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Abstract: In this paper, we derive a new conjugate gradient (CG) direction with random parameters which are
obtained by minimizing the deviation between search direction matrix and self-scaled memoryless Broyden-Fletcher-
Goldfard-Shanno (BFGS) update. We propose a new spectral three-term CG algorithm and establish the global
convergence of new method for uniformly convex functions and general nonlinear functions, respectively. Numerical
experiments show that our method has nice numerical performance on nonconvex functions and supply chain
problems.

Keywords: Random parameter; Spectral three-term conjugate gradient; Global convergence; Unconstrained
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1 Introduction

Many problems of relevance in compressing sensing [1], portfolio selection [2] and image restoration [3, 4] can
be transformed into the following unconstrained optimization problem

min
x∈Rn

f(x), (1)

where,
f : Rn → R is continuous differentiable. The spectral conjugate gradient (SCG) method [5] is one of the most

popular class of algorithm for solving problem Eq. (1), due to its simplicity, low memory requirement and strong
convergence performance. Starting from an initial point x0 ∈ Rn, the iterative formula of the SCG method is given
by

xk+1 = xk + αkdk, k ≥ 0, (2)

where, stepsize αk > 0 is generated by line search. The search direction dk is defined by

d0 = −g0, dk = −θkgk + βk−1dk−1, k ≥ 1, (3)

where,
gk = ∇f(xk) is the gradient of f(x) at current point xk, θk is a spectral parameter and βk−1 is a scalar

called the conjugate gradient (CG) parameter. There are many choices of θk and βk−1, which may lead to different
computational efficiency and convergence properties [5–10].

Babaie-Kafaki and Ghanbari [11] proposed a descent family of the Dai-Liao CG (DDL) method with the search
direction

dk+1 = −
(
I − sky

T
k

sTk yk
+ tk

sks
T
k

sTk yk

)
gk+1

.
= −Qk+1gk+1, (4)

where,
Qk+1 is called a search direction matrix. They obtained the relationship

dTk+1gk+1 = −gTk+1Qk+1gk+1 = −gTk+1Ak+1gk+1, (5)
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where,

Ak+1
.
=
QT

k+1 +Qk+1

2
= I − 1

2

sky
T
k + yks

T
k

sTk yk
+ tk

sks
T
k

sTk yk
. (6)

By letting the smallest eigenvalue ofAk+1 has a lower bound greater than 0, they determined parameter tk. Then
the search direction dk+1 was descent.

Livieris et al. [12] proposed a descent hybrid CG method with the search direction

dk+1 = −
(
I − λk

dkg
T
k+1

dTk yk
− (1− λk)

dky
T
k

dTk yk

)
gk+1

.
= −Pk+1gk+1. (7)

They obtained the hybrization parameterλk by minimizing the distance betweenPk+1 and self-scaled memoryless
Broyden-Fletcher-Goldfard-Shanno (BFGS) update in the Frobenius norm.

Recently, the spectral three-term CG methods have been paid more attention [13–17]. Chen and Yang [14] using
subspace presented a three-term CG algorithm for large-scale unconstrained optimization. Faramarzi and Amini [15]
proposed a spectral three-term Hestenes-Stiefel CG method. Al-Bayati and Abbas [16] gave a robust spectral three-
term CG algorithm for solving unconstrained minimization problems. Eslahchi and Bojari [17] proposed a new
sufficient descent spectral three-term CG class for large-scale optimization.

Motivated by the above works, in order to make better use of the properties of spectral parameter, we consider
the search direction matrix

Ak+1 = θkI −
1

2

sky
T
k + yks

T
k

sTk yk
+ tk

sks
T
k

sTk yk
(8)

to propose a new spectral three-term CG method, where scaling parameter θk and tk are undetermined parameters.
The corresponding search direction is

dk+1 = −Ak+1gk+1 = −θkgk+1 + βksk + γkyk, (9)

where,

βk =
1

2

yTk gk+1

sTk yk
− tk

sTk gk+1

sTk yk
and γk =

1

2

sTk gk+1

sTk yk
.

Based on the idea of the study [12], our main work is to give a new choice of parameters tk and θk to propose a
spectral three-term CG method. The contributions of this article are listed as follows:

♢ A random parameter which leads to our method more relaxed and elastic, is introduced to construct βk and θk
in the search direction.

♢ The search direction satisfies the sufficient descent condition. Under appropriate assumptions, we give global
convergence of new method for general functions.

