed from Figure 2 that the observations P1, P2, P3 and P4 thoroughly belong to G1 and the

observations P6, P8, and P10 thoroughly belong to G2. The observations P1, P7 and P9 have parts of them in the
overlap area.

Because the overlap exists, the next stage starts to handle observationsP1, P7 andP9. Let y1 be the binary variable
for enumerating the misclassified vertices of P1 in Q̄1, y2 be the binary variable for enumerating the misclassified
vertices of P7 in Q̄2 and y3 be the binary variable for enumerating the misclassified vertices of P9 in Q̄2. Going
through the model (18), we obtain the following optimal solution for the HO stage:

α∗ = 0, β∗ = 1, c∗ = 8.01, y∗1 = 1, y∗2 = 0, y∗3 = 0

Therefore, the discriminant function defined at the next stage is formulated as Y = 8.01 which makes the
misclassified vertices of P7 and P9 to belong to V2 (The set of vertices belonging to G2 ). Also, since the observation
P1 still has parts of it in G1 and the rest in G2, we need to use the Monte Carlo method to handle it.

Let R1 be the part of P1 that belongs to G1, N be the total number of the arbitrary vectors produced by the Monte
Carlo method and NH1 be the number of such produced vectors that belong to G1. Going through the Monte Carlo
method with the assumption N = 500, 000, we obtain the following:

VR1
=

NH1

N
= 0.495 < 0.5

So it is concluded that P1 belongs to G2, because the possibility under which P1 belongs to G2(= 0.505) is
more than the possibility under which P1 belongs to G1(= 0.495). Also, the error considered for P1 to belong to
G2 is equal to 0.495 .

6 Conclusions

This study introduced an innovative two-stage MIP framework for discriminant analysis of interval data,
addressing key challenges such as misclassification and group overlap. The proposed methodology effectively
minimized the total number of misclassified vertices and identifies overlap zones, providing probabilistic insights
into group memberships. Through comprehensive examples, the model demonstrated its ability to classify interval
data, manage overlaps, and identified structural similarities and differences within datasets. Despite its strengths,
the performance of the method is influenced by the choice of parameters and M, which can lead to variability
in classification outcomes. Future research should focus on standardizing parameter selection and extending the
framework to accommodate data in fuzzy or other non-traditional formats. The proposed approach represents a
significant advancement in interval data classification, offering a robust and adaptable tool for complex decision-
making scenarios.
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