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Abstract: Graph structures (GSs) have appeared as a robust mathematical framework for modelling and resolving
complex combinatorial problems across diverse realms. At the same time, the linear Diophantine fuzzy set
(LDFS) is a noteworthy expansion of the conventional concepts of the fuzzy set (FS), intuitionistic fuzzy set
(IFS), Pythagorean fuzzy set (PFS), and g-Rung orthopair fuzzy set (q-ROFS). The LDFS framework introduces
a flexible parameterization strategy that independently relaxes membership and non-membership restraints through
reference parameters, thereby attaining enhanced expressiveness in apprehending ambiguous real-world phenomena.
In this paper, a novel concept of linear Diophantine fuzzy graph structure (LDFGS) is introduced as a generalization
of intuitionistic fuzzy graph structure (IFGS) and linear Diophantine fuzzy graph (LDFG) to GSs. Several cardinal
fundamental notions in LDFGSs, including p;-edge, p;-path, strength of p;-path, p;-strength of connectedness,
pi-degree of a vertex, degree of a vertex, total p;-degree of a vertex, and the total degree of a vertex in an LDFGS
are discussed. Additionally, p;-size of an LDFGS, the size of an LDFGS, and the order of an LDFGS are studied.
Meanwhile, the ideas of the maximal product of two LDFGSs, strong LDFGS, degree, and p;-degree of the maximal
product are introduced with several concrete illustrations. To empirically validate the efficacy and practical utility of
the proposed LDFGS framework, this study presents a case study analyzing road crime patterns across heterogeneous
urban regions in Sindh province, Pakistan.

Keywords: Graph structure (GS); Linear Diophantine fuzzy set (LDFS); Maximal product; Degree of a vertex;
Detection of road crimes

1 Introduction

The theory of FSs was proposed by Zadeh [1] to model uncertainty by assigning a membership degree (MD)
to each element within a set. However, in many real-world scenarios, MD alone is insufficient to capture the full
spectrum of uncertainty. To address this limitation, Atanassov [2] proposed the IFS, which incorporates both MD
and NMD under the constraint that their sum does not exceed unity. Despite the advancements offered by IFS,
several practical dilemmas require a more generalized framework where the IFS condition is not always satisfied.
In response to this need, Yager [3] introduced the notion of PFS, which relaxes the IFS condition by ensuring
that the sum of the squared MD and NMD does not exceed one. Subsequently, Yager [4] further extended this
concept by proposing q-ROFS, wherein the total of the g-th power of the MD and NMD remains within the unit
interval. This generalization enhances data representation capabilities, enabling a more refined characterization
of ambiguity and imprecise information. While the membership and non-membership degrees in IFS, PFS, and
q-ROFS are constrained by specific mathematical conditions, these restrictions limit their flexibility in modelling
uncertainty. To address these constraints, Riaz and Hashmi [5] introduced a generalization variant of FS known as
LDFS. By incorporating reference parameters, LDFSs provide a larger and more adaptable framework for defining
MD and NMD, surpassing the restrictions inherent in previous models. This enhanced flexibility makes LDFSs a
more robust and reliable approach for managing uncertainty. Given the progress and the greater degree of liberty
offered by LDFSs, this framework has attracted substantial scholarly attention. Academics have begun exploring and
expanding upon this novel concept, leading to the development of new theoretical extensions and applications [6-9].
Kamac1 [10] studied linear Diophantine fuzzy algebraic structures.
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Graph theory (GT) was invented from Euler’s solution to the Konigsberg bridge problem, which required to
determining a path that traversed each of the city’s seven bridges exactly once. Since then, GT has evolved into a
vital discipline with applications spanning various fields of science and the humanities. It is an influential instrument
for modelling and solving complicated realistic issues, mainly in network representation. Networks modelled using
GT involve a wide range of applications, including city transportation systems, telephone networks, recommendation
algorithms, computer and circuit networks, and social media platforms such as LinkedIn and Facebook. For instance,
in Facebook’s social network, each user is represented as a vertex (or node), with edges indicating connections between
users. Each node stores attributes such as name, ID, gender, and location, facilitating efficient data organization
and retrieval. Beyond social networks, GT plays a crucial role in sports analytics, where it aids in analyzing player
interactions and team dynamics. A football match, for instance, can be modelled as a graph, with players represented
as nodes and their on-field interactions as edges. Additionally, GT is instrumental in solving spatial and structural
problems. For example, it can be applied to navigation challenges, where an agent must traverse a network of
interconnected locations while ensuring optimal movement. Likewise, in autonomous vehicle coordination, GT can
model the placement and movement of cars at intersections to optimize traffic flow and minimize redundancies.

A graph is a mathematical representation of networks, illustrating relationships between vertices and edges.
In such a model, vertices may represent entities such as workstations, while edges denote connections between
them. However, conventional graphs often fail to accurately capture many real-world processes due to the inherent
complexity and variability of structural features. To address these limitations, Rosenfeld [11] introduced the concept
of fuzzy graphs (FGs). Fuzzy GT (FGT) has numerous fields, such as data mining, networking, clustering, planning,
image capturing, and scheduling. More literature on FGs can be seen in the study [12]. Parvathi et al. [13] employed
IFS to study intuitionistic fuzzy graphs (IFGs) and their fundamental operations. Akram et al. [14] and Akram et
al. [15] framed certain PF graphs (PFGs) and q-ROF graphs (q-ROFGs). Hanif et al. [16] deliberate the idea of a
linear Diophantine fuzzy graph (LDFG).

A graph is a pair of sets of vertices V and a relation E on V, which is capable of describing a wide range of
real-world events. Though, in many real dilemmas that concern more than one relation, GT cannot work efficiently.
To address such circumstances, Sampathkumar [17] generalized the idea of graphs and constructed the theory of
Graph structures (GSs). GS has ‘n’ mutually disjoint, symmetric, and irreflexive relations. Following that, Akram
and Sitara [18] and Sitara and Akram [19] examined the degree, total degree, and a few properties of the semi-strong
min product, maximal product, and residue product of fuzzy GSs (FGSs). Sharma and Bansal [20] introduced the
concept of intuitionistic fuzzy graph structure (IFGS). The authors studied the concept of the g-rung picture fuzzy
graph structure (q-RPFGS) [21].

1.1 Knowledge Gaps and Motivations

The main motivations and research gaps behind this paper are outlined as follows:

e GSs serve as an important tool in advancing research across numerous domains of computer science and
computational intelligence. FGSs offer a noteworthy advantage over traditional GSs, as they successfully
handle the uncertainty and ambiguity innate in real-world dilemmas.

e The most recent development in FS theory, known as the LDFS framework, was familiarized by Riaz and
Hashmi [5] to address the restrictions allied with MD and NMD in earlier approaches such as FS, IFS, PFS,
and g-ROFS. By integrating reference parameters, LDFS provides decision-makers with better flexibility in
their assessments, enhancing the decision-making scenarios.

e Hanif et al. [16] recently presented the notion of LDFGs and established their essential operations and
properties. LDFGs offer significant advantages over FGs, IFGs, PFGs, and q-ROFGs, as they incorporate
a broader range of MD and NMD, thereby enhancing their applicability in complicated decision-making
scenarios.

e An analysis of the existing literature indicates a noticeable lack of research on linear Diophantine fuzzy graph
structures (LDFGSs). While various extensions of FGs have been explored, the integration of graph structures
within the framework of LDFSs and their potential application remain unexplored. Given the enhanced
flexibility and broader representational abilities of LDFSs, their application to graph theory holds significant
potential for addressing complex real-world problems involving uncertainty. To bridge this knowledge gap,
we introduce and formalize the idea of LDFGS by extending the notion of graph structures within the LDFS
context.

1.2 Main Contributions

Based on the above discussion, the main contributions of this study are listed as follows:

e To establish a detailed study on GS in the context of LDFSs and introduce the concept of LDFGS.

e To develop the idea of the maximal product of two LDFGSs.

e To explore the concept of strong LDFGS and examine the degree and p;-degree of the maximal product.
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e Furthermore, to show its efficacy and influence in real-life paradigms, an application of LDFGS regarding the
identification of road crime detection among cities in the province of Sindh is presented.

1.3 Framework of This Work

To promote our discussion, this article is organized as follows: Section 2 offers a review of the rudimentary
information necessary for the subsequent discussions. Section 3 introduces the idea of LDFGSs, along with essential
definitions and illustrative examples. Section 4 explores the maximal product of two LDFGSs, introduces the notion
of strong LDFGS, and examines the degree and p;-degree of the maximal product. Furthermore, to show its efficacy
and influence in real-life problems in Section 6 an application of LDFGS regarding the identification of road crime
detection among cities in the province of Sindh. Section 7 presents some concluding remarks.

2 Basic Concepts

In this segment, some essential ideas of IFS, LDFS, IFR, LDFR, GS, FGS and IFGS. Throughout this paper,
unless stated otherwise, V, V4, and V5 denote universal sets.

Definitionl. An IFS 7 over V is portrayed as [2]:

T= {(b,(%m(b),%n(b)>> :beV}, 1)

where, ™, »" : V — [0, 1] represents the MD and NMD, respectively, such that 0 < »™(b) +»"(b) < 1,Vb € V.
Definition2. An LDFS £ over V is postulated as [5]:

2 ={(b6, (" 0), %" (), (0, 8)) b € V}, @)

where, 5™, %" : V — [0,1] are MD and NMD, and «, 5 € [0, 1] are corresponding reference parameters,
respectively, w1th 0<a+pf<land0 < ax™(b)+ B»"(h) <1,Vb € V. The degree of hesitation of any b € V
is articulated as w(h) = 1 — (™ (b) + Ba"(b)).

We will use £DFS (V) for the collection of all LDFSs over V. For convenience, we will use £ = ({3, »™),
(a, BY) for an LDFS over V.

Definition3. Let £ = (", 1), (a1, 61) ) and £ = ({4, 5 ), (a2, 2) ) be two LDFSs on V. Then, ¥

beVI[5]
(1) £1 C Lo & 27" <56, 57 > 523, and g < g, B > B

@ 81U = ({4 Vot o A ), (o Vs, 1 A o))
3 LNy = (<%{" A sdyt, sV g ), (an Ao, BV 52>);
@) 5 = ({447, (Bran)):

Definitiond. An IFR p from V; to V5 is described as [22]:

o= {((1:02), (5 61,2), 5 (51,02))) 11 € V.0 € Vs }, 3

where, >, 5 : Vi x Vo — [0, 1] express the MD and NMD from V to Vy, respectively such that 0 < »* (b1, b2)
—i—%g(bl, bg) <1V (bl, bg) eV, xV,.

Collection of all IFRs from V; to Vg will be symbolized by IFS(V; x Va).

Definition5. Presume that o = <%£’I (b1,b2), »p, (b1, b2)> be an IFR from V; to Vy and g5 = <%g(b1, ba),
»y, (b1, b2)> be an IFR from V5 to V3. Then, their composition g1 o g5 € IFS(V; X Vy) is postulated as [22]:

010 02 = (5441 0 5402) (01,55), (544, © 544,) (01,55) ), @)
where,
(s 0 ) Orsbs) =\ (s (0.02) A s (2.53)). )
bo €V,
(st 02, 010y =\ (34, (01,02) V 548, (02,9) ) ©)
ba€Va

Vb1 €V1,b2 EVg,bg € Vs.
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Definition6. Let o = (37" (b1,b2), 57 (b1,b2)) be an IFR from V to V5. Then,

supp(o) = {(bm) L3 (1,09) > 0,57 (b1, b) > o} )

is titled as the support of p.
Definition7. An LDFR p from V; to V5 is articulated as [6]:

5= { (O1:02), (35 (1,52), 245 (01,52, (@ (01,b2), B (01,52)) ) 251 € Vi b € Vi }, ®)

where, »%", 57 : Vi x V3 — [0, 1] represent the MD and NMD from V; to Va, and a3(b1,b2), 85(b1,b2) € [0,1]
are the corresponding reference parameters, respectively subjected to the constraint 0 < a(b1,b2)s¢5" (b1,b2) +
Bs(01,b2)23 (b1,b2) <1V (by,b2) € Vi x Vo with 0 < a5(b1,b2) + B5(01,b2) < 1. The hesitation degree can be
evaluated as:
7(01,52) = 1= (ap(o1, b2) 5" (01,52) + B5(b1,02) 545 (01, b3) ). ©)
The assemblage of all LDFRs from V; to Vs by £DFS(V; x Vs).
Definition8. Let p~1 = (<%n} (bl, bg), %gl (bl, b2)>, <ap~1 (bl, bg), 6,;1 (bl, b2)>) be an LDFR from Vl to Vg and

o = (< 7 (03, b3), 322 (b3, b3)), (s, (03, b3), B (b b3)>> be an LDER from Vs to V. Then, their composition
is descrlbed as [6]:

p10p2 = (<( X5 © X )(bla b3) ( %g‘z)(bh b3)>a <(aﬁ1 o aﬂz)(bl? b3)a (Bﬁl o 6ﬁz)(b1’ b3)>) (10)

where,

(s 0 ) 0,03) =\ (340 01, 02) A 54 (02,9) ) an
ba€Va

(e 0o ) Or00) = N\ (54 (1,02) V 5 (02, b3)), (12)
b€V,

(a5 0 ap,)(01,b3) = ( (b1,b2) Aapz(b2ab3)) (13)
baeVsa

(B0 65) Gubs) = N (8 61.02) V s ), (14)
ba€Va

Vbl EVl,bg EVg,bg € Vs.