♢ The new method has good numerical performance for the objective function with sharp curvature change.
♢ The new method is applied to the supply chain problem, which shows that the new method is effective.
The motivation and algorithm are analyzed in the next section, we find parameter tk including a random parameter

at each iterate, and obtain parameters βk and θk. Then we state a new spectral three-term CG method. In Section
3, global convergence of our method is proved for uniformly convex functions and general nonlinear functions. In
Section 4, some numerical experiments and application results are reported. Conclusions are made in the last section.

2 Motivation and Algorithm

In this section, our main aim is to discuss how to choose tk and propose a random spectral three-term CG method.
The search direction is derived by minimizing the deviation between the search direction matrix and a quasi-Newton
update, in conjunction with choices of random parameter. Consider model

min ∥Dk+1∥2F
.
= ∥Ak+1 −B−1

k+1∥
2
F , (10)

where,
∥ · ∥F denotes the Frobenius norm, Ak+1 is determined by Eq. (8), B−1

k+1 is a self-scaled memoryless BFGS
matrix

B−1
k+1 = θkI − θk

sky
T
k + yks

T
k

sTk yk
+

(
1 + θk

∥yk∥2

sTk yk

)
sks

T
k

sTk yk
, (11)
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and θk is a scaling parameter. From Eq. (8) and Eq. (11), we have

∥Dk+1∥2F = tr(DT
k+1Dk+1)

=
∥sk∥4

(sTk yk)
2
t2 + 2

[
(2θk − 1)

∥sk∥2

sTk yk
− ∥sk∥4

(sTk yk)
2
− θk

∥yk∥2∥sk∥4

(sTk yk)
3

]
t+ ζ,

where,
ζ is a constant independent of t. This is a second-degree polynomial of variable t and the coefficient of t2 is

positive. Therefore, the minimum of problem Eq. (10) is

tk = argmin
{
tr(DT

k+1Dk+1)
}
= 1 +

θkχk√
pk

+ (1− 2θk)
√
pkχk, (12)

where,
pk = cos2⟨sk, yk⟩ and χk = ∥yk∥

∥sk∥ . Instead of the mean value to pk in the study [18], we set pk is a random
number in the interval [m, m], where 0 < m < m < 1

2 . There are many possible ways to choose θk, we prefer to
use

θk = max

{
1−m

2(1−m)
,
∥sk∥2

sTk yk

}
or θk = max

{
1−m

2(1−m)
,
sTk yk
∥yk∥2

}
. (13)

Thus, tk in Eq. (12) can be regarded as random parameters. Substitute Eq. (12) into Eq. (9), then we get the
following new search direction

dk+1 = −θkgk+1 +

[
1

2

yTk gk+1

sTk yk
− 2γk

(
1 +

θkχk√
pk

+ (1− 2θk)
√
pkχk

)]
sk + γkyk. (14)

Now, we state a description of the random spectral three-term conjugate gradient algorithm (RSTTCG) as follows.
RSTTCG Algorithm

Step 0. Given x0 ∈ Rn, ε > 0, 0 < m < m < 1
2 and 0 < ρ < σ < 1. Let f0 = f(x0),

g0 = ∇f(x0), d0 := −g0 and k := 0.
Step 1. If ∥gk∥ ≤ ε, stop and output xk.
Step 2. Compute αk satisfying the the strong Wolfe line search conditions

f(xk + αdk)− f(xk) ≤ ραgTk dk, (15)

|gTk+1dk| ≤ −σgTk dk. (16)

Step 3. Set xk+1 = xk + αkdk. Calculate fk+1, gk+1, sk and yk.
Step 4. Compute tk by Eq. (12) and the search direction dk+1 by Eq. (13) and Eq. (14).

Set k := k + 1 and go to Step 1.
The following lemma shows the sufficient descent property of search direction.
Lemma 2.1 Let the sequence {dk+1} be generated by RSTTCG algorithm. There exists a positive constant c

satisfying
gTk+1dk+1 ≤ −c∥gk+1∥2. (17)

Proof By Eq. (16), we have sTk yk = sTk (gk+1 − gk) ≥ (σ − 1)sTk gk > 0. Since sTk yk = ∥sk∥∥yk∥ cos⟨sk, yk⟩,
then cos⟨sk, yk⟩ =

√
pk > 0. Combined with Eq. (14), we get

gTk+1dk+1 = −θk∥gk+1∥2 +
yTk gk+1g

T
k+1sks

T
k yk

(sTk yk)
2

−
[
1 +

θkχk√
pk

+ (1− 2θk)
√
pkχk

]
(sTk gk+1)

