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Abstract: Nanofluids, which are suspensions of nanoparticles in base fluids, have demonstrated considerable
potential in enhancing thermal conductivity, energy storage, and lubrication properties, as well as improving
the cooling efficiency of electronic devices. Despite their promising applications, the industrial utilization of
nanofluids remains in the early stages, with further research needed to fully explore their capabilities. This study
investigates a generalized nanofluid model, incorporating fractal-fractional derivative (FFD), to better understand
the thermophysical behaviors in vertical channel flow. The nanofluid consists of polystyrene nanoparticles uniformly
dispersed in kerosene oil. An exact solution to the model is obtained by employing the Laplace transform technique
(LTT) in combination with the numerical Zakian’s algorithm. The FFD operator with an exponential kernel is
applied to extend the classical nanofluid model. Discretization of the generalized model is achieved using the Crank-
Nicolson method, and numerical simulations are performed to solve the resulting equations. The study reveals that, at
a nanoparticle volume fraction of 4% (0.04), the heat transfer rate of the nanofluid is significantly higher than that of
the base fluid. Furthermore, the enhanced heat transfer leads to improvements in various thermophysical properties,
such as viscosity, thermal expansion, and heat capacity, which are crucial for industrial applications. The numerical
results are presented graphically to highlight the dependence of the flow and thermal dispersion characteristics on
key physical factors. These findings suggest that the use of fractal-fractional models can provide a more accurate
representation of nanofluid behavior, particularly for high-precision applications in heat transfer and energy systems.

Keywords: Fractal-fractional derivative (FFD); Polystyrene nanocomposite; Integral transform technique; Zakian’s
algorithm

1 Introduction
Researchers are actively seeking a way to enhance the thermal properties of the regular fluids due to their

significant uses in many industries. With the passage of time, many ideas are presented in the research community
to enhance the heat transfer of the regular fluid, but suspension of solid particles in the base fluid was the most used
among them. In 1864, the idea of microsize particles was presented in the research community. At the start, this
idea was used by many engineers and obtained the required results. But after some time, the disadvantage came to
know that microparticles cause clogging and sedimentation in the fluid, and then it cannot be tailored to specific
requirements. In 1995, two scientists from Argonne National Laboratory, USA, came up with the idea of suspension
of nanoparticles in the base fluid, and this idea took the research community by storm. Nanofluid emerged as a
frontier in the fluid industry, offering advanced thermal properties as compared to regular fluids. These advanced
thermal properties improve the heat transfer capabilities of base fluids. The significance of nanofluids can be found
in various fields; it spans various applications, from industrial cooling systems to diagnosis of diseases and drug
delivery, etc., that show the potential to revolutionize multiple industries [1–3]. In the literature, various types of
nanoparticles exist, each with distinctive qualities that make them different in their respective sectors. Polystyrene
nanoparticles are notable examples among them. Due to their unique ease of production and chemical stability,
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polystyrene nanoparticles are extensively used in the development of nanofluids [4, 5]. The integration of these
nanoparticles into base fluids is pivotal in the advancement of overall performance and thermal management of
nanofluids. This nanoparticle is also gaining attention in fuel technology, especially augmenting the characteristics
of kerosene oil. These nanoparticles are valued for their ability to improve the thermal conductivity and combustion
efficiency of kerosene, a commonly used fuel in both aviation and heating. When polystyrene nanoparticles are
dispersed in kerosene, they modify the fuel’s burning characteristics, leading to more complete combustion [6–10].
Li et al. [11] established an efficient method for identifying polystyrene nanoparticles in ambient waterways, which
allows contamination levels to be monitored. Mebarek-Oudina et al. [12] investigated the hydromagnetic flow of
magnet nano-water by using the adapted Buongiorno model. They analyzed the model by using the numerical
algorithm of RK4. Li et al. [13] discussed various aspects of induced magnetic field for the utilization of heat
and mass transfer enhancement of hybrid nanofluid. Ajmal et al. [14] investigated numerically the electroosmotic
peristaltic flow of Casson nanofluid for optimizing the heat transfer of blood flow with Cu (Copper) characteristics.
For numerical simulation, the authors used the bvp4c technique. They have been found that the temperature profile
increased with an increase in the volumetric percentage of nanoparticles. Nabawey et al. [15] theoretically examined
the heat and mass transfer in micropolar, Maxwell, and Williamson nanofluid flow. The investigation has been
numerically with the help of the fourth-order RK method. From their analysis, they concluded that the Nusselt
number increases with the increase in the magnitude of the Prandtl number. The exact solution of the mathematical
model of hybrid nanofluid flow that is flowing across a heated stretching cylinder was found by Usman et al. [16].
The authors considered two different nanoparticles, Cooper and aluminum oxide, and base fluid water for their hybrid
nanofluid preparation. Other interesting studies on the significance of nanofluids can be found in the studies [17–21].