Definition9. Let p = (<%gl(b1, ba), 22 (b1, b2)), {as(b1,b2), B (b1, b2)>) be an LDFR from V; to V5. Then,
the set
supp(p) = {(b1,02) : 55 (b1,b2) > 0,55 (b1,b2) > 0), (@(b1,b2) > 0, B5(b1,02) > 0} (15)

is named the support of p.

2.1 Fuzzy Graph Structures

Definition10. LetV be any non void set known as the vertex setand Eq, Eo, - - - | E; be mutually disjoint relations
(sets of edges) of V such that each E;, 1 < ¢ < k is symmetric and irreflexive. Then, ¥ = (V, E.,Eo,--- ,Ek) is
named a graph structure (GS) [17].

Definition1l. Let ¥ = (V,E;,E,--- ,E;) be a GS. Then, & = (F,p1,p2,- -, px) is called fuzzy graph
structure (FGS) of GS ¢, where .7 € FS(V) and p; € FS(E;), V1 <i < k,if 0 < 37 (x,y) < % (x) A 5% (y)
Vx,yeV,i=1,2,--- k.

From now onward, we will simply utilize ¢ for a GS.

Definition12. Let ¥ = (52, P1, P2, " ,pk) be a FGS with GS ¢ [23].

(1) If (x,y) € supp(p;), then (x,y) is named p;-edge of 4.

(2) A p;-path of 4 is a sequence of vertices Xg, X1, X2, - - - , X, Which are distinct except possibly xy = x,., such
that (x;_1,x;)isap;-edgeVj=1,2,--- ,r

(3) Two vertices of ¢ are said to be p;-connected if they are joined by p;-path.
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(4) The strength of p;-path xq, X1, X2, - - - xT of a FGS ¥ is /\;:1 st (Xj-1,%;) fori = 1,2, k.

(5) MFGS &, (37)=(x,y) = V{(>7)(x,y) : j = 2,3, ,k}, where (51} = ((37)7 "1 0 57)(x,y),
Jj=2. .
(6) The p;-degree of a vertex x in & is defined as D, (x) = >_ .y (x v)eE, 75, (X, ¥).
(7) The degree of the vertex x € V is denoted and defined by D(x) = Ele Dy, (x).
(8) ¢ is said to be a-p; regular, if D,, (x) = a, V x € V. Moreover, ¥ is called a-regular, if D(x) = a,Vx € V.
Definition13. Let %) = (1, pl, phs - p) and %o = (Fa, pl, ply, .., pl{) be two FGSs with underlying GSs
4 = (Vl,]E’l,E’Q, ,E;C) and % = (VQ,E’I’,]E’Q’, ,IEZ) respectively. Then, G =G «Gy = (ﬁ,pl,pg, cey
pk) is called maximal FGS with underlying crisp GS G = (V, E, Eo, ...,]Ek.), where V = V; x V5 and E; =
{(xlyl, X2Y2) : X1 = X2, (¥y1,y2) € E;ory; = yo, (X1,%2) € E;} Fuzzy vertex set .% and fuzzy relations p; in
maximal product 4 are defined as [19]:

F = F1x Py, #p(x,y) = x5 (X) V5 (y), V(x,y) € V=V x Vs, and p; = pj * py,
g (x1) V %;’;L,(yl,yg), if x; = x2, (y1,y2) € E/
©3, (y1) VvV %::/LL(X17X2), ify; =yo, (x1,%x2) € E;
i=1,2,..k
Definitionld. AFGS Y = (Z, p1, pa, ..., py) is pi-strong, if [19]
%}’J’Z(xy) =xz(x) Nz (y), V(x,y) € Ej,i € {1,2,...,k}.

If9 is pi-strong V ¢ € {1,2,...,k}, then 4 is called strong FGS.
Definition15. The degree of a vertex in maximal product & = % * %, of two FGSs G = (,?1, Py Py eens
p),) and Gy = (Fa, P, PY, - p}l) is given by [19]:

Dy (xi,y;) = > st (Xiy Xi) V ae, () + > i (¥5,y0) V %z, (%i). (16)

(xi,xk)€EE]y;=y1 (v5,y1)EEY ;xi=x

sy (X1y1, X2y2) = {

p;i-degree of a vertex of maximal product 9 is postulated by:

pi — Dy (xi,y;) = > sy (%6, Xk) V 2, (y5) + > 7y (Y5, ¥0) Vg (%) (A7)
(xi,xk)€EE],y i =y1 (yj,y1)€EY ,xi=x

2.2 Intuitionistic Fuzzy Graph Structures (IFGS)

Definition16. Let ¢4 = (V,E1,E,...,E,) be a GS, T = (»7'(x), s (x)) be an IFS on V and g; =
<%gj (x1,%2), s (Xl’X2)> be irreflexive, symmetric and mutually disjoint IFRs from V; to Vo, i = 1,2,....n,
where x,x3,%x2 € V. Then, ¢ = (I, D1y P2y ey p'n) is called intuitionistic fuzzy graph structure (IFGS) of GS ¥,
if [20]

s (X1, X2) < 27 (%) A seg(X2), and s (X1,X2) > se7(X1) V 327 (X2), VX1,%2 € V,i=1,2,...,n

Definition17. Let G = (I, D1y P2y e p'n) be an IFGS with the underlying GS ¥ = (V, Ei, E,, ..., En) Then,
pi-strength of connectedness between any two vertices X1, X is defined by (g;)°°(x1,x2) = <(%7p?:)°°(x1 ,X2),
(5¢5,)% (x1,%2) ) [20],
where,

(525)> (%1, %2) \/ J(x1,Xs2), and (5 35, )% (%1, X2) /\ I(x1,X2).
j=1 j=1
where,

(5517 (x1,%2) = ((5)7~" 0 ") (x1,%2) and o is given in Definition 5.

Definition18. Let ¥ = (I 3 P1s P25 e p'k) be an IFGS with the underlying GS ¢. Then, g;-degree of a vertex
x € Vis expressed by D, (x) = <%]g’,j_ (%), 5, (x)) [24],
where,

)= Y xy) andsd, ()= Y s (xy):

(x,y)€E; (x,¥)€E;
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Definition19. Let¥ = (I S P15 P25 ey p'k) be an IFGS with the underlying GS ¢. The degree of the vertex x € V
is symbolized by D(x) = (5'(x), >3 (x)) and is defined as [24]:

k k

(%) = D oy (%), and s (x) = Y s (%)

=1 =1
Definition20. Let ¥ = (Z, j1, 2, ..., i) be an IFGS with the underlying GS G. Then, ¢ is called (a, b)-/;
regular, if D, (x) = (a, b) and (a, b)-regular, if D(x) = (a,b) Vx € V [24].
3 Linear Diophantine Fuzzy Graph Structures (LDFGS)

In this part, we initiate the theory of linear Diophantine fuzzy graph structure (LDFGS) and several fundamental
ideas in LDFGSs, like p;-edge, p;-path, the strength of p;-path, p;-strength of connectedness, p;-degree of a vertex,
degree of a vertex, total p,;-degree of a vertex, and total degree of a vertex in an LDFGS, p;-size of an LDFGS, size
of an LDFGS, and the order of an LDFGS.

Definition21. Let £ = ((%}f(x), #3(x)), (ag(x), Be (x)>) be an LDFS over V, ¢ be a GS and p; €

LOFS(E;),i € {1,2,--- ,k}. Then, ¥ = (€,p1,p2,- -+, Pr) is said to be an LDFGS of GS ¢, if V x,y € V:

s (X, y) < s (%) A g (),
my (x,y) 2 g (x) V g(y), (18)
o (%,y) < ag(x) Aag(y),

5 (X, y) >

x4)}. Then, ¥ = (V, Eq, Eg) is the GS shown in Figure 1. Define an LDFS £ € £0F&(V) exhibited in Table 1.

x1((0.4,0.3), (0.2,0.1)) x4((0.7,0.3),(0.6,0.2))

p2((0.4,0.3), (0.2,0.3))

({(e0‘z0) ‘(¥'0‘v0)) ¢
p1((0.4,0.5), (0.4,0.2))

$2((0.3,0.5), (0.2,0.3))

x5((0.6,0.2), (0.3,0.2)) x3((0.4,0.5), (0.4,0.2))
Figure 1. ¥ = (£, 1, b2)

Table 1. Tabular representation of LDFS £

Vo (00, (), (e (%), Be()) )
X1 ({(0.4,0.3),(0.2,0.1))

X2 ((0.6,0.2),(0.3,0.2))

X3 E<o.4, 0.5), (0.4, 0.2>§

X4 (0.7,0.3), (0.6, 0.2)

Let us take two LDFRs 1, pa over Eq, Eo, respectively which are displayed in Table 2 and Table 3, respectively.
By routine calculations, it becomes evident that 4 = (£, 01, ﬁg) is an LDFGS of GS ¢4 = (V, E,, Eg), which
is depicted in Figure 1.
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Table 2. p;

o (e y) s (6 3): (o (6,3 B (,7)))
(x1,%2) «040®4020w)
(x1,%3) §<03 ,0.6),(0.2,0.3)
(x3,%4) (0.4,0.5), (0.4,0.2)

Table 3. p-

P2 (< ™ (X, y), ¥)) (ap (%), Bs, (x, Y)>)
(x1,%4) (<04 03>,<02 0.3))
(x2,%3) ((0.3,0.5),(0.2,0.3))
(x2,%4) ((0.6,0.4),(0.3,0.4))

Definition22. Let ¥ = (£,p1, P2, , i) be an LDFGS with underlying GS ¢. When (x,y) € supp(p;),
then (x,y) is termed j;-edge of 4.

Example2. According to Example 1, (x1,X4), (X2, X3), (X2, X4) are pa-edges as supp(fa) = {(x1,%4), (x2,X3),
(xQ,X4)} and (x1, X2), (X1, X3), (X3,X4) are pi-edges since supp(p1) = {(xl,xQ), (x1,x3), (X3,X4)}.

Definition23. Let & = (2, D1y P2y eeny ﬁk) be an LDFGS with underlying GS ¢. A p;-path of < isa sequence
of vertices x¢, X1,Xa, ...,X; that are distinct except possibly xo = x;, such that (x;_1,%;) is a p;-edge V j =
1,2,3,--- 1

Example3. In the light of Example 1, x;,X4, X2 is a p;-path and x5, x1,X3,X4 is a pi-path. Analogously,
X2, X3, X4 18 @ po-path and x1, X4, X2, X3 1S a py-path.

Definition24. In an LDFGS & = (2, D1y P25 e ﬁk) with underlying GS ¢, two vertices x, y of & are said to be
pi-connected, if they are joined by a p;-path.

Exampled. From Example 1, all vertices x1, X2, X3, X4 are p1- and po-connected according to the Example
3 since they are joined by both p;- and po- paths. Since V x,y € V they are connected by p; Vi = 1,2, so <
is connected LDFGS because p1(x1,x3) > 0, p1(x1,x2) > 0, and p;(x3,%4) > 0 so, X1, X3 are pp-connected,
X1, Xg are pi-connected, and x3, X4 are p;-connected, respectively. Similarly, x2, x3 are ps-connected, x5, x4 are
po-connected, and x1, x4 are po-connected.