2

sTk yk

= −θk∥gk+1∥2 +
yTk gk+1g

T
k+1sks

T
k yk

(sTk yk)
2

−
[
1 +

θk
pk

sTk yk
∥sk∥2

+ (1− 2θk)pk
∥yk∥2

sTk yk

]
(sTk gk+1)

2

sTk yk

≤ −θk∥gk+1∥2 −
[
1 +

θk
pk

sTk yk
∥sk∥2

+ (1− 2θk)pk
∥yk∥2

sTk yk

]
(sTk gk+1)

2

sTk yk
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+
1

2

(gTk+1sk)
2∥yk∥2 + (sTk yk)

2∥gk+1∥2

(sTk yk)
2

= (
1

2
− θk)∥gk+1∥2 −

(sTk gk+1)
2

sTk yk

− (sTk gk+1)
2

sTk yk

[
θk
pk

sTk yk
∥sk∥2

+
(
(1− 2θk)pk − 1

2

)∥yk∥2
sTk yk

]
≤ (

1

2
− θk)∥gk+1∥2 −

(sTk gk+1)
2

sTk yk

[
1 +

∥yk∥√
pk∥sk∥

(
θk + pk − 2θkpk − 1

2

)]
≤ (

1

2
− θk)∥gk+1∥2 ≤

[
1

2
− 1−m

2(1−m)

]
∥gk+1∥2 = − m−m

2(1−m)
∥gk+1∥2.

The second of above inequality is from the fact aTb ≤ 1
2 (∥a∥

2 + ∥b∥2), in which a = gTk+1skyk and b =

sTk ykgk+1. Combining Eq. (13), let c = m−m
2(1−m) , the proof is completed. □

3 Convergence Analysis

In this section, to prove the global convergence of RSTTCG algorithm, we give the following assumptions.
Assumption (i). The level set Ω = {x ∈ Rn : f(x) ≤ f(x0)} is bounded, namely, there exists δ > 0 satisfying

∥x∥ ≤ δ, ∀x ∈ Ω.
Assumption (ii). The gradient of function f is Lipschitz continuous in some neighborhood N of Ω, namely,

there exists L > 0 satisfying
∥g(x)− g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ N. (18)

Based on the above assumptions, we know

∥sk∥ = ∥xk+1 − xk∥ ≤ ∥xk+1∥+ ∥xk∥ ≤ 2δ. (19)

Besides, we can easily see that g(x) is bounded, namely, there exists a positive constant L1 such that ∥g(x)∥ ≤
L1, ∀x ∈ Ω.

Lemma 3.1 Let the sequence {dk} be generated by RSTTCG algorithm. If Assumption (ii) holds, then

αk ≥ (1− σ)|gTk dk|
L∥dk∥2

. (20)

Proof Subtracting gTk dk from both sides of the left inequality of Eq. (16) and using the Lipschitz condition, we
get

(σ − 1)gTk dk ≤ (gk+1 − gk)
Tdk = yTk dk ≤ ∥yk∥∥dk∥ ≤ αkL∥dk∥2.

Since 0 < σ < 1 and dk is a descent direction, then Eq. (20) holds. The proof is completed. □
Lemma 3.2 Let the sequence {dk} be generated by RSTTCG algorithm. If Assumptions (i)-(ii) hold, we have

the following Zoutendijk condition
∞∑
k=0

(gTk dk)
2

∥dk∥2
< +∞. (21)

Proof From the first inequality Eq. (15) of the strong Wolfe conditions, Assumption (ii) and Lemma 3.1, we have

fk − fk+1 ≥ −ραkg
T
k dk ≥ −ρ (1− σ)(gTk dk)

2

L∥dk∥2
.

From Assumption (i), we know f(x) is bounded from below, then Eq. (21) is obtained. The proof is completed.□
Theorem 3.1 Suppose that Assumptions (i) and (ii) hold. The sequence {xk} is generated by RSTTCG algorithm.