Fractal-fractional calculus is an advanced mathematical tool that combines the concepts of fractal and fractional
calculus [22]. Its importance arises from its ability to model complicated systems more precisely than classical
derivatives. The FFD has a number of important consequences for nanofluids, which are nanoparticle suspensions in
base fluids. First, it allows for better modeling of complicated dynamics. Nanofluids frequently exhibit anomalous
properties, such as odd viscosity or thermal behavior, which traditional models cannot account for. The FFD, on the
other hand, handles these behaviors better because of its capacity to manage nonlinearity and scale-dependent
features [23]. Furthermore, this derivative is very effective when studying multi-scale phenomena, which is
critical because nanofluids act at multiple scales. For example, heat transport at the nanoparticle level is distinct
from macroscopic processes. This fractal-fractional technique provides a seamless connection across these levels.
Moreover, due to the interaction between the nanoparticle and the base fluid, nanofluids generally show memory
effects and irregular diffusion. FFDs have a memory term that is simply able to catch these any things, but this will be
exceptionally difficult using traditional (integer) order derivatives. Additionally, the FFD increases conduction and
convection heat modeling. The application of nanofluids is highly dependent on the knowledge and predictability of
their behavior as heat transfer enhancers in an array of devices. A validated model utilizing this method could result
in the development of more efficient cooling/heating systems. Finally, models based on this derivative can optimize
industrial processes involving nanofluids, such as those in chemical reactors, heat exchangers, and biomedical
devices [24]. Given the significance of FFDs in nanofluids, Asifa et al. [25] showed that a fractal-fractional model
with varied nanoparticle shapes enhances heat conduction by up to 9.58% in an engine oil nanofluid. Murtaza et
al. [26] demonstrated that this approach improves heat and mass transport in cadmium telluride nanofluids by 15.27%
and 2.07%, respectively. Shen et al. [27] reviewed the applications and effectiveness of these models in enhancing
heat transfer across various industries. Khan et al. [28] found the exact solution of the fractal-fractional model of
Newtonian fluid flow in a horizontal channel. They used the LTT for the possible exact solution of the model.
Wang and Khan [29] also used the FFD of Atangan-Baleanu sense to evaluate the fractional model of bank data.
Qureshi and Atangana [30] used the FFD in the biomedical field. They evaluated the biological model of diarrhea
transmission dynamics under the use of real data. Some other significant research studies on the application of FFD
can be seen in the studies [31–33].

This current work in nanofluids is an exciting look at how this new class of material could revolutionize industrial
processing. Nanofluids are being hailed as a transformative heat transfer agent for energy storage and cooling
applications in modern engineering practice. While their applications seem very promising, the use cases for
this type of technology are still being found. This work is intended to extend these limits by investigating the
fractal-fractional order nanofluid model in a vertical channel and solving it using integral transform techniques:
Laplace transforms and numerical algorithms. Importantly, it advances the fundamental understanding of these fluid
properties but also unveils their great potential to enhance efficiency in a variety of industrial processes. To the
best of our knowledge, based on existing review works in the scientific fraternity about the fractal-fractional model,
none has so far considered study via the present novelty strategy for nanofluid flow through a channel. Hence, to
overcome this deficiency in the literature, partially coupled Newtonian nanofluid flow in a channel was considered
by the authors. The classical mathematical model of the proposed problem was developed in terms of PDEs, which
have been generalized by an operator for FFD to consider differential expressions. The solution to the generalized
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model based on LTT is also provided.

2 Physical Description of the Problem
The geometrical illustration of the phenomenon is given in Figure 1. From the figure it can be seen that at

t = 0, both the fluid and plates are considered stationary, while at t = 0+, the left plate accelerates with the velocity
U0H(t), which transmits the motion in the fluid, while temperature and concentration of the ternary nanofluid rise
to the timedependent temperature and concentration, respectively.