Definition25. Presume that 8 = xg, X1, X2, -, X; be a p;-path of an LDFGS ¥ = (€,p1, P2, , pr) with
underlying GS ¢. Then, the strength of the p;-path 3, is postulated as:

5"(‘13) = <<%g’1t(q3)a %gf(ip)>a <a5t(q3)a 65t(‘]3)>)7 (19)
where,
st(q3) /\% (xj-1,%5), \/% Xj_1,%;)
(20)
Qge(qp) = /\ g, (Xj-1,%;), Bayp) = \/ Bp. (x5-1,%;)
j=1 j=1
fori=1,2,..., k.

Example5. (Continued from Example 3) We have observed that x;, x4, X2 is a py-path and xo, X1, X3,X4 iS a
p1-path. Also, X5, X3, X4 is a pa-path and x1, X4, X2, X3 is a pa-path. We can evaluate their strengths as follows:
Strength of p1-path P = x1, x4, X2 :

HSypy) = /\3?:2%;5; (xj-1,%5) = s (x1,%2) A se5; (x1,%3) =041 0.3 =0.3
HSppy) = \/;’»:2%;31 (xj-1,%5) = s (x1,%2) V 505 (x1,%3) = 0.4V 0.6 = 0.6
Qagp,) = /\ ol (Xj-1,X;) = o (X1, X2) A gy (x1,%3) =0.2A0.2=0.2
Bsi(p,) = \/] 2B (xj—1,%5) = By, (X1, %2) V Bp, (x1,%3) =03V 0.3=0.3

Thus, 5t(%1) = ((0.3,0.6), (0.2,0.3)).
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Likewise, we can determine strength of j;-path PBs = X3, X1, X3, X4 Whichis given by st(P3) = ((0.3, 0.6), (0.2,
0.3)), strength of pa-path Ps = x2,x3,x4 is 5t(P3) = ((0.3,0.5),(0.2,0.4)) and strength of jy-path Pz =
X1,X4,X2, X3 is an st(P4) = ((0.3,0.5), (0.2,0.4)).

Definition26. Let & = (L, 1, iz, ..., pn) be an LDFGS of GS 4. Then, j;-strength of connectedness of any
two vertices X1, Xs is portrayed as:

(pvi)DQ(X1,X2) = <<(%gj)oo(x1,x2), (%gi)m(X17X2)>7 <(aﬁi)oo(x1,x2), (ﬂﬁi)m(xl,x2)>>, 21
where,

(o5) ™ (x1,%2) =

(54.) (a1, x2).

<3
Il
=3

(%;’j)j(xl,XQ), and (5% )™ (%1, %2)
J

Il
-
<.
I
—

(22)

(a;)i)oo(xl,xz) = “i)j(X1,X2)~

<8
[

g

®

()’ (x1,%2), and (85,)% (x1,%2)
1

Here, (Pz) (X17X2) (<(%gz)j(x1,xz), (%E‘i)j(X1’X2)>v <(aﬁi)j(x1,X2) (sz) (Xl,X2)>) = ((ﬁi)jfl o
ﬁl) (x1,X2), and the composition o among any two LDFRs is provided in Definition 8.

Example6. In Example 1, we can evaluate the terms as defined in above definition as follows:

<.
Il
<.
I
—

(55) > (x1,%2) = \/ {%m (x1,2) A 5, (Z7X2)} = V{5 (x1,%4) A 35 (X4, %2)} = 0.4 A 0.6 = 0.4

(565,) 7 (x1,%2) = /\{ L (X1,2) V (2, %X2) } = A5, (X1, %X4) V 525, (X4, %X2)} = 0.3V 0.4 =04

(ap,) ™ (x1,%2) \/{ap2 (x1,2) AN, (z,%x2)} = V{as, (x1,X4) A s, (X4,%2)} =0.2A0.3 =0.2

(B3) (x1,X2) = /\{/3;,2 (x1,2) V By (2,%2)} = AM{Bpa (x1,%4) V B, (x4,%2)} = 0.3V 0.4 = 0.4

Therefore, (p2)” (x1,%2) = ((0.4,0.4), (0.2,0.4)).
Similarly, we one can find (ﬁg)m(xl, x3) = ((0.3,0.5),(0.2,0.4)) and (ﬁl)oo(XQ, x3) = ((0.3,0.6), (0.2,0.3)).
Definition27. Let & be an LDFGS with underlying GS ¢. Then g;-degree of a vertex x € V is articulated as:

Dy, (x) = (<%ﬁ; (x), 245, (x)), (am,, (x), Bn,, (x)>) : (23)
where,
k k
M )= >y, 0= Y. sy,
izlx#y,](fx,y)eEi z‘:1,x¢y,k(x,y)exai o
ap,, (x) = Z ag, (X,¥), Bp,, (x) = Z By (x,¥)-
=1xy, (x.y) €k i=1,x#y,(x,y)€E;

Definition28. Let % be an LDFGS with underlying GS ¢. Then the degree of the vertex x € V is characterized

as: .
D(x) = Y- Dj(x) = (45 (%), 55(x)), (o (x). Bo(x) ). 25)
i=1
where,
e (00) = DB, (), (%) = D o4, (x).an(x) = Y am,, (%), Bolx) = D Bo,, (). (26)
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Example7. If we recall Example 1, then from Definition 27, g;-degrees of vertices can be determine as follows:

%ﬁ;l (x1) = Z s (X1,y) = s (X1, %3) + 3 (X1, %2) = 0.3+ 0.4 =0.7
x17Y,(x1,y)€EEL
%ﬁm (x1) = Z sy (X1,y) = s, (X1, %3) + 3¢, (X1,%2) = 0.6+ 04 =1

X1 7Y,(X1,y)€E1

ap,, (x1) = Z Qg (X1,y) = ag, (x1,X3) + ag (x1,%2) =024+ 0.2=04
x17y.(x1,y)€E1
Bo, (k1) = D> Bu(x1,¥) = By (x1,%3) + B (x1,%2) = 0.3+ 0.3 = 0.6

x17£y,(x1,y)€E1

Therefore, D, (x1) = ((0.7,1), (0.4,0.6)).
Similarly, we can evaluate g1 - and pa-degrees of all x € V which are displayed in Table 4 and Table 5, respectively.

Table 4. D,

Vo (G, ), (), (s, (%), By, ()
X1 (< 1), (0.4 06)
X2 ((0.4,0.4), (0.2,0.3))
X3 ((0.7,1),(0.6,0.5))
x4 ({0.4.0.5). (0.4.0.6))
Table 5. D,
Vo (g, 00,58, (). (an,, (). By, ()
X <09 0.9), (0.5,0.7)
X2 (0.9,0.9),(0.5,0.7)
X3 <0305>,<0203>
X4 ((1,0.7),(0.5,0.7))

Now, in the light of Definition 28, we calculate the degrees D(x) = Zfﬂ D, (x) as follows:

D(x1) = Dy, (x1) + Dy, (x1) = ((0.7,1), (0.4,0.6)) + ({0.9,0.9), (0.5,0.7)) = ((1.6,1.9), (0.9,1.3))
D(x2) = Dy, (x2) + Dy, (x2) = ((0.4,0.4), (0.2,0.3)) + ((0.9,0.9), (0.5,0.7)) = ((1.3,1.3), (0.7, 1))
D(x3) = Dy, (x1) + Dy, (x3) = ((0.7,1),(0.6,0.5)) + ((0.3,0.5), (0.2,0.3)) = ((1,1.6), (0.8,0.8))

D(x4) = Dy, (x1) + Dy, (x4) = ((0.4,0.5), (0.4,0.6)) + ((1,0.7),(0.5,0.7)) = ((1.4,1.2),(0.9,0.9))

which can be also be seen in Table 6.

Table 6. D(x)

Vo (). 5860). (ap(), o))
X1 ((1.6,1.9),(0.9,1.3))
Xo é( 3,1 >,<0.7,1>;
X3 (1,1.6),(0.8,0.8)
X4 ((1.4,1.2),(0.9,0.9))

Definition29. Suppose that ¢ be an LDFGS with underlying GS ¢. Then total g;-degree of a vertex x € V is
defined as:
Ty, (x) = By, () + £66) = (el (0, 5, (), (013, (%), Brm,, (%)) ), @7)
where,

%, (X) = 25, (%) + 58" (%), 7, (%) = 24p5, (%) + 57, (X),} 08)
_|_

o, (%) = ap,, (%) + ag, (x), Br,, (%) = o, (x)
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Definition30. Let ¢ be an LDFGS with underlying GS &. Then, the total degree of the vertex x € V is

postulated as:
k
X) = Z T]D)ﬁz (X
i=1

where,

sepp (% E %TD )s 7 (X E %m ), ap(x E QTD,

x), fro(x

) = (4 (), 485 ()). (o (30, Br(x)) ).

(29)

(30)

Z B, (

Example8. (Continued from Examples 1 and 7) We can evaluate the p;-degrees for each vertex x € V by using

Definition 29 as follows:

TDp, (x1) = Dy, (x1) + £(x1) = (0.7,1),(0.4,0.6)) + ((0.4,0.3), (0.2,0.1))
TDp, (x2) = Dy, (x2) + £(x2) = ((0.4,0.4), (0.2,0.3)) + ({0.6,0.2), (0.3,0.2
TDp, (x3) = Dy, (x3) + £(x3) = (0.7,1.1), (0.6,0.5)) + ({0.4,0.5), (0.4,0.2)
TDp, (x4) = Dy, (x4) + £(x4) = ({0.4,0.5), (0.4,0.2)) + ((0.7,0.3), (0.6, 0.2)

which is also demonstrated in Table 7.

Table 7. TD3,

))
)) =
) =

V(4,00 54,, (9): (0, () Bro,, ()
X, (<1113,<060 7)
Xo (1,0.6), (0.5,0.5)
X3 §(1116,107>;
X4 ((1.1,0.8),(1,0.4))

Moreover, g;-degrees for each vertex x € V are calculated in Table 8.

Table 8. TID;,

(«

v (e, 09, 5, (9), (amm,,, (%), B, (%)) )
X1 ((1.3,1.2),(0.7,0.8))

Xo ((1.5,1.1),(0.8,0.9))

X3 §<0.7, 1), (0.6, 0.5)%

X4 (1.7,1),(1.1,0.9)

Now, from Definition 30, TD(x) = Zf 1 TDj, (x) are calculated as follows:
TD(x1) = TDp, (x1) + TDy, (x1) = ((1.1,1.3),(0.6,0.7)) + ((1.3,1.2),(0.7,0.8
TD(x2) = TDp, (x2) + TDj, (x2) = ((1,0.6), (0.5,0.5)) + ((1.5,1.1),(0.8,0.9))
TD(x3) = TDp, (x3) + TDs, (x3) = ((1.1,1.6), (1,0.7)) + ((0.7,1),(0.6,0.5)) =
TD(x4) = TDp, (x4) + TDp, (x4) = ((1.1,1.6), (1,0.7)) + ((1.7,1),(1.1,0.9)) =

which is also showcased in Table 9.

) =
(¢
(¢

(1.1,1.3),(0.6,0.7)),

1,0.6),(0.5,0.5)),
(1.1,1.6), (1,0.7))
1.1,0.8), (1,0.4))

) )

)

(¢
(«
(«

((2.4,2.5),(1.3,1.5)),
((2.5,1.7),(1.3,1.4)),
1.8,2.6),(1.6,1.2)),
(2.8,2.6), (2.1,1.6)),

Definition31. Let ¢ be an LDFGS with underlying GS ¢. Then order of ¢ is described as follows:

_ << Y)Y %g(x)>, < Y aex), Y ,Bg(x)>> .
xeV xeV xeV xeV
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Table 9. TD

Vo (), 4 (0). (am(x), o)) )
X ((2.4,2.5), (1.3,1.5))

X5 (2.5,1.7), (1.3,1.4)

X3 (1.8,2.6), (1.6,1.2)

X4 (2.8,2.6), (2.1,1.6)

9

Example9. If we revisit the Example 1, then we can calculate O(¥) as follows:

D (%) =0440.6+0.4+07 =2,

Z ag(x) =0.2+0.340.4+0.6=1.5,

D Be(x)=01+02+02+02=0.7.