If f is a uniformly convex function on Ω, namely, there exists µ > 0 such that

(∇f(x)−∇f(y))T(x− y) ≥ µ∥x− y∥2, ∀x, y ∈ N, (22)

Then, we have
lim
k→∞

∥gk∥ = 0.
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Proof From the Lipschitz condition Eq. (18), we have

∥yk∥ = ∥gk+1 − gk∥ ≤ L∥sk∥. (23)

It follows Eq. (22) and the Cauchy inequality that

µ∥sk∥2 ≤ yTk sk ≤ ∥yk∥∥sk∥, (24)

i.e.,
µ∥sk∥ ≤ ∥yk∥. (25)

Then, from Eqs. (23)–(25), we get

1

L
=

∥sk∥
L∥sk∥

≤ ∥sk∥2

∥yk∥∥sk∥
≤ ∥sk∥2

sTk yk
≤ ∥sk∥2

µ∥sk∥2
=

1

µ
, (26)

µ

L2
=

µ∥sk∥2

L2∥sk∥2
≤ µ∥sk∥2

∥yk∥2
≤ sTk yk

∥yk∥2
≤ ∥yk∥∥sk∥

∥yk∥
≤ ∥sk∥

∥yk∥
≤ ∥sk∥
µ∥sk∥

≤ 1

µ
. (27)

Let θmax = max{ 1−m
2(1−m) ,

1
µ}, we have θk ≤ θmax. From Eq. (26) and Eq. (27), we obtain

tk = 1 +
θk
pk

sTk yk
∥sk∥2

+ (1− 2θk)pk
∥yk∥2

sTk yk
≤ 1 +

Lθmax

m
+
mL2

µ
. (28)

Therefore, from the Cauchy inequality, the triangle inequality, Eq. (14), Eq. (23), Eq. (24) and Eq. (28), we
have

∥dk+1∥ = ∥ − θkgk+1 + βksk + γkyk∥

≤ θk∥gk+1∥+
1

2

∣∣∣∣sTk gk+1

sTk yk

∣∣∣∣ ∥yk∥+ 1

2

∣∣∣∣yTk gk+1

sTk yk

∣∣∣∣ ∥sk∥
+|tk|

∣∣∣∣sTk gk+1

sTk yk

∣∣∣∣ ∥sk∥
≤ θmax∥gk+1∥+

1

2

∥gk+1∥L
µ

+
1

2

∥gk+1∥L
µ

+

(
1 +

Lθmax

m
+
mL2

µ

)
∥gk+1∥
µ

=

[
θmax +

1

µ

(
1 + L+

Lθmax

m
+
mL2

µ

)]
∥gk+1∥

.
=M∥gk+1∥. (29)

From Lemma 2.1 and Eq. (29), we have (gT
k+1dk+1)

2

∥dk+1∥2 ≥ c2∥gk+1∥2

M2 . Combined with Lemma 3.2, we get

∞∑
k=0

∥gk∥2 <∞.

The proof is completed. □

For the general nonlinear functions, we can establish a weaker convergence result

lim inf
k→∞

∥gk∥ = 0. (30)

Lemma 3.3 Suppose that Assumptions (i) and (ii) hold. Let the sequence {xk} be generated by RSTTCG
algorithm, then we have dk ̸= 0 and

∞∑
k=0

∥uk+1 − uk∥2 <∞, (31)

whenever inf{∥gk∥ : k ≥ 0} > 0, in which uk = dk

∥dk∥ .
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Proof Define τ = inf{∥gk∥ : k ≥ 0}, we know ∥gk∥ ≥ τ > 0. From the sufficient descent condition Eq. (17),
we have dk ̸= 0 for each k, so uk is well defined. To prove global convergence, we define β+

k = max{β′

k, 0}, where
β

′

k = 1
2
yT
k gk+1

dT
k yk

−
[
1 + θk

pk

sTk yk

∥sk∥2 + (1− 2θk)pk
∥yk∥2

sTk yk

] sTk gk+1

dT
k yk

. From Eq. (14), we have

dk+1

∥dk+1∥
=

−θkgk+1

∥dk+1∥
+ β+

k

dk
∥dk+1∥

+ γk
yk

∥dk+1∥
=

−θkgk+1 + γkyk
∥dk+1∥

+ β+
k

∥dk∥
∥dk+1∥

dk
∥dk∥

,

namely,
uk+1 = ωk + ξkuk,

where,

ωk =
−θkgk+1 + γkyk

∥dk+1∥
, ξk = β+

k

∥dk∥
∥dk+1∥

≥ 0.

By using the condition ∥uk+1∥ = ∥uk∥ = 1, we have ∥ωk∥ = ∥uk+1 − ξkuk∥ = ∥ξkuk+1 − uk∥. Since ξk ≥ 0,
it follows that

∥uk+1 − uk∥ ≤ ∥(1 + ξk)uk+1 − (1 + ξk)uk∥ ≤ ∥uk+1 − ξkuk∥+ ∥ξkuk+1 − uk∥ = 2∥ωk∥.