Figure 1. Flow regime

The governing equations for nanofluid flow are given as [24, 25]:

ρnf
∂v(ξ, τ)

∂t
= µnf

∂2v(ξ, τ)

∂y2
+ g (ρβΘ)nf (Θ(ξ, τ)−Θ∞) + g (ρβΦ)nf (Φ(ξ, τ)− Φ∞) (1)

(ρCp)nf
∂Θ(ξ, τ)

∂τ
= knf

∂2Θ(ξ, τ)

∂ξ2
(2)

∂Φ(ξ, τ)

∂τ
= Dnf

∂2Φ(ξ, τ)

∂ξ2
(3)

IBCs:
v = 0, Θ = T∞, Φ = C∞, at ξ > 0, τ = 0.
v = 0, Θ = T∞, Φ = C∞, at ξ = 0, τ > 0.
v = UH(τ), Θ = Tw, Φ = Cw, at ξ = d, τ > 0.

 (4)

2.1 Dimensional Analysis of the Model
Dimensionless entities are:

u =
v

U
, t =

v

d2
τ, y =

ξ

d
, T =

Θ−Θ∞

Θw −Θ∞
, C =

Φ− Φ∞

Φw − Φ∞
(5)

Table 1 outlines the mathematical relationships that define the thermophysical properties of the base fluid and
the suspended nanoparticles. These relationships are fundamental in bridging the gap between the properties of the
regular fluid and those of the nanofluid. By incorporating these expressions, the study effectively transforms the
regular fluid model into a comprehensive nanofluid model. This transformation is crucial for accurately investigating
the behavior of nanofluid flow, as it accounts for the enhanced thermal and physical characteristics introduced by
the suspended nanoparticles. These formulations provide the foundation for analyzing key aspects of nanofluid
dynamics, including heat and mass transfer, under various flow conditions.

Table 2 provides a detailed representation of the experimental values of the thermophysical properties for the
dispersed nanoparticles, namely Polystyrene, and the base fluid, Kerosene oil. These properties play a crucial role in
the subsequent analysis as they serve as fundamental inputs for evaluating the heat and mass transfer rates within the
system. By incorporating these experimentally determined values, the study ensures a more accurate and realistic
representation of the physical behavior of the nanofluid under investigation.

182



Table 1. The nanofluid expressions [24]

Properties Correlations
Density ρnf = (1− ϕPS) ρKO + ϕPSρPS

Viscosity µnf = µKO

(1−ϕPS)2.5

Volumetric Expansion (ρβΘ)nf = (ρβΘ)KO (1− ϕPS) + ϕPS (ρβΘ)PS

Specific Heat Capacity (ρCp)nf = (1− ϕPS) (ρCp)KO + ϕPS (ρCp)PS

Thermal Conductivity knf = kKO

[
kPS+2kKO−2ϕPS(kKO−kPS)
kPS+2kKO+ϕPS(kKO−kPS)

]
Mass Diffusivity Dnf = DKO (1− ϕPS)

Table 2. Experimental values of base fluid and nanoparticles

Properties ρ
(
kgm−3

)
Cp

(
kg−1k−1

)
k
(
Wm−1k−1

)
β × 10−5

(
k−1

)
Kerosene Oil 780 2090 0.5 0.9

Polystyrene Nano Particles 1.05 1.4 0.038 0.8

Using the expression given in Table 1 and variables in Eq. (5), Eqs. (1), (2), (3), and (4) will take the form:

∂u(y, t)

∂t
= C4

∂2u(y, t)

∂y2
+Gr0T (y, t) +Gm0C(y, t) (6)

∂T (y, t)

∂t
= λ

∂2T (y, t)

∂y2
(7)

∂C(y, t)

∂t
= λ1

∂2C(y, t)

∂y2
(8)

and

u = T = C = 0, at t = 0, y > 0.
u = T = C = 0, at t > 0, y = 0.
u = H(t), T = C = 1, at t > 0, y = 1.

 (9)

During the dimensional analysis, the following physical dimensionless parameters were obtained:

Gr =
g (βΘ)f d

2 (Θw −Θ∞)

Uvf
, Gm =

g (βΦ)f ℓ
2 (Cw − C∞)

Uvf
, P r =

µfCp

kf
, Sc =

vf
Df

, δ(t)

where, Gr represents the thermal Grashof number, Gm represents the mass Grashof number, Pr represents the
Prandtl number, Sc represents the Schmidt number, and δ(t) is the differential operator.