Therefore, O(%) = ((2,1.3), (1.5,0.7)).
Definition32. Let % be an LDFGS with underlying GS ¢. The p;-size of < is postulated as:
&5(9) = (2, .28, ) (as,, Bs,,)), (32)

where,

%gﬁq‘, Z %g:l (X’ y)’ %gf’i - Z %27 (X’ y)’

(%,¥)€E; (x,y)€E; (33)
as, = Y. a5(xY), Be, = Y. Bp(xy)
(x,y)€E; (x,y)€E;
Additionally, the size of ¢ is denoted and characterized as:
6(9) =) 6;(9) (34)
i=1
Examplel0. If we revisit Example 1, then
E= Y (xy) =04403+04=11,
(x,y)€E:
2, = Y, % (xy)=04+06+05= 15
(x,y)€E1
ae,, > s (xy)=02+02+04=08,
(x,y)€E1
Be,, = Z Bs (x,y) = 0.3+0.3+0.2=0.8.
(x,y)€E;

Therefore, &5, @) = ((%gﬁl ) 7
1.2),(0.7, 1))
Moreover, the size of & is evaluated as:

s, s, )) = ((1.1,15),(0.8,0.8)). Similarly, &5, (%) = ((1.3,

S(9) =64 (9) +64(9) = ((1.1,1.5),(0.8,0.8)) + ((1.3,1.2), (0.7,1)) = ((2.4,2.7), (1.8, 1.5)).
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4 Maximal Product of Two LDFGSs

This segment the idea of the maximal product of two LDFGSs, strong LDFGS, degree and p;-degree of a vertex
in maximal product. Also, certain results related to these concepts are proved with several concrete illustrations.

Definition33. Let % = (L1,0/1,ps,+, /) and %o = (£, 01, p"5, -, p",,) be two LDFGSs of the GSs
@4 = (Vh]E’l,E/Q, e ,E;L) and %, = (Vg,E’l’,E’Q’, e ,Eg),respectively. Then, ¥ = G, +%, = (&p“l,ﬁz, e ,ﬁn)
is called maximal LDFGS with underlying crisp GS ¥ = (V, E{,Eo,--- ,En), where V. = V; x V5 and
E;, = {(()(1,y1)7 (xz,yg)) D X1 = Xo,(y1,y2) € Ef ory:r = ya,(X1,%X2) € E;} The LDF vertex set £
and LDFRs p; in maximal product @, « Gy are defined as:

£ =215 8 = (8 (%), 548, (), (e, (%), Be, (3)) ) * (8 (¥), 78, (7)) (e, (3), Bes ()

= (<(%?fl x50, ) (%,y), (322, % #2,) (5, ¥)), ((ag, *ae,) (x,y), (Be, * ﬂsg)(x,y»)
= (2 (0 3) 40, 3), (s (x,¥). Be(x.3)) ) (35)
where,
7 (x,y) = ¢, (x) V22, (¥),
xo(X,y) = »g, (%) A g, (¥), 36)
ag(x,y) = ag, (x) Vag,(y),
Be(x,y) = Be, (%) A Be, (¥),
V(x,y) € V=V, x Vyand p; = g % p are defined as :
o m
Pi _pz*pz <<%ﬁ§(x1,}’1>7 ! (x1,¥1) > <a (X1,¥1), Xl,Y1 >>
*(<”%(X27}’2)a ~~(X2aY2 > <a 5 (X2,¥2), ““ (x2,¥2 >)
= <(%EZ * %SZ/)(X1Y1,X2Y2), (%}2 * %,3//) X1Y1,X2yQ)>,
<(a,3; * CYV/’)(X1Y1,X2Y2) (5p’ *5“”) X1}’17X2YQ >>
= <<%Z(X1Y17X2YZ)a%gi (x1¥1,X2¥2)), {0, (X1¥1, X2¥2), B, (X1¥1, X2y2) ), 37
where,
2@ (x1) V 70 (y1,y2), if X1 =X, (y1,y2) € Ef
(X1¥1,X2y2) o ’ . , (38)
gy (y1) V %ﬁ;’(Xth)’ ify1 =y2, (x1,%2) € Ej
g, ( )/\%u,,(yl,yg) if x1 :XQ,(yl,yQ) GE;/
X1,¥1),(X2,y2)) = (39
4 (( 1 1) ( 2 2)) {%gz(y )/\ %p“,'i(xl’XQ)’ lfyl =Yyo, (X15X2) c E;
ag, (x1)Vay(yr,yz2), if x1 = %9, (y1, e EY
(%1, 71), (X2, 3)) = e (x1) Vo (y1,y2) ' 17 2, (¥1,¥2) ; (40)
ag,(y1) Vv ay (x1,%2), if y1 = ya2, (x1,%2) € E;
s (Y1,¥2), if x1 = %2, (y1, e E/
B (61,31, (e, y) = § P2 O M Gy y2), i =, (v, v2) € B (1)
Be,(y1) A Bpi(xlvx2)7 ify1 = ya, (x1,%2) € E]

i=1,2,-,n

Examplell. Let us consider two LDFGSs G = (21, Py Doy ,bg) and %, = (ilg, 5 ) which is showcased in
Figure 2 with underlying GSs 4 = (V1,E},EL, E}) and % = (Va, EY), respectively, where V; = {u;,us, us}
and Vo = {vy, vo} are two sets of vertices and E} = {(uy,u3)}, E;, = {(u1,u2)}, and E; = {(uz,u3)} are the set
of edges on Vy, and Ef = {(v1, v2)} is the edges set on V5 such that E; and E! are irreflexive and symmetric binary
relations on V7 and Vs, respectively The LDFSs £1 on V; and £5 on V5 are given in the Table 10 and Table 11,
respectively. The LDFRs g}, b, p5 over the E{,E, Ef, and ] over Ef given in Tables 12-15, respectively. By
using Definition 33, we obtain the following LDFS £ = £; * £ illustrated in Figure 3 and shown in Table 16 and
LDFRs p; = p. * pl fori = 1, 2,3 shown in Tables 17-19, respectively.
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Table 10. LDFS £,

Vi (e (%), 78, (%)), (e, (%), Be, (%))
u; ((0.6,0.5), (0.4,0.3))
uy ((0.4,0.3),(0.5,0.4))
u3 ((0.8,0.9), (0.6,0.3))

Vo ({38, (%), 8, (%)), (e, (%), Be, (%))
vy ((0.7,0.4), (0.3,0.2))
Vo ((0.3,0.2),(0.4,0.1))

Table 12. /,

By (5 (y) ) (6y) (ay (5) 8y (x¥)))

(uy,uz) p( 0.6,0.9), 04 0.5))

Table 13. /7,
]E/Q (<%Z“;L ( ) ( )> < ,;2(X7y)7ﬁp“/2(x7Y)>)>)

(uy,uz) p( 0.4,0.5),(0.3,0.4))

Table 14. /',

s (G (xy), 5% (x,¥)), (ay, (xy).B;,(x.¥))))

p's I)

(ug, uz) ((0.4,0.9), {05, 0.4))

Table 15. ",

BT (07, (oy) 2 oy)) (a0 (09). By, (6 3))))

(v1,v2) (10.3, 0.5),(0.2,0.3))

Table 16. £ = £ x £o

\i (G2 (x,y), 7e(x,y)), (e (x,
((0.7,0.4), (0.4,0.2
0.6,0.2

Be(x,¥)))

y);
)y )
{ ), (0.4,0.1)
(0.7,0.3), (0.5,0.2)
(0.4,0.2), (0.5,0.1)
(0.8,0.4), (0.6,0.2)
(0.8,0.2), )

o~~~ o~~~

( )
( )
( 0.6,0.1))

Table 17. j;

E,

(<%}§I (x1y1,X2y2), %,?1 (x1y1,X2y2)), (@, (X1¥1, X2¥2), By, (X1y1, X2Y2)>>

(111V17 U1V2)
(urvy,ugvy)
(112V17 U2V2)
(113V17 113V2)
(111V27 U2V2)

)
((0.6,0.5), (0.4, 0.3))
((0.7,0.4),(0.3,0.2))
((0.4,0.3),(0.5,0.4))
((0.3,0.5), (0.6,0.3))
((0.6,0.2), { )

0.4,0.1

Definition34. An LDFGS & = (&, 1, iz, . fin

)
) ,
(42)
)
)
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Table 18. po

Eo (G (x1y1, X2y2), 245, (Xy1, X2¥2)), (0, (X1¥1, X2y2), B, (X1Y1, X2¥2)))))
(ugvy,uzvy) ((0.7,0.4), (0.5,0.2))
(LIQVQ,llgVQ) (<04,02>, <05,01>)

Table 19. 35

E3 (G (xay 1, Xay2), 25, (X1¥1, X2¥2)), (s, (X1y1, X2y2), By, (X1y 1, X2¥2)))))
(u;vy,uzvy) ((0.7,0.4), (0.4,0.2))
(U1V2,U3V2) (<06,02>, <O4,02>)
u; ((0.6,0.5), (0.4,0.3)) v1((0.7,0.4), (0.3,0.2))
®
b
p'3((0.4,0.9), (0.5, 0.4)) <
[
uy((0.4,0.3), (0.5,0.4)) u3((0.8,0.9), (0.6,0.3)) v5((0.3,0.2), (0.4,0.1))

Figure 2. LDFGSs %, = (L1, i}, iy, ) and % = (£, )

Vx,y € V. When 9 is pi-strongVi=1,2,---  n,then ¢ is a named strong LDFGS.
Propositionl. The maximal product of two strong LDFGSs is also a strong LDFGS.
Proof. Let 4 = (1}1,;;’1,;;’2, e ,;;’n) and %, = (ilg,pu”l,pu”27 e ,pu”") be two strong LDFGSs. Then, in

the light of Definition 33, we have the following cases:
Case 1: If x; = x and (y1,y2) € E/. Then,

m

s (%1, y1), (X2, ¥2)) = 28, (x1) V 30 (y1,¥2)

=g (x1) V [, (y1) A €, (y2)]

=[5 (x1) V 28, (y1)] A [ (x1) V 522, (v2)]
= 5g' (X1, ¥1) A ¢ (X2, y2).

AnalOgOUSI}’, we can show that %:)}1 ((Xla Y1): (X2a Y2)) = %g (X17 yl) \ %E(X% YQ)7 Ap; ((X17 y1)7 (XZa YQ)) =

QS(XlaY1) A OZE(X27Y2), and Bi)i ((Xl,)’1)7 (X2,Y2)) = 52(X1,Y1) v 5£(X27Y2)-
Case 2: If y; = y3 and (x1,x2) € E., we have

%/?Z((Xla}’l)v (X27y2)) = %}Z (yl) \ %:“Z(XhXQ)
= sy (y1) V [re (x1) A 8 (x2)]
= [ (y1) Vg, (x1)] A [228, (y1) V 28 (x2)]

= g (X1, ¥1) A 25 (X2, ¥2).

In the same way, wecamprovethat%gl((xl,yl)7 (x2,y2)) = sa(x1,y1)Voa(x2,y2), o, ((x1,¥1), (x2,¥2))

pi
= ag(x1,y1) Aae(x2,y2), and B5, ((x1,¥1), (x2,y2)) = Be(x1,y1)V Be(x2,y2). Thus, ¥ = &) ¥, is a strong
LDFGS.

Proposition2. The maximal product of two connected LDFGSs is a connected LDFGS.