From Eq. (16), we have∣∣∣ sTk gk+1

sTk yk

∣∣∣ = ∣∣∣dT
k gk+1

dT
k yk

∣∣∣ ≤ σ
1−σ , ∥yk∥ ≤ ∥gk+1∥+ ∥gk∥

∥gk+1∥∥gk+1∥ ≤ 1 + L1

τ ∥gk+1∥. (32)

By the definition of ωk, γk and Eq. (32), we get

∥ωk∥ =
∥ − gk+1 + γkyk∥

∥dk+1∥
≤

∥gk+1∥+ 1
2

∣∣∣ sTk gk+1

sTk yk

∣∣∣ · ∥yk∥
∥dk+1∥

≤
[
1 +

σ

2(1− σ)

(
1 +

L1

τ

)] ∥gk+1∥
∥dk+1∥

.

If ∥gk+1∥ > τ , from Lemma 2.1 and Lemma 3.2, we have

∞∑
k=0

c2τ2∥gk+1∥2

∥dk+1∥2
≤

∞∑
k=0

c2∥gk+1∥4

∥dk+1∥2
≤

∞∑
k=0

(gTk+1dk+1)
2

∥dk+1∥2
< +∞,

therefore, Eq. (31) holds. □
Property(*) Consider a method of the form Eq. (2) and Eq. (14), and suppose

0 < τ ≤ ∥gk∥ ≤ τ , k ≥ 0. (33)

We call that a method has Property(*) if there exist constants b > 1 and λ > 0 such that |β′

k| < b and
∥sk∥ ≤ λ ⇒ |β′

k| ≤ 1
2b .

Lemma 3.4 Suppose that Assumptions (i)-(ii) hold. Let the sequence {dk} be generated by RSTTCG algorithm,
then RSTTCG algorithm has Property (*).

Proof From Eq. (15) and Eq. (16), we have

dTk yk ≥ (σ − 1)gTk dk ≥ c(1− σ)∥gk∥2. (34)

By using Assumption (i), Eqs. (32)–(34), we obtain

|β
′

k| =

∣∣∣∣12 yTk gk+1

dTk yk
−
(
1 +

θk
pk

sTk yk
∥sk∥2

+ (1− 2θk)pk
∥yk∥2

sTk yk

)
sTk gk+1

dTk yk

∣∣∣∣
≤ 1

2

∥yk∥∥gk+1∥
c(1− σ)∥gk∥2

+

(
1 +

θk
pk

sTk yk
∥sk∥2

+ (1− 2θk)pk
∥yk∥2

sTk yk

)
∥sk∥∥gk+1∥
c(1− σ)∥gk∥2

≤ 1

2

∥gk+1 − gk∥∥gk+1∥
c(1− σ)∥gk∥2

+

(
1 +

Lθmax

m
+
mL2

µ

)
∥sk∥∥gk+1∥
c(1− σ)∥gk∥2

≤ τ2

c(1− σ)τ2
+

(
1 +

Lθmax

m
+
mL2

µ

)
2δτ

c(1− σ)τ2
:= b. (35)
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Define
λ :=

c2(1− σ)2τ4

2τ2
[
τ + (1 + Lθmax

m + mL2

µ )L1

] (
1 + L

2 + Lθmax

m + mL2

µ

) , (36)

if ∥sk∥ ≤ λ, from Eq. (35) and Eq. (36), we obtain

|β
′

k| ≤ 1

2

L∥sk∥∥gk+1∥
c(1− σ)τ2

+

(
1 +

Lθmax

m
+
mL2

µ

)
∥sk∥∥gk+1∥
c(1− σ)τ2

≤
[
1

2

Lτ

c(1− σ)τ2
+

(
1 +

Lθmax

m
+
mL2

µ

)
τ

c(1− σ)τ2

]
∥sk∥

≤
[
1

2

Lτ

c(1− σ)τ2
+

(
1 +

Lθmax

m
+
mL2

µ

)
τ

c(1− σ)τ2

]
λ =

1

2b
. □

We will show that if the gradient sequence is bounded away from zero, then a fraction of the steps cannot be too
small in next lemma. Let N be the set of positive integers, Kλ := {i ∈ N : i ≥ 1, ∥si∥ > λ}, for λ > 0, namely,
the set of integers corresponding to steps greater than λ. Here, we need to discuss groups of △ consecutive iterates
and let Kλ

k,∆ := {i ∈ N : k ≤ i ≤ k +∆− 1, ∥si∥ > λ}, where |Kλ
k,∆| denotes the number of elements of Kλ

k,∆.
Lemma 3.5 Suppose that Assumptions (i)-(ii) hold. Let the sequences {xk} and {dk} be generated by RSTTCG

algorithm. When Eq. (33) holds, there exists λ > 0 such that∣∣Kλ
k,∆

∣∣ > ∆

2
, for ∆ ∈ N,

where,
k ≥ k0, in which k0 is any index.