The following constants emerged during the dimensional analysis process:

λ =
a2
Pr

, a =
1

λ · βΓ(β)
, λ1 =

b0
Sc

, b =
1

λ1 · βΓ(β)
, d0 =

1

c4 · βΓ(β)
,

γ = α+ β, d1 = a− d0, d2 = b− d0, Gr0 = Gr · c5, Gr1 =
Gr0
c4

, Gr2 =
Gr0
d1

,

Gm0 = Gm · c6, Gm1 =
Gm0

c4
, Gm2 =

Gm1

d1
, c4 =

c1
c0

, c5 =
c2
c0

, c6 =
c3
c0

Since the mathematical model includes nanofluid correlations, it is evident that some of the constants depend on
these correlations. The following constants are influenced by the nanofluid correlations:

a0 = (1− ϕPS) + ϕPS

(ρcp)PS

(ρcp)KO

, a1 =
kPS + 2kKO − 2ϕPS (kKO − kPS)

kPS + 2kKO + 2ϕPS (kKO − kPS)
, b0 = (1− ϕPS) ,

c0 = (1− ϕPS) + ϕPS
(ρ)PS

(ρ)KO
, c1 = (1− ϕPS)

−2.5
, c2 = (1− ϕPS) + ϕPS

(ρβΘ)PS

(ρβΘ)KO

,

c3 = (1− ϕPS) + ϕPS

(ρβϕ)PS

(ρβϕ)KO
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2.2 Generalization of the Model
The fractal-fractional formulation of the mathematical model is given by:

FFDα,β
t u(y, t) = C4

∂2u(y, t)

∂y2
+Gr0T (y, t) +Gm0C(y, t) (10)

FFDα,β
t T (y, t) = λ

∂2T (y, t)

∂y2
(11)

FFDα,β
t C(y, t) = λ1

∂2C(y, t)

∂y2
(12)

where, FFDα,β
t is the fractal-fractional operator with exponential kernel, which is briefly explained in the study [24].

In a more simplified form, Eqs. (11), (12), and (13) take the form as follows:

FFD
α,β
t u(y, t) +

u(y, 0)

Γ(1− α)
t−α = βtβ−1

{
C4

∂2u(y, t)

∂y2
+Gr0T (y, t) +Gm0C(y, t)

}
(13)

FFDα,β
t T (y, t) +

T (y, 0)

Γ(1− α)
t−α = βtβ−1

{
λ
∂2T (y, t)

∂y2

}
(14)

FFDα,β
t C(y, t) +

C(y, 0)

Γ(1− α)
t−α = βtβ−1

{
λ1

∂2C(y, t)

∂y2

}
(15)

2.3 Solution of the Fractal Fractional Model
Applying integral transform technique on Eqs. (13)-(15), we can get Eqs. (16)-(18):

ℏαu(y, ℏ)− u(y, 0)

(
1 +

ℏ−αΓ(1− α)

Γ(1− α)

)
= βΓ(β)ℏ−β ∗

(
C4

∂2u(y,ℏ)
∂y2

+Gr0T (y, ℏ) +Gm0C(y, ℏ)

)
(16)

ℏαT (y, ℏ)− T (y, 0)

(
1 +

ℏ−αΓ(1− α)

Γ(1− α)

)
= βΓ(β)ℏ−β ∗

(
λ
∂2T (y, ℏ)

∂y2

)
(17)

ℏαC(y, ℏ)− C(y, 0)

(
1 +

ℏ−αΓ(1− α)

Γ(1− α)

)
= βΓ(β)ℏ−β ∗

(
λ1

∂2C(y, ℏ)
∂y2

)
(18)

with

u = T = C = 0, at ℏ = 0, y > 0.
u = T = C = 0, at ℏ > 0, y = 0.
u = T = C = 1

ℏ , at ℏ > 0, y = 1.