Proof. Let % = (Sl,ﬁ’l,ﬁ’z, e ,,5’n) and 9% = (2,2,,0v”1,pv”27 e ,pu”n) be two connected LDFGSs with
underlying GSs ¢, = (V1,E{,Ef, -+ ,E.) and %, = (V,, Ef,EY,--- | EZ), respectively. Assume that
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(uz,vy)((0.4,0.2), (0.5,0.1))

((#-0‘g 0) (g'0 ‘%-0)) Td

$3((0.6,0.2),(0.4,0.2))

(uy,v2)((0.6,.2), (0.4,0.1)) (ug, v2)((0.8,.2), (0.6,0.1))
E( E(
s (ug,v1)((0.7,0.3), (0.5,0.2)) )
B w
[=} [=}
2 &
B 5
w o
(=} (=}
S &

53((0.7,0.4), (0.4,0.2))

(uy1,v1)((0.7,0.4), (0.4,0.2)) (ug,v1)((0.8,0.4), (0.6,0.2))
Figure 3. Maximal product ¥ = 4 x %,

Vi = {x1,x2,--+ , X} and Vo = {y1,y2,--- ,yn}. Then,

Vx;,x; € Viandy;,y; € Va. Consider m subgraphs of & with the vertex sets { (x;, 1), (i, y2), -+ , (X, ¥n) }
fori = 1,2,--- ,m. Each of these subgraphs of ¢ is connected since x;’s are the same and %, is connected, each
y; is adjacent to at least one of the vertices in Vy. Since ¢ is connected, each x; is also adjacent to at least one of
the vertices in V5. So, there exists one edge between any pair of the above m subgraphs. Therefore, it follows that

(25> (i, ¥5)s (xr¥2)) > 0, (525,)% ((x2,55), (xXk, ¥1)) > 0, and
(05,)% (%65 35): (%, 1)) > 0, (B ) ((xi,¥5), (%, 31)) > 0,

vV ((%4,¥5), (Xx,¥1)) € E;. Hence, ¢ is connected LDFGS.

Definition35. Suppose that & = 4, * % = (£, 1,2, , pn) be the maximal LDFGS of LDFGSs %; =
(L1, 01,0 /;’n) and %, = (L2, PP ,;;”n). Then, the degree of a vertex in ¢ is described as:

D(?(XMYJ) = (<%ﬁ;(xia)’j)7 %ﬁ(;(xiayvj)>a <O‘D(§<Xi7yj)vﬁD,L,;(Xian)>)7 (43)
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where,

(% y5) = > sy (%5, %p) V 328, (y5) + > 5 (¥5, 1) V g, (%)
(xi,xk)EE} Y=y (y5,y)ER] xi=xp

i, (Xi,yj) = > s (% xp) A seg, () + > 20 (¥, ¥1) A g, (xi)
(xi,xk)€EE],y i =y1 (¥5,y1)EEY xi=x

aDg(Xiayj) = Z aﬁ; (Xi,Xk) \ Qg, (YJ) + Z ” (YJ7yl) (Xl)
(xi,x%)€EE]yj=y1 (¥, Y1) EEY x;=xp

Bb, (Xi,y;) = > By, (i xk) A Bey (v5) + > (Y35 ¥1) A Be, (%)
(xi,xk)€EE],y =y (v 1) EEY xi=xy

Also, p; — D (x;,y;) of a vertex (x;,y;) of maximal product ¢ is articulated as follows:

(44)

pui - D?(Xi?yj) = (<%;n - %ﬁ;(xi,ij%? - %ﬁg(xi’yj)>7 <ai - aDg‘(Xi’yj)vﬁi - ﬁﬂ)cj(xiayj)>>v (45)

where,
= (X yj) = > 22 (x5, %k) V 223 (y) + > (v 31) VB (%)
(xi,xk)€EELyj=y1 (¥5,y1)EEY ;xi =%
) — %S(AXZ" y;) = Z %2; (xi,xk) A 223, () + Z %,?;’ (y5, 1) A g, (x3)
(i %k ) €ELY =31 (¥, ¥1) €EY \xi=xp
@i — ap (Xi,y;) = Z g (Xis X)) Voag, () + Z gy, y1) V ag, (%)
(xi,xk)€E,yj=y1 (v5,y1)EEY \xi=x,
Bi — Bp, (xi,y5) = > By, (xi, xk) A Bey(v5) + > Ber (¥, ¥1) A Be, (%)
(i %) €ELY =y (¥5,¥1) €EY xi=xx

(46)

Examplel2. (Continued from Example 11) With the same LDFGSs %, %, and their maximal product g =
G % 9 with underlying GSs ¢;, ¢ and their maximal product 4 = ¢; % %. From Definition 35, the degrees of

vertices in & are computed as follows:

%ﬁ;(ul,vl) =25 (w1, u2) V 2g (Vi) + 25 (ur, ug) Vg (Va) + 3¢50 (vi, va) V g (ug)
=04Vv074+06Vv0.74+03V0.6=2

s, (W1, Vo) = sefy (ug, up) Voseg, (Vo) + 5657 (W, ug) Voseg, (va) + 3¢5 (v, v2) V 228 (wy)
=04Vv03+06Vv03+03Vv0.6=1.6

%ﬁ;(ug,vl) =25 (U, w1) V 2g (Vi) + 25 (U, ug) V e (V1) + 3¢50 (vi, va) V g (u2)
=04Vv07+04Vv0.7+03Vv04=138

%ﬁ;(ug,vQ) =25 (U, m1) V 2g (va) + 25 (U, us) V g, (V2) + 3¢50 (vi, va) V g (u2)
=04Vv03+04Vv03+03v04=12

%ﬁ;(ug,vl) = 25 (U3, u2) V 2g, (Vi) + 25 (ug, u1) V 3 (V1) + 3¢50 (vi, va) V g (u3)
=04Vv074+06Vv0.74+03Vv0.8=22

o, (U3, Vo) = sy (U, up) V seg, (Vo) + 5657 (s, wa) V seg, (va) + 3¢5 (v, v2) V g (us)

=04Vv03+06Vv03+03v08=138
Analogously,

wp,, (01, Vi) = s (ur, up) A seg, (V1) + 55 (ur, ug) A seg, (Vi) + 3¢5 (v, va) A g, (un)
=05A04+09A04+051A05=1.3
(W1, Vo) = s (ur, up) A seg, (Vo) + 5¢5 (ur,us) A seg, (va) + 3¢5 (v, va) A g, (ur)

=05A02409A0.2405A0.5=0.9

208



p,, (02, V1) = s (Ug, wn) A seg, (V1) + 565 (U2, u3) A seg, (Vi) + 3¢5 (v, v2) A g, (u2)
=05A04+09A04+05N03=1.1

p,, (02, Va) = s (Ug, wr) A seg, (Vo) + 5¢5 (U2, u3) A seg, (Vo) + 325 (v, v2) A 228, (u2)
=05A024+09A02+05A03=0.7

p,, (3, V1) = s (ug, up) A seg, (V1) + 5¢5 (us, u1) A seg, (Vi) + 3¢50 (v, v2) A g, (us)
=09A04+09A04+051A09=13

p,, (U3, va) = s (ug, up) A seg, (Vo) + 55 (U3, u1) A seg, (Vo) + 3¢5 (V1, v2) A g, (us)

=09A02409A0.2405A0.9=0.9

Also,

ap,, (ur, vi) = ay (ur,ug) V ag, (vi) + oy (ur,u3) V ag, (vi) + o (v, v2) Vag, (ug)
=03v034+04Vv03+02Vv04=1.1

ap,, (ur, va) = ay (ur,ug) V ag, (va) + oy (ur,u3) V ag, (va) + oz (v, v2) V ag, (ug)
=03v044+04Vv04+02Vv04=1.2

ap,, (uz, vi) = ay (uz,u1) V ag, (vi) + oy (uz,u3) V ag, (vi) + oz (v, v2) V ag, (uz)
=03v03+05Vv03+02Vv05=1.3

ap,, (uz, va2) = ay (uz,u1) V ag, (va) + ay (uz,u3) V ag, (va) + oz (v, v2) V ag, (uz)
=03v044+05Vv04+02Vv05=14

ap,, (uz, vi) = ay (uz, ug) V ag, (vi) + oy (uz,u1) V ag, (vi) + oz (v, v2) V ag, (us)
=05Vv03+04Vv03+02Vv06=1.5

ap,, (uz, va2) = ay (U3, ug) V ag, (va) + oy (uz,u1) V ag, (Vo) + oy (v, v2) V ag, (us)
=05Vv044+04Vv04+02V06=1.5

Further,

Bo, (1, v1) = By (ur,u2) A Be, (V1) + By (a1, u3) A Be, (Vi) + By (vi, v2) A Be, (1)
=04AN024+05A024+03A03=0.7

Bo, (a1, va) = By (ur,u2) A Be, (va) + By (a1, u3) A Be, (v2) + By (vi, v2) A Be, (1)
=04AN0.14+05A014+03A03=0.5

Bo, (2, v1) = By (uz, m1) A Be, (V1) + By (a2, u3) A Be, (Vi) + By (vi, v2) A Be, (u2)
=04N024+04N024+03AN04=0.7

Bo, (02, va2) = By (uz,u1) A Be, (va) + By (a2, u3) A Be, (v2) + By (vi, v2) A Be, (u2)
=04N014+04N014+03A04=0.5

Bo, (us,v1) = By, (uz, uz2) A Be, (V1) + By (us, ur) A Be, (Vi) + By (vi, v2) A Be, (us3)
=04AN024+05A024+03A03=0.7

5Dg(u37V2) = By, (us,uz) A Bg,(va) + 5p3(1137 up) A fBe,(ve) + By (v1,v2) A Be, (u3)
=04AN0.14+05A014+03A03=0.5

These degrees are also exhibited in Table 20.
Now, we calculate p; — Dy (x;,y;) Vi =1,2,3 as follows:

oyt — H’)@(ul,vl):%ﬁ?(ul,uﬁ\/ g, (Vi) 4 250 (v, v2) Vo xg (u1) =04V 0.7+ 03V 0.6 =1.3
it — ﬁ;(ul,vQ):%f?(uhug)\/ }fg(vz)—i—%//(V1,V2)\/%}3”1(u1):04\/03+O3v06—1
" — ﬁ;(ug,vl) = %f'z(uQ,ul) Vosg (Vi) + %V//(Vl’ Vo) Vg (u2) = 0.4V 0.74+03Vv04 =11
]t — ]g;(ug,vZ) =5 (U, m1) V 2, (V) + 250 (Vi, v2) V g (u2) = 0.4V 0.3+ 0.3V 0.4 =0.8
it — ﬁ;(ug,vl) = %’Ji,(vl,vQ) Vg (uz) = 0.3V 0.8 =08

A" = s (ug, va) = 35 (v, v2) V g (ug) = 0.3V 0.8 =0.8
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Table 20. ]D)g;

\Y% ((%ﬁ;(X,y)mD V(X7y)7ﬁDg(X7Y)>)

oy — ﬁ(j(ul,vl) =z (1, ug) A g, (V1) + 20 (vi, va) A g, (1) = 05704+ 05A0.5=0.9
ny — ﬁgé(ul,vQ) = x5 (ur,ug) A s, (V) 4 25 (vi, va) A xg, (1) =0.5A 02+ 057 0.5 =0.7
wy = s (U, vi) = s (U2, 1) A g, (Vi) + 2 (Vi v2) A scg, (u2) = 0.5/ 0.4+ 0503 =0.7
) — ﬁg(UQ’VQ) = sy (g, u1) A g, (va) + 30 (vi, va) A xg (u2) = 05702+ 05003 =05
ny — ]g(j(ug,vl) = x5 (V1,v2) Aacg (u3) =0.9N 0.4 = 0.4
Ay — g (a3, v2) = 25 (v, v2) A sg (u3) =0.9A 0.5 =0.5
Moreover, o; aDq;(xi,yj) are evaluated as follows:
a1 —ap, (a1, vi) = ag (a,u2) Vag,(vi) + agzr(vi, ve) Vag, (u1) =03V 0.3+ 0.2V 0.4 =0.7
a1 —ap, (1, ve) = ag (a1, u2) Vag, (ve) + azy(vi, ve) Vag, (u1) =03V 04 +0.2Vv0.4 =08
o — aDg(UQ,Vl) = ay (uz,u1) Vag,(vi) + azr (v, va) Vag, (u2) =03V 0.3+ 0.2V 0.5=0.8
a1 —ap, (g, va) = ay (ug, 1) V ag,(ve) + azr(vi, ve) Vag, (ug) =03V 0.4+0.2V0.5=09
o — aDg(u?,,vl) = awll(vl,vz) Vag, (uz) =0.2v 0.6 =0.6
o — Oé]D)(;(u?,,Vg) = ayy(vi,v2) Vag, (uz) =02V 0.6 =0.6

Also, ; — B, (xi,y;) are calculated as:

4N024+03A03=0.5

A Be, (ug 0
04AMA0.14+03A03=04
0
0

( ) (m)

= 55; (w1, u2) A Be, (va) + By (vi, v2) A Be, (ur)
( )/\ 5111 (llg)

+ ﬁ“”(Vl, va) A Be, (u2)

A4N024+031N04=0.5
A4N01+03AN04=04

These degrees are also outlined in Table 21.