Proof Suppose on the contrary that there exists λ > 0 such that
∣∣∣Kλ

k,∆

∣∣∣ ≤ ∆

2
for ∆ ∈ N and for any k ≥ k0.

By Eq. (32), we have

∥γkyk∥ =
1

2

∣∣∣∣sTk gk+1

sTk yk

∣∣∣∣ ∥yk∥ ≤ σ

4(1− σ)

(
1 +

L1

τ

)
∥gk+1∥

.
= L2∥gk+1∥.

According to the definition of Eq. (14), we have

∥dk+1∥2 ≤
(
β

′

k∥dk∥+ ∥ − gk+1 + γkyk∥
)2

≤ 2β
′2
k ∥dk∥2 + 2∥ − gk+1 + γkyk∥2

≤ 2β
′2
k ∥dk∥2 + 2(2∥gk+1∥2 + 2∥γkyk∥2) ≤ 2β

′2
k ∥dk∥2 + 4

(
1 + L2

2

)
∥gk+1∥2,

the above inequalities are established based on 2ab ≤ a2 + b2 for any scalars a and b, so (a+ b)2 ≤ 2a2 + 2b2. By
induction, we have

∥dl∥2 ≤ c1

(
1 + 2β

′2
l−1 + 2β

′2
l−12β

′2
l−2 + · · ·+ 2β

′2
l−12aβ

′2
l−2 · · · 2β

′2
k0

)
, (37)

for any given index l ≥ k0+1, where c1 depends on ∥dk0−1∥, not depends on l. Next, we consider2β′2
l−12β

′2
l−2 · · · 2β

′2
k ,

where k0 ≤ k ≤ l − 1. We divide the 2(l − k) factors of Eq. (37) into groups of each 2∆ elements, namely, if
Λ := (l − k)/∆, then Eq. (37) can be divided into Λ or Λ + 1 groups

(2β
′2
l1 · · · 2aβ

′2
k1
), · · · , (2β

′2
lΛ · · · 2β

′2
kΛ
), (38)

and a possible group
(2β

′2
lΛ+1 · · · 2β

′2
k ), (39)

where,
li = l − 1 − (i − 1)∆ for i = 1, 2, · · · ,Λ + 1, and ki = li+1 + 1 for i = 1, 2, · · · ,Λ. It is clear that ki ≥ k0

for i = 1, 2, · · · ,Λ, from assumption condition, we get qi :=
∣∣∣Kλ

ki,∆

∣∣∣ ≤ ∆
2 . Thus, there are qi indices j such that

∥sj∥ > λ and (∆− qi) indices j such that ∥sj∥ ≤ λ on [ki, ki +∆− 1].
From Eq. (35), we have b > τ2

c(1−σ)τ2 > 1, i.e., 2b2 > 1. In conjunction with 2qi − ∆ ≤ 0, we have
2β

′2
li
· · · 2aβ′2

ki
≤ 2∆b2qi( 1

2b )
2(∆−qi) = (2b2)2qi−∆ ≤ 1. So every item in Eq. (38) is less than or equal to 1, and so

is their product. In Eq. (39), we have 2β
′2
lΛ+1

· · · 2β′2
k ≤ (2b2)∆. Then, we get

∥dl∥2 ≤ c2(l − k0 + 2),
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where,
c2 > 0 and independent of l. Furthermore,

∑
k≥0

1
∥dk∥2 = ∞. But from sufficient condition Eq. (17), Zoutendijk

condition Eq. (21) and Eq. (33), we have

c2τ4
∑
k≥0

1

∥dk∥2
≤ c2

∑
k≥0

∥gk∥4

∥dk∥2
≤

∑
k≥0

(gTk dk)
2

∥dk∥2
<∞.

It leads to a contradiction. The proof is completed. □
Theorem 3.2 Suppose that Assumptions (i)-(ii) hold. Let the sequence {xk} be generated by RSTTCG algorithm,

then Eq. (30) holds.
Proof Suppose on the contrary that we can get a contradiction similarly to Theorem 4.3 in the study [19]. □

4 Numerical Results

In this section, the numerical performance of RSTTCG algorithm will be listed. All experiments were done on
a PC with CPU 2.40 GHz and 2.00 GB RAM using Matlab R2015b.