 (19)

Incorporating initial conditions given in Eq. (19), we can get Eqs. (20)-(22):

ℏαu(y, ℏ) = βΓ(β)ℏ−β ∗
(

C4
∂2u(y,ℏ)

∂y2

+Gr0T (y, ℏ) +Gm0C(y, ℏ)

)
(20)

ℏαT (y, ℏ) = βΓ(β)ℏ−β ∗
(
λ
∂2T (y, ℏ)

∂y2

)
(21)

ℏαC(y, ℏ) = βΓ(β)ℏ−β ∗
(
λ1

∂2C(y, ℏ)
∂y2

)
(22)

By solving Eqs. (20)-(22), we can get Eqs. (23)-(25):
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u(y, ℏ) =
[
1

ℏ
+

Gr2
ℏγ+1

+
Gm2

ℏγ+1

]
sinh

(
y
√
d0ℏγ

)
sinh

(√
d0ℏγ

) − 1

ℏα+1

Gr2 sinh
(
y
√
a · ℏγ

)
sinh

(√
a · ℏγ

) +
Gm2 sinh

(
y
√
b · ℏγ

)
sinh

(√
b · ℏγ

)
 (23)

T (y, ℏ) =
1

ℏ
·
sinh

(
y
√
a · ℏγ

)
sinh

(√
a · ℏγ

) (24)

C(y, ℏ) =
1

ℏ
·
sinh

(
y
√
b · ℏγ

)
sinh

(√
b · ℏγ

) (25)

Eqs. (23), (24), and (25) are very complex and difficult to solve by any integral transform means. It is therefore
possible to find the inversion form using Zakian’s numerical algorithm [34].

u(ζ, t) =
2

t

5∑
t=1

Re
{
kiū

(
ζ,

αi

t

)}
(26)

2.4 Nusselt and Sherwood Numbers
The Nusselt and Sherwood numbers are [24]:

Nu = − knf
kf

∂T

∂y

∣∣∣∣
y=0

(27)

Sh = −Dnf

(
∂C

∂y

)
y=0

(28)

3 Graphical and Tabular Analysis
The generalized model of nanofluid has been investigated in a microchannel of length d. The nanofluid mixture

has been formed by the uniform dispersion of polystyrene nanocomposite in a base fluid of kerosene oil. The classical
model has been generalized by implementing the operator of FFD with a non-singular kernel. The Tiwari and Das
nanofluid correlations have been used for developing the nanofluid model. The generalized governing equations
have been solved by the integral transform technique, and then for their inversion, a numerical Zakian’s algorithm
has been applied for the final solution. The impact of rooted parameters has been portrayed in the following.

Figure 2. Variation in velocity field against α

The influence of the fractional order on the velocity, thermal, and concentration profiles is presented in Figure 2.
From the figure, it is evident that the velocity profile increases with the fractional order. Specifically, the profile
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exhibits a growing trend as the fractional order increases. The fractional derivative is employed to capture the
memory effect of the fluid. To analyze this memory effect, the fractional derivative is used by substituting the time
fractional derivative operator for the classical time derivative in the governing equations.

While the impact of the fractal order on the velocity profile is illustrated in Figure 3, the figure clearly shows
that the velocity profile exhibits increasing trends as the fractal dimension increases. This trend indicates that higher
values of the fractal dimension led to a more pronounced effect on the velocity distribution across the flow. The
fractal dimension plays a crucial role in describing the irregularities and complexities within the fluid flow structure,
and it can significantly influence the velocity profile by altering the flow dynamics. As the fractal dimension
increases, the flow becomes more sensitive to changes in the geometric and physical properties of the system, thereby
modifying the velocity distribution. These changes in the velocity profile suggest that the fractal dimension is
an important parameter in understanding and predicting the behavior of fluid flow, particularly in systems where
complex geometries or irregular structures are present.

Figure 4 and Figure 5, respectively, show how the thermal Grashof number Gr and mass Grashof number
Gm influence the velocity profile. Both figures show increasing variations in the fluid velocity profile for greater
magnitudes of Gr and Gm. The Grashof number represents the comparison of the magnitude of buoyancy forces
to viscous forces in a fluid flow. Which can influence the velocity profile in a thermal flow. As the values of Gr
increase, the buoyancy forces become more significant and make the flow unstable, leading to a greater velocity
difference between the top and bottom of the fluid. Therefore, an increasing trend in the velocity profile is observed.
The same physical argument is also valid in the case of higher values of Gm.

Figure 3. Velocity profile against fractal dimension β

Figure 4. Variation in velocity field against Gr

186



Figure 5. Variation in velocity field against Gm

Figure 6 has been drawn to see the impact of volume fraction ϕ on the velocity profile. Nanoparticles are
nanosized solid particles; therefore, the addition of these particles increases the resistance to the fluid flow. This
phenomenon is known as the ‘Stokes’ law.’ According to this law, the increased surface area in contact with the
fluid caused by the addition of nanoparticles causes a fluid’s viscosity to increase. The fluid’s flow slows down
and the velocity profile drops as viscosity rises. Therefore, a decreasing profile is observed for a higher value of
volume fraction. Figures 7 and 8 are presented to examine the influence of the fractional and fractal order on the
heat distribution profile. The trend observed is similar to that seen in Figures 2 and 3.