Table 21. j; — D

Vo (= ) — o, () (o1 — das (x,3). B = B, (x,Y)))
(u,v1) (<1.3 0.9), (0.7 0.5))
(a1, va) ((1,0.7),(0.8,0.4))
(ug,v1) ((1.1,0.7), (0.8,0.5))
(uz,v2) (0.8,0.5), (0.9,0.4)
(u3, v1) (0.8,0.5), (0.6,0.3)
(us, va) (0.8,0.5), (0.6,0.3)
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Similarly, we can calculate po — D as:

0.7

04v03=04

(UQ,Ug) \% %777/2 (Vl) =04Vv0.7=

m
=/
P2

=z

7y — i, (U2, V1)

b (a2, u3) Vg, (v2) =

;(UQ,VQ) =

m et
My — D

(LIQ,LI?,) vV %m2 (Vl) =04Vv0.7=0.7

m
v/
P2

=

oyt — %ﬁ;(ug,vl)

T (va) = 0.4V 0.3 =04
(uz,u3) A sg,(v1) =09A04 =04

('ng,llg) Ve

m
o/
P2

=

' — %ﬁ;(usavz)

n
=/
P2

=¥

-, (ug, v1)

n
2

.

(uz,u3) A g, (va) =09A0.2=0.2

n
=/
P2

=

v(u27v2)

n
— %D,{l,

n
2

.

(LIQ, U3) A\ %32 (Vl) =09A04=04

n
=/
P2

=

sy — s (ug, vi)

(UQ,Ug) A %n2 (Vg) =09A02=0.2

n
’
P2

ny — %ﬁg(u3,V2) =

0.5

=05Vv03=

,(uz,u3) V ag, (vi)
g — amg(ug,w) = ay (ug,u3) Vae,(ve) =05V 04 =0.5

5

=«

az — ap, (U2, v1)

/
2

/
2

g — OZ]D)(?(Ug,Vl) = Oy (112,113) V Qg, (Vl) =05Vv03=05

/
2

as —ap, (U3, va) = az (a2, u3) Vag,(ve) = 0.5V 0.4 =0.5

=04N02=0.2

; (ug,u3) A Be, (V1)

5

B2 — Bp, (a2, v1) =
B2 — Bp,, (uz, v2)

(1127 U3) A ﬂ22 (VQ) =04A0.1=0.1

By,
B

(1,'[27 U3) A\ 632 (Vl) =04AN02=0.2

)

B2 — B, (a3, v1)

(HQ,U3) N ﬂQQ (V2) =04A01=0.1

)

P2 — Po, (us, v2) = B

These degrees are also tabulated in Table 22.

Dy

P2 —

v

Table 22.

én - %]g;; (Xa Y)v %g

&

- %ﬁg(x7y)>7 <042 - OZ]D)(;(X, y)a 52 - /BD(j(Xa y)>>

Likewise, we can determine p3 — D as:

0.6Vv0.7=0.7

5 (ar,u3) Voseg, (vi) =

;(u1,V1) =

m et
M3 — A

(ul, 113) vV %m2 (VQ) =06Vv0.3=0.6

m
[

=

7y — o, (0, va)

0.7
0.7

(vi) =0.6V0.7=

2
(uz,uy) V sxg, (vo) = 0.6 V0.7

('ng,ul) AV

m
=/
P3

=

sy — %ﬁ;(usavl)

m
=/
P3

=¥

— i, (3, V2)

m
»3

(ur,uz) Asxg,(vi) =09A04=04

n
=/
P3

=

— (a1, v1)

n
3

.

(ul, U3) A %32 (VQ) =09A02=0.2

n
[

=

g — %ﬁg (ur, v2)

(U3,ul) A %n2 (Vl) =09A04=04
(uz,ur) A g, (va) = 0.4 A 0.2

n
=/
P3

=z

%g — %ﬁq“ (U3, V1)

0.2

n
=/
P3

=¥

7y — p,, (a3, V2)

/
3

o3 — amg(ul,vl) = ay (ug,u3) Vae,(vy) =04v03=04

/
3

3 — aDg,(ul,v2) =0y (ul,u?,) V Qg (VQ) =04Vv04=04

/
3

ag —ap,(us, vi) = ag (uz,u1) Vag,(vi) =04V 0.3 =04

04v04=04

Qs — Ofﬂmg(umvz) = Oé,sg(u:s,ul) Voag,(va)

(1117 U3) A ﬂ22 (Vl) =0.5A0.2=0.2

B,

B
B

Bs — Bp,, (a1, v1)

(1,'[17 U3) A\ 632 (VQ) =0.5A0.1=0.1

P

B3 — B, (a1, va)

(113, 111) A ﬂQQ (Vl) =0.5AN0.2=0.2

s

B3 — 51[1){(;(113, vi)

(u37u1) /\ﬁ‘g2 (VQ) =05A0.1=0.1

I

Bs — B, (a3, v2) =
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These degrees are summarized in Table 23.

Table 23. j; — D

\Y (<%§n - %gg(XaY)v%d ( Y)>7<a3 - aDg(Xv y)aﬂ& - /B]Dg(X, y)>>
(1117 Vl) <0 7,0 4>, <0.47 0.2>
(ug,va) (0.6,0.2),(0.4,0.1)
(usz, v1) ((0.7,0.4), (0.4,0.2))
(uz, va) (0.7,0.2), (0.4,0.1))

Proposition3. Let 4, = (21,/;’1,5’2, -, p/y) and Gy = (Sg,pv”l,pu”Q, e 7pv”k) be two LDFGSs such that
£, C pu”l-, i=1,2,--- ,k, then the degree of any vertex in maximal product G = %vl * % = (2, D1, P2, " ,[)k) is
given as:

Dg(xzv y]) = (<%]g;~ (X’U y])? %]]T)ii (Xi, yj)>7 <a]D)q; (Xia YJ)7 ﬂDg (X’L'a yj)>) ) (47)
where,
s, (X, y5) = Dag, (%i) 78, (v5) + 75, (¥5),
5, (X yj) = Dag, (xi) 78, (v5) + 5, (¥5), us)
ap,, (Xi,y;) = Dg, (xi)oe, (v5) + on,, (¥5),
P, (Xi,y;5) = D, (xi)Be, (¥5) + Poy, (¥5)-

Proof. Let¥, = (21,;;’1,;;’2,~~- ,;;’k) and % = (22,;) 1,pu’ g ,p’k) be two LDFGSs such that £, C p”

then p’ C £9,1=1,2,--- , k. Therefore,
s (i y5) = Mo ki xa) VR () + > s (v, 31) V 28 (xi)
(xi,%k) EE] Y =y1 (¥5,y1) EEY xi=xp
= Z sy (vj) + Z %E}(yj,yz)
(xi,xk)EEL )y j=y1 (¥5,y1) EEY xi=x
= Dy, (xi) g, (v;) + 2, (v5);
Also,
o, (%0 y5) = > s (% xp) A seg, () + > 2250 (Y5, Y1) A g, (xi)
(x4,xx)EE],yj=y1 (¥5,y1) EEY xi=x
= Z sg, (i) + Z %EL;/ (¥, ¥1)
(xi,xk)€E},y=y1 (¥, ¥1)€EY xi=xp

= Da, (xi)72, (v;) + 245, (¥5)
By adopting the same procedure, we can prove that

]D)Dg (Xia Yj) =Dg, (Xi)aib (yj) + O[Dg% (yj) and ]D)Dg (Xia yj) De, (Xl)ﬁﬁz (yj) + B]D) (y])'

Propositiond. If g”vl = (1,01, 09 03) and % = (22,,07’17/)7’2,~-- ,p";,) are two LDFGSs such that
€1 Cp'i=1,2,---k and £, is constant LDFS of LDF value ({(a,b), (c, d)), where a, b, c,d € [0, 1] are fixed,
then the degree of any vertex in maximal product G =G «G, is given as:

Dy(xi,yj) = <<%ﬁ;(xuy]')7%ﬁg(xuw)% <aDg(Xi;Yj)vﬁDg(Xiayj)>)v (49)
where,
%Sg XiyYi) = Dgl X;)a + %]gi% (YJ s
sp, (X0, Y5) = D, (%:)b + 5

(50)
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Proof. Let %) = (L1, 01,05, -, p/1) and %o = (L2,0"1,0"5, -+, p";) be two LDFGSs such that £; C
pu”i, then /;’i C £9,i=1,2,--- ,k and £, is a constant LDFS. Thus,

p, (Xi, y5) = > sy (%, xk) V seg, () + > (¥, ¥1) V g, (xi)
(xi,xk) €L}y =y (¥, ¥1)€EY x;i=xp
= Z sy (vj) + Z ’#Z/()HJZ)
(xi,xx) €],y j=y1 (yj'7yl)€E;-l,X¢:Xk

= Dy, (xi)a + 4, ().

Also,
ap, (Xi,y;) = > sy (%i, X)) A og, () + > G (V55 Y1) A #2g, (%)
(xi,xk)€EEL Y =y1 (¥5,y0) EEY xi=x
= > sg, (i) + > 50 (Y5, Y1)
(x4,xk)EE]yj=y1 (v;5,y1)EEY xi=x

= Dy, (x0)b+ 8, (¥5).
Likewise, we can prove that
ap,, (xi,¥;) = Dg, (xi)c + ap,, (v;) and ap, (xi,y;) = De, (xi)Be, (y5) + Po,, (¥5)-

Proposition5. If ¢ = (L1, 01509 5 P'k) and %, = (L2,0"1,0"5, -, p"}) are two LDFGSs such that £,
C 5’ .t =1,2,--- k, then the degree of any vertex in maximal product G =% « %Gy is given by:

Dy (xiry;) = (8, 0, 33), 28, 053, ¥3)) om, (6, ¥): B, (600 75)) ) (51)
where,
i, (Xi, ¥5) = 24, (xi) + Das (), (%),
i, (Xi,¥5) = 2, (xi) + Das (yj) g, (%), )
ap,, (x4, y;) = ap, (i) +Dg, (y;)ae, (%),
B, (Xi,¥;) = B, (%i) + De, (y;)Be, (xi

be two LDFGSs such that £5 C ;;’ i

. =

Proof. Let %, = (21,;;’175/2,--~ ,5’k) and %, = (22,p7’1,p7’2,-~- i
then p/; C £1,i=1,2,--- , k. So,

s, (Xi,y5) = > sy (%i, X)) Vo aeg, () + > w2 (5 y1) V 78, (%)
(xi,xk)€EE],y =Yy (v;5,y1)EEY xi=x
= Z %gZ(xi7 xk) + Z sg (%)
(xi,xk) €L}y =y (¥, 50 EEY xi=x,

wi, (%i) + Da, (y5) 78, (%0)-

Also,
(%0 y5) = > s (% xp) A seg, (y5) + > 20 (¥, ¥1) A g, (xi)
(xi,xk)€EE],y =y (¥5,y1) EEY xi=x
= Z %gﬁ (xi, Xp) + Z xg, (%)
(xi,x%)€EE;yj=y1 (¥;5,¥1) €EY xi=xp

=, (%i) + Da, (y;) 78, (xi)-

Similarly, we one can that

ap, (x4, y;) = ap, (i) + Da, (y5)ae, (xi) and fp,, (xi,y;) = Bp,, (%i) + D, (v5)Be, (i)
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Proposition6. If 4, = (21,/;’1,5’2, e ,/;’k) and % = (Sg,,ou”l,pv”2,~-- ,pu”k) are two LDFGSs such that
£, Cplyi=1,2,--,k and £; is constant LDFS of LDF value ({a,b), (¢, d)), where a,b, c,d € [0, 1] are fixed,
then the degree of any vertex in maximal product G =% «9Gy is given by:

Dy(xi,y;) = ((ﬂﬁ)@(xi’yy‘),%ﬁg(xz"yy‘)% <a%(xi,yj),ﬁ%(xi,yj»), (53)
where,
4, (%0, ¥5) = b, (xi) + D, (v5)a,
o, (%6 y5) = %ﬁ% (xi) + Da, (y;)b, 54)
ap,, (Xi,y;) = apy (xi) + Dg, (y;)e,
By (xi,¥;5) = Po, (xi) + Da, (y;)d

Proof. Let% = (£1,p'1, 05, ,p's) and % = (L2,0"1,p"5, -+, p";) be two LDFGSs such that £, C /,,
i=1,2,---,k, and £ is constant LDFS of LDF value ({a,b), (c,d)). Therefore,

gy (X, y5) = > s (xiXp) V seg, () + > (Y5, ¥1) V g, (xi)
(xi,xk)EELy j=y1 (v5,y1)EEY xi=x
= Z %;’Z(Xi, xXk) + Z sg (%)
(xi,xk)€EE],y 5=y (yj ’YI,)G]E;',Xz‘:xk

= xp,, (%) + D, (y;)a.