Table 1. List of the test functions, dimensions, and initial points

P. Functions Dim. P. Functions Dim.
1 Freudenstein and Roth 2 41 Chebyquad 1000
2 Powell badly scaled 2 42 Chebyquad 5000
3 Brown badly scaled 2 43 Chebyquad 10000
4 Beale 2 44 Chebyquad 50000
5 Helical valley 3 45 Broyden banded 1000
6 Wood 4 46 Broyden banded 5000
7 Biggs EXP6 6 47 Broyden banded 10000
8 Extended Rosenbrock 1000 48 Broyden banded 50000
9 Extended Rosenbrock 5000 49 Generalized Rosebrock 1000
10 Extended Rosenbrock 10000 50 Generalized Rosebrock 5000
11 Extended Rosenbrock 50000 51 Generalized Rosebrock 10000
12 Extended Powell singular 1000 52 Generalized Rosebrock 50000
13 Extended Powell singular 5000 53 Boundary value 1000
14 Extended Powell singular 10000 54 Boundary value 5000
15 Extended Powell singular 50000 55 Boundary value 10000
16 Penalty function I 1000 56 Boundary value 50000
17 Penalty function I 5000 57 Integral equation 1000
18 Penalty function I 10000 58 Integral equation 5000
19 Penalty function II 1000 59 Integral equation 10000
20 Penalty function II 5000 60 Integral equation 50000
21 Penalty function II 10000 61 Broyden tridiagonal 1000
22 Gaussian 3 62 Broyden tridiagonal 5000
23 Gaussian 3 63 Broyden tridiagonal 10000
24 Box 3 64 Broyden tridiagonal 50000
25 Box 3 65 Separable cubic 1000
26 Variable dimension 1000 66 Separable cubic 5000
27 Variable dimension 5000 67 Separable cubic 10000
28 Variable dimension 10000 68 Separable cubic 50000
29 Variable dimension 50000 69 Nearly separable 1000
30 Watson 1000 70 Nearly separable 5000
31 Watson 5000 71 Nearly separable 10000
32 Watson 10000 72 Nearly separable 50000
33 Watson 50000 73 Yang tridiagonal 1000
34 Brown and Dennis 4 74 Yang tridiagonal 5000
35 Brown and Dennis 4 75 Yang tridiagonal 10000
36 Trigonometric 500 76 Allgower 1000
37 Trigonometric 1000 77 Allgower 5000
38 Trigonometric 5000 78 Allgower 10000
39 Trigonometric 10000 79 Schittkowski 302 5000
40 Trigonometric 50000 80 Schittkowski 302 10000
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4.1 Normal Unconstrained Optimization Problems

Two classes of test problems are selected here which are listed in Table 1. One class is drawn from the CUTEr
library [20], and the other class come from Andrei [13]. A total of twenty-eight test functions with eighty problems
from different dimensions are considered.

Figure 1. The number of iterations

Figure 2. The number of function evaluations

We compare RSTTCG algorithm against DDL method [11] which possess better numerical performance. When

θk = max

{
1−m

2(1−m)
,
∥sk∥2

sTk yk

}
and θk = max

{
1−m

2(1−m)
,
sTk yk
∥yk∥2

}
are chosen, RSTTCG Algorithm are denoted by “RSTTCG1” and “RSTTCG2”, respectively. All test methods are
terminated when satisfies condition

∥gk∥ ≤ ε or the number of iterations exceeds 1000. (40)

We set parameter as ε = 10−5, ρ = 0.1, σ = 0.6,m = 0.05,m = 0.45. And we set p = 0.8 and q = 0.1 in
DDL algorithm.

The performance profile of four algorithms, included number of iterations, function evaluations, gradient
evaluations and CPU time, was analyzed using the profiles of Dolan and Moré [21]. In a performance profile

260



plot, the horizontal axis gives the percentage (τ) of the test problems for which a method is the fastest (efficiency),
while the vertical side gives the percentage (ψ) of the test problems that are successfully solved by each of the
methods.

Figure 3. The number of gradient evaluations

Figure 4. CPU time

Please do not use the headers or the footers because they are reserved for the technical editing by editors. If
necessary, explain the concepts in a table or figure by adding a note below that table or figure.