Figure 6. Variation in velocity field against ϕ

Figure 7. Variation in temperature field against α
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Figure 8. Variation in temperature field against β

Figure 9. Variation in temperature field against ϕ

Figure 10. Variation in concentration field against α

Figure 9 shows how the thermal profile varies against the volume fraction of polystyrene nanoparticles. The
integral curves in the figure reveal an upward trend when the volume fraction ϕ is increased. This upward trend in
thermal profile is because of the advancement in the thermophysical properties of the base fluid. The distributed
polystyrene nanoparticles improve specific heat capacity, density, concentration level, viscosity, etc., of regular
kerosene oil, thereby enhancing its performance and leading to increased heat distribution. Figures 10 and 11 are
presented to examine the influence of the fractional and fractal order on the mass diffusion profile. The trend observed
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is similar to that seen in Figures 2 and 3.

Figure 11. Variation in concentration field against β

Figure 12 illustrates the effect of volume fraction ϕ on the concentration profile. As observed, the concentration
profile increases in response to higher values of ϕ. When the volume fraction of polystyrene nanoparticles is
increased, the nanoparticles occupy more space within the matrix (such as a polymer, liquid, or solid). This higher
particle density results in an increased concentration of nanoparticles within the same volume of the material.

Figure 12. Variation in concentration field against ϕ

Figure 13. Variation in concentration field against Sc

Figure 13 shows the impact of Schmidt number Sc on concentration profile. High Schmidt number represents
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significantly slower diffusion of mass as compared to momentum diffusion. This slower mass diffusion results in a
substantial concentration gradient across the boundary, generating a steep concentration profile; therefore, a drop in
the fluid’s concentration is observed. To examine the impact of volume fraction ϕ (polystyrene nanoparticle) on heat
and mass transfer in kerosene oil, Table 3 has been calculated. The tables indicated the variation in both Nusselt and
Sherwood numbers but in opposite directions when the volume fraction ϕ reaches 0.04 (4%). The Nusselt number
increased by 3.62% while the Sherwood number decreased by 5.68% for 4% of polystyrene nanoparticles. These
variations lead to enhanced lubrication properties of the regular kerosene oil.

Table 3. Variations in Nusselt and Sherwood numbers against volume fraction ϕ

ϕ Nu
Heat Transfer
Enhancement Sh

Decrease in Mass
Distribution

0.00 0.573398 0.947399
0.01 0.567924 0.95465 % 0.934007 1.413554 %
0.02 0.562633 1.87740 % 0.920572 2.831647 %
0.03 0.557225 2.82055 % 0.907094 4.254279 %
0.04 0.552598 3.62749 % 0.893573 5.681449 %

4 Concluding Remarks
We have used the integral transform approach and the numerical Zakian’s algorithm to examine a generalized

model of nanofluid. The partially coupled mathematical model has been developed in terms of PDEs. For
the generalization of the classical mathematical model, the fractal-fractional differential operator of non-singular
exponential kernels is employed. The generalized governing equations have been solved by the integral transform
technique, and then for their inversion, a numerical Zakian’s algorithm has been applied for the final solution. The
following are the primary conclusions of the current findings:

• Fractal-fractional operators provide multiple integral curves for the analysis of fluid behavior.
• Analysis shows that the applied numerical scheme is very handy to handle partially coupled PDEs.
• The graphical results indicate that the velocity profile is an increasing function of parameters α, β, Gr and Gm

and a decreasing function of parameter ϕ.
• From the analysis, it is concluded that the heat distribution within the fluid increases with the parameter ϕ.
• It is also worthy from the graphical results that the concentration boundary layer shows a decreasing trend in

its profile against parameters ϕ and Sc.
• The system’s heat transfer rate increases significantly when the volume fraction of polystyrene nanoparticles is

increased to 0.04 . Adding 4% polystyrene nanoparticles results in a considerable increase of 3.62% in heat transfer
rate.

• When the volume fraction of polystyrene nanoparticles approaches 0.04, the mass transfer rate significantly
reduces to 5.68%, suggesting that the mechanism of mass transfer improves at this point.
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