Also,
(%0 ¥5) = > g (% xp) A seg, () + > 20 (¥, ¥1) A g, (xi)
(xi,xk ) €E; Y =y (¥5,y1) EEY xi=x
= Z %’pf; (xi, Xp) + Z xg, (%)
(xi,x%)€EE}yj=y1 (¥5,y1)EEY xi=x

= 5, (%) + Dy, ()b
Similarly, it can be shown that
ap,, (xi,¥;) = ap, (i) + D, (y;)c and B, (xi,¥;) = P, (Xi) + D, (y;)d.

Proposition?. If 4, = (£
i

”Z C£1andp CSQ,
characterized as:

L,P 1P 9, ,pu’k) and %, = (Sg,pu“l,pu”Q, e ,pu“k) are two LDFGSs such that
1,2,--- |k, then the degree of any vertex in maximal product g = %vl * gé is

Dgf(x'my]) = (<%]g;u<x7,7YJ)7 %ﬁg<xi7yj)>7 <O[]D)g“(xiaYj)7Bng<Xi7yj)>)a (55)

where,

(56)

Il
S
&«
ko
=
&
< <
.
_|_
S
8
<
.
Q
3<

Proof. Let %) = (L1,0/ 1,09, py) and Gy = (£27p7/1’pv”27 e 7p’k) be two LDFGSs such that such that
Py C Lrand gy C €5, i=1,2,--+ k. Then,

np,, (Xi, ¥ 5) = > sy (%i, X)) V aeg, () + > (Y5, ¥1) V g, (xi)
(xi,xk) €L,y =y (¥, ¥1)€EY xi=xp

= > 72 () + > 72 (x;)

(xi,xk)EELy j=y1 (vjy1)€EEY x;=x
J

= Dy, (i) 52, (y5) + D, (v5) 7, (x3)-
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Also,

(% y5) = > sy (% xk) A seg, () + > 0 (Y5, Y1) A g, (%)
(xi,xk)€EE}, Y =y1 (y5,y)ERY xi=xp,
= > #g, (¥5) + > g, (%)
(xi,xk)€EE],y =y (v5,y1)EEY xi=x

= Dy, (xi) 3¢, (y;) + Dy, (y;) 8, (xi).
Similarly, we can show that
ap,, (%i,y;) = Dy, (xi)ae, (y;) + De, (y;)ag, (x:) and Bp, (xi,y;) = Dy, (x:)Be, () + De, (y;)Be, (Xi)-

Proposition8. If & = (L1, /1,05, ,p's) and % = (L2, 0", p"5, -+, ") are two LDFGSs, such that

p7’ ; 2 £1,1=1,2,--- , k, then the total degree of any vertex in maximal product g = %vl * % is described as:
TDy(x:,y;) = (<%ﬁ»g(xi,y]’)a%%rlmg,(Xm}’j»a <05'JT]D)C£~(X1',yj)vﬂTng(Xivyj)>)v (57)
where,
b, (X0 ¥;) = Dy (%) 22, (v5) + #tn,, (¥5),
#1p,, (X, ¥5) = D, (%) 228, (y5) + >, ( i)
' (58)
QD (Xza Yj) = Dy, (Xl)aﬂz (YJ) + QTD,, (YJ)
/BTDg (Xu Yj) =Dy, (Xl)ﬁ L2 (y]) + B’JI‘]D@ (yj)

Proof. Let %, = (Shpv’l,/;’z, e ,pu’k) and %, = (ilg,p”l,p PIRE v k) be two LDFGSs such that such that
p7’i D £4, then ,5’i Dfand £ C £9i=1,2,---,k. We have,

1, (Xi, ¥;5) = Z 5 (Xi, Xi) V aeg, (v5) + Z %;Z/(Yj»YI)V%g(xi)+%g(xian)
(x4,%x1)EE] Yy j=y1 (v5:y1)€EY xi=xp,
= AL+ Y )+ [ ) V()]
(x4,xx)EELyj=y1 (¥, ¥ EEY xi=x4

= Dy, (x:) 58, (v5) + (40, (v5) + 28, (v5))

= Dy, (xi)522, (v5) + >1b,, (v5)-

Also,
T, (X, ¥j) = > g (% k) A seg, (y5) + > 50 (Y5, y0) A g, (%) + 223 (X3, y5)
(xi,xk)€EE],y =y (¥5,y1) EEY xi=x
= > sg, (yvj) + > 20 (Y55 ¥0) + (58, (xi) A 28, (y)]
(xi,x%)€EE;yj=y1 (¥5,y1)EEY xi=x

= Dy, (x:) 5, (v5) + (4, (v;) + 28, (¥5))
= Dy, (%), (v;) + »p,, (v5):
Similarly, we can show that
arp,, (i, y;) = De, (xi)ag, (y;) + OTD; (y;) and Brp, (xi,y;) = D, (xi)Be, (y;) + oy, (y5)-

Proposition9. Ifgvl = (21,/;’1,/;’2, e ,/;’k) and % = (£27p7/17p\7/27"' ,pu”,c) are two LDFGSs, such that
Pl D £1,i=1,2,-- ,k, and £, is constant LDFS of LDF value ((a b), (¢, d)), where a, b, c,d € [0, 1] are fixed,
then the total degree of any vertex in maximal product & = 4, « G, is characterized as:

TDy(x:,y;) = (<%%g(xnyg')v%ﬁ»g (Xi,¥5)), <O‘TD<§(Xi7Yj)7BTDg(Xi7yj)>)7 (59)
where,
%’]ﬁ»g XiyYi) = }f']Iﬁ‘ﬁ))(g;2 Y +Dg1 X;)a,
sorp,, (X6, Yj) = %%D)( Y

(60)
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Proof. Analogous to the proof of Theorems 4 and 8.

Proposition10. If ¢, = (L1,0'1, 09, ,p/);) and G = (L2,0"1,p"5,+++ ,p"}) are two LDFGSs, such that

;;’ ; 2 L9,0=1,2,---  k, then the total degree of any vertex in maximal product G =% « %Gy is postulated as:
TDy(xi,y;) = (<%ﬁ»g(xuyg‘)v%%Dg(xi,yg‘», <05TD(5;(X1’7Yj)wBT]D)g(Xivyj)>>7 (61)
where,
i, (Xi¥5) = Da, (y5) 78, (xi) + »4b,, (%),
T, (%i,¥5) = Da, (y5) 28, (xi) + s1p,, (%3),
! (62)
arp, (Xi,y;) = Da, (v5)ee, (%) + am, (%),
Brp, (%i,¥;) = Da, (v5)Be, (xi) + B, (%)

Proof. Follows from Theorems 5 and 8.

Propositionll. If%vl = (&1,0'1,0'3,+ »p')) and G = (L2,0"1,p"5,+++ ,p"};) are two LDFGSs, such that
i 2 L9,1=1,2,--- ,k, and £; is constant LDFS of LDF value ((a b), (c,d)), where a, b, c,d € [0,1] are fixed,
then the total degree of any vertex in maximal product & = &, * %, is given by:

TDg(xi,y;) = <<%%g(xi»Yj)v%%rl%(xz‘a}’j»v <OCT]D)C_§~(Xi7yj')7%%g(xi,yj)>), (63)
where,
8, (%0 ¥5) = D, (v;)a + 548, (x),
i, (%i,¥5) = D, (y;)b + s4iip,, (x2), o
atpy (%i,¥5) = Dg, (y;)c + amny, (%),
P, (Xi,¥5) = De, (y;)d + bro,, (Xi)-

Proof. Analogous to the proof of Theorems 6 and 8.

5 Application: Detection of Road Crimes in Sindh

Although there are many crimes committed on the roads, some are very serious, such as kidnapping, robbery,
snatching, and harassment. We may investigate which route in the province of Sindh is more crucial for a specific
crime by using an LDFGS. An LDFGS can also tell us which crime is the most chronic and which one is growing
rapidly. In addition, we can determine which route is the most crucial for a specific road crime. When creating a
policy against a particular crime, the police department may find great guidance and assistance from an LDFGS of
road crimes. For instance, an LDFGS for a certain region might be highly beneficial to the police department in
combating a crime if an FIR is filed about it. It will also point out which roads are most vulnerable to that specific
crime. Consequently, law enforcement can erect checkpoints on particular highways and barricade the vicinity of
those roadways.

Consider a set V of certain cities of province Sindh as:

V= {Sukkur, Karachi, Nawabshah, Dadu, Larkana, Khairpur, Kashmore, Ghotki}.
Consider £ be an LDFS on V, as displayed in Table 24.

Table 24. LDFS £ onV

City (o (%), 22(x)), (o2 (x), Be(x)))
Sukkur (0.7,0.4), (0.5,0.2)
Karachi E(O.Q, 0.2),0.7, 0.1);

Nawabshah ((0.6,0.1),(0.6,0.2))

Dadu ((0.5,0.3),(0.4,0.1))
Larkana E(o.& 0.1), <O.8, 0.2)%
Khairpur (0.5,0.4), (0.6, 0.3)

Khashmore ((0.9,0.1),(0.9,0.1))

Ghotki ((0.8,0.5),(0.3,0.4))

216



In Table 24, the MD ¢ (x) of a city denotes the presence of crime, while the NMD % (x) signifies non-presence
of crime together with reference parameters ag(x) = severe crime and S¢(x) = mild crime. In Tables 25-32, we
have shown MD, NMD and their corresponding parametric values of various crimes on the road that connect each
pair of cities.

Table 25. LDFS of crimes on roads connecting Sukkar with other cities

Crimes (Sukkar, Karachi) (Sukkar, Nawabshah) (Sukkar, Dadu) (Sukkar, Larkana)
Kidnapping  ({0.7,0.2),(0.5,0.2))  ((0.8,0.4),(0.6,0.1)) ~ ((0.9,0.1),(0.7,0.1))  ({0.8,0.3),(0.5,0.2))
Snatching  ((0.6,0. 4>, (0 5,0.3))  ((0.7,0. 5) <0 4,0.1))  ((0.7,0.2),(0.7,0.3))  ((0.4,0. 4) <0 5,0.4))

Robbery  ((0.9,0.4),(0.3,0.2))  ((0.2,0.4),(0.8,0.2))  ((0.2,0.3),(0.4,0.5))  ((0.6,0.7),(0.8,0.1))
Harassment  ((0.7,0.4),(0.5,0.2))  ((0.7,0.3),(0.6,0.1))  ((0.8,0.5),(0.5,0.4)) ({0.7,0.3),(0.5,0.4))

Table 26. LDFS of crimes on roads connecting Nawabshah with other cities

Crimes (Nawabshah, Dadu)  (Nawabshah, Larkana)  (Nawabshah, Khairpur)  (Nawabshah, Sukkar)
Kidnapping  ((0.7,0.3),(0.6,0.3))  ((0.8,0.4), (0.6,0.2)) ({0.8,0.4), (0.6,0.2)) ((0.9,0.4),(0.7,0.2))
Snatching ({1, o 4),(0.6,0.1) ((0.8,0.4),(0.7,0.2)) ((0.7,0.4),(0.4,0.1)) ({0.6,0. 5) <0 4,0.2))
Robbery  ((0.8, ) (0.7,0. 1>) ((0.8,0.5), (0.4,0.1)) ((0.8,0.2), (0.5,0.3)) ((0.9,0.4), (0.8,0.1))
Harassment  ((0.9,0.5),(0.5,0.4))  ((0.8,0.5),(0.5,0.3)) ((0.7,0.3),(0.6,0.1)) ((0.8,0.5), (0.8,0.1))

Table 27. LDFS of crimes on roads connecting Kashmore with other cities

Crimes (Kashmore, Sukkar)  (Kashmore, Karachi)  (Kashmore, Nawabshah)  (Kashmore, Khairur)
Kidnapping  ((0.6,0.5), (0.5,0.3))  ((0.8,0.5), (0.4,0.2)) ((0.8,0.5), (0.3,0.2)) ({0.6,0.3), (0.3,0.1))
Snatching  ((0.8,0. 3>, <0 4,0.1))  ((0.8,0.5),(0.6,0.2)) ((0.8,0.5), (0.4,0.1)) ({0.8,0. 5> <0 6,0.3))
Robbery  ((0.8,0.6),(0.4,0.2))  ((0.9,0.5),(0.4,0.1)) ((0.8,0.5), (0.4,0.3)) ({0.8,0.5), (0.5,0.4))
Harassment  ({0.6,0.6),(0.4,0.3))  ((0.8,0.5),(0.4,0.1)) ((0.5,0.5), (0.4,0.2)) ({0.7,0.4), (0.5,0.2))

Table 28. LDFS of crimes on roads connecting Ghotki with other cities

Crimes (Ghotki, Nawabshah) (Ghotki, Sukkar) (Ghotki, Karachi) (Ghotki, Kashmore)
Kidnapping  ((0.8,0.7),(0.5,0.2))  ((0.7,0.5),(0.4,0.3))  ((0.8,0.5),(0.6,0.3))  ((0.9,0.6),(0.6,0.4))
Snatching  ((0.8, 0 5) <0 6,0.4))  ((0.8,0. 5), <o 5,0.4))  ((08,0.7), 0 6,0.3))  ((0.5,0.4),(0.4,0.3))
Robbery ((0.9,0.7),(0.6,0.4))  ((0.6,0.6),(0.6,0.3))  ((0.8,0.6),(0.6,0.2)) ((0.8,0.5),(0.4,0.2))
Harassment  ((0.9,0.7),(0.5,0.4))  ((0.8,0.7),(0.6,0.1))  ((0.8,0.5),(0.6,0.1))  ((0.9,0.8),(0.4,0.1))

Table 29. LDFS of crimes on roads connecting Dadu with other cities

Crimes (Dadu, Larkana) (Dadu, Khairpur) (Dadu, Kashmore) (Dadu, Ghotki)
Kidnapping  ({0.7,0.6),(0.5,0.3))  ({0.7,0.5),(0.5,0.4))  ((0.9,0.4),(0.4,0.2))  ((0.8,0.3), (0.6,0.1))
Snatching  ((0.6,0.5),(0.4,0.3))  ((0.5,0. 4) <0 5,0.4))  ((0.8,0. 1>, (0 9,0.1)) ((0.7,0. 7>7 <0 5,0.1))
Robbery  ((0.6,0.4),(0.3,0.2)) (<0.4, 0.4),(0.6,0.3))  ((0.9,0.4),(0.2,0.3))  ((0.8,0.4),(0.3,0.4))
Harassment  ((0.9,0.4),(0.4,0.4)) ((0.3,0.4),(0.8,0.2)) ((0.1,0.4),(0.5,0.4)) ((0.4,0.7),(0.2,0.6))

Table 30. LDFS of crimes on roads connecting Khairpur with other cities

Crimes (Khairpur, Sukkar)  (Khairpur, Kashmore)  (Khairpur, Ghotki)  (Khairpur, Karachi)
Kidnapping  ((0.7,0.4),(0.4,0.3))  ({(0.3,0.4),(0.5,0.4))  ((0.6,0.5),(0.4,0.5)) ({0.3,0.4),(0.5,0.5))
Snatching  ((0.9,0. 4> <0 3,0.3))  ((0.7,0.6),(0.4,0.2))  ((0.3,0.4),(0.4,0.5)) ((0.7,0.4),(0.5,0.2))
Robbery  ((0.7,0.9),(0.4,0.6))  ((0.7,0.7),(0.6,0.3))  ((0.7,0. 8) <0 6,0.2)) ((0.7,0.5),(0.6,0.3))
Harassment  ((0.9,0.4),(0.6,0.2))  ((0.7,0.9),(0.3,0.5))  ({0.7,0.6),(0.4,0.1))  ({0.8,0.8),(0.8,0.1))
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Figure 4. LDFGS indicating the most crucial crimes on roads connecting two cities in Sindh

Table 31. LDFS of crimes on roads connecting Larkana with other cities

Crimes (Larkana, Khairpur)  (Larkana, Kashmore) (Larkana, Ghotki) (Larkana, Sukkar)
Kidnapping ~ ((0.5,0.5),(0.2,0.2))  ((0.5,0.8),(0.4,0.4))  ((0.7,0.8),(0.4,0.5))  ({0.4,0.7),(0.5,0.5))
Snatching  ((0.7,0. 4) <0 5,0.1))  ((0.2,0.4),(0.2,0.6))  ((0.9,0.7),(0.7,0.3))  ((0.3,0.4),(0.3,0.3))

Robbery  ((0.5,0.4),(0.5,0.5))  ((0.7,0.6),(0.7,0.1))  (({0.2,0.4),(0.3,0.2))  ((0.5,0.4),(0.6,0.3))
Harassment  ((0.9,0.2),(0.6,0.4))  ((0.7,0.5),(0.3,0.4))  ((0.9,0.4),(0.6,0.2)) ((0.4,0.4),(0.1,0.2))

Table 32. LDFS of crimes on roads connecting Karachi with other cities

Crimes (Karachi, Larkana)  (Karachi, Nawabshah) (Karachi, Dadu) (Karachi, Khairpur)
Kidnapping  ((0.6,0.5),(0.4,0.3))  ({(0.2,0.4),(0.4,0.6))  ((0.7,0.6),(0.3,0.1))  (({0.2,0.7),(0.7,0.2))
Snatching  ((0.7,0. 4> <o 5,0.2))  ((0.9,0.9),(0.9,0.1))  ((0.4,0. 5> <0 4,0.5))  ((0.6,0. 4>, <0 5,0.4))
Robbery  ((0.7,0.5),(0.7,0.2))  ((0.8,0.8),(0.2,0.2))  ((0.9,0.7),(0.1,0.3))  ((0.4,0.5),(0.6,0.2))
Harassment  ((0.8,0.9),(0.5,0.4))  ((0.2,0.3),(0.4,0.5))  ((0.6,0.7),(0.8,0.2))  ({0.3,0.4),(0.4,0.6))

Different relations can constructed on the set V as follows: p; = Kidnapping, po = Snatching, ps = Robbery,
p4 = Harassment such that (V, p1, p2, ps3, p4) is a GS. Each element in an arbitrary relation demonstrates a specific
crime type that takes place on the road connecting those two cities. Since (V, p1, p2, p3, p4) is a GS , so each p; are
disjoint.

In the light of above information p; are described as follows:

p1 = {(Karachi, Dadu), (Dadu, Larkana), (Sukkar, Karachi)},
= {(Khaipur, Dadu), (Ghotki, Dadu), (Sukkar, Nawabshah)},
p3 = {(Karachi, Larkana), (Khasmore, Dadu), (Ghotki, Kashmore) },

ps = {(Larkana, Khairpure), (Khasmore, Nawabshah) }
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The corresponding LDFSs of p; are given as:

(Karachi, Dadu), ((0.7,0.6), (0.3,0.1))),

(Dadu, Larkana), ((0.7,0.6), (0.5,0.3)) ), ,
(Sukkur, Karachi), ((0.7,0.2), (0.5,0.2)))
(Khairpur, Dadu), ({0.5,0.4), (0.5,0.4)) )7
(Ghotki, Daduy), ((0.7,0.7), (0.5,0.1))), :
(Sukkur, Nawabshah), ((0.6,0.5), (0.4, 0.2)))
(Karachi, Larkana), ((0.7,0.5), (0.7,0.2))),
(Khashmore, Dadu), ((0.9,0.4), (0.2,0.3))),
(Ghotki, Kashmore), ((0.8,0.5), (0.4,0.2)))
y (Larkana, Khairpur), ((0.9,0.2), (0.6,0.4))),

P { ((Kashmore, Nawabshah), ((0.5,0.5), (0.4,0.2))) } '

)

TN N N N N N N N N

Clearly, (£, p1, p2, 3, pa) is an LDFGS which is depicted in Figure 4.

In the light of Figure 4, each edge illustrates the most common crimes that happen on the roadways that link the
respective cities. For instance, the most common on roads connecting Karachi and Sukkar is kidnapping. An LDFGS
of all cities of the province of Sindh can be very helpful for law-and-order organizations and police departments to
circumvent the mentioned road crimes and maintain peace. It would highlight those road crimes that needed to be
promptly solved.

6 Discussion and Comparative Analysis

GSs offer an efficient framework for representing scenarios involving multiple relations. Formally, a graph
structure consists of n mutually disjoint relations that are both symmetric and irreflexive, allowing for a structured
and precise analysis of complex relationships. A multitude of scholars have taken a keen interest in GSs under
different fuzzy paradigms. In [18, 19], the authors introduced the concept of FGSs with applications. Sharma
and Bansal [20] familiarized the concept of IFGSs. By generalizing the studies reported in [18-20], in this script,
we have initiated the notion of LDFGS and several relevant terminologies with concrete illustrations. LDFGSs
characterize a noteworthy advancement over traditional FGSs and IFGSs by addressing key limitations associated
with MD and NMD in these models. Conventional FGS suffer from a restricted representation of uncertainty, as
they only accommodate an MD, which often fails to capture the complexity of real-world problems. IFGS improved
upon this by introducing an NMD; however, they still face limitations in handling higher levels of uncertainty and
vagueness. In contrast, LDFGS provides a more generalized and robust framework by incorporating reference
parameters, permitting a more refined and comprehensive representation of uncertainty. This enhanced flexibility
empowers decision-makers by offering a wider range of inputs for both MD and NMD, facilitating more precise
modelling of complex relationships. Furthermore, the ability of LDFGS to effectively eliminate restrictive conditions
on membership degrees makes them particularly beneficial in decision analysis, network analysis, and optimization
problems where uncertainty plays a vital role.

7 Conclusions

GT plays a crucial role in addressing complex problems across diverse domains, including networking, communica
-tion, data mining, clustering, image processing, planning, and scheduling. However, in certain scenarios, its classical
framework may be insufficient due to intrinsic uncertainties. To address this limitation, FGSs deliver a more effective
method for handling uncertainty in complex networks. In this study, we presented the novel concept of LDFGS as
an extension of IFGS and LDFG within the broader context of GSs. We established fundamental definitions and
concepts in LDFGSs, including p;-edge, p;-path, strength of a p;-path, p;-strength of connectedness, p;-degree of
a vertex, total p;-degree of a vertex, as well as total degree of a vertex in an LDFGS. Furthermore, we introduced
the notions of p;-size, size, and order of an LDFGS. Further, we explored advanced structural properties by defining
and analyzing the maximal product of two LDFGSs, strong LDFGSs, and the degree and p;-degree of the maximal
product. To demonstrate the practical applicability of LDFGSs, we presented a real-world case study on crime
analysis, identifying the most critical crime type across various cities in the Sindh province.

One of the key limitations of LDFGSs is their incapability to incorporate a neutral degree. In numerous real-
world applications, especially in decision-making situations involving uncertainty and vagueness, the inclusion of
a neutral degree is indispensable to capture indecisiveness or partial agreement. While LDFGSs deliver a more
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flexible framework compared to traditional FGSs, their binary approach to uncertainty (considering only MD and
NMD) confines their applicability in cases where a neutral degree is necessary. For future study, an extension of
LDFGS could be developed by integrating a neutral degree, such as Spherical linear Diophantine fuzzy GSs and
Spherical linear Diophantine fuzzy soft GSs. In addition, exploring hybrid models that combine LDFGS with other
uncertainty-handling frameworks could further improve their applicability in realms like social network analysis,
medical diagnosis, and multi-criteria decision-making.
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