Figures 1-4 plot the performance profiles for the number of iterations, the number of function evaluations,
the number of gradient evaluations, and the CPU time, respectively. As can be observed in Figures 1-4, the
curves corresponding to RSTTCG1 stays others curves representing RSTTCG2 and DDL methods. This indicates
that RSTTCG1 outperforms RSTTCG2 and DDL in all aspects. Furthermore, when τ < 2, the performance of
RSTTCG1 is slightly better than RSTTCG2. Whereas, when τ ≥ 2, the performance of RSTTCG2 is slightly better
than RSTTCG1. We deem that RSTTCG1 may be more competitive than RSTTCG2.

4.2 Fresh Agricultural Products Supply Chain Optimization Problems

In this section, we use RSTTCG algorithm to study the profit-maximization pricing strategy of supply chain of
fresh agricultural products led by suppliers under centralized decision making. Consider a two-level fresh produce
supply chain in a single-cycle production-sales mode composed of a single fresh produce supplier and a single
retailer. The fresh produce supplier, as the leader of the Stackeblerg game, supplies both ordinary fresh produce
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(ofp) and green fresh produce (gfp) of the same variety to the retailer as the follower. Fresh agricultural products
supply chain (FPSC) system the overall decision-making structure is shown in Figure 5.

Figure 5. FPSC operation flow chart

Table 2. The optimal solution corresponding to different initial points by RSTTCG1

Initial Point k p∗1 p∗2 q∗1 q∗2 π∗

(1;1) 7 45.0265 43.7651 21.2879 26.4818 1.9449×103

(10;10) 6 44.9792 43.7150 21.3107 26.5163 1.9449×103

(30;30) 8 44.9970 43.7427 21.3177 26.4825 1.9449×103

(50;50) 6 45.0255 43.7949 21.3427 26.4100 1.9449×103

(100;100) 7 44.9776 43.7113 21.3079 26.5222 1.9449×103

(1000;1000) 6 44.9809 43.7130 21.3033 26.5238 1.9449×106

Table 3. The optimal solution corresponding to different initial points by RSTTCG2

Initial Point k p∗∗1 p∗∗2 q∗∗1 q∗∗2 π∗∗

(1;1) 7 44.9459 43.6127 21.2085 26.6981 1.9448×103

(10;10) 5 44.9491 43.7202 21.3907 26.4509 1.9449×103

(30;30) 6 45.0035 43.7488 21.3132 26.4796 1.9449×103

(50;50) 6 45.0234 43.7905 21.3400 26.4165 1.9449×103

(100;100) 6 45.0273 43.7657 21.2870 26.4818 1.9449×103

(1000;1000) 5 45.0032 43.7530 21.3213 26.4692 1.9449×106

Because these two kinds of fresh products are substitutable, there is competition in the demand market, based on
the demand function theory of substitute price competition, the demand function of two fresh agricultural products
is assumed as follows

qi = a− b
pi
θ

+ r
pj
θ
, i = 1, 2, j = 3− i, (41)

where,
q1, q2 represent the market demand of gfp and ofp, respectively, a represents the total potential market capacity

of fresh agricultural products, p1, p2 represent the retail price of gfp and ofp, respectively, b is the price sensitivity
coefficient, r is the competitive substitution coefficient of the two products, and satisfy b > r > 0, θ(0 ≤ θ ≤ 1)
is the freshness of fresh produce when it arrives at the retailer’s store. In centralized decision-making, we regard
suppliers and retailers as subjects with identical interests, and both sides cooperate to maximize FPSC profits.

Now, under the establishment of centralized decision, the profit function of FPSC is as follows

max
p1,p2

πc = (p1 −
c1

1− β
)(a− b

p1
θ

+ r
p2
θ
) + (p2 −

c2
1− β

)(a− b
p2
θ

+ r
p1
θ
), (42)
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where,
β (0 < β < 1) represents the quantity loss of fresh produce when it reaches the retailer’s store. c1, c2 represents

the unit production cost of gfp and ofp, respectively. Obviously, p1 > p1 > 0 and c1 > c2 > 0. We transform Eq.
(42) into the following optimization problem

min
p1,p2

πc = −(p1 −
c1

1− β
)(a− b

p1
θ

+ r
p2
θ
)− (p2 −

c2
1− β

)(a− b
p2
θ

+ r
p1
θ
). (43)

With reference to the setting of the parameters in the relevant literature [22], we set: a = 50, b = 2, c1 = 4,
c2 = 2, r = 1.5, β = 0.2, θ = 0.85. These values satisfy the theoretical proof in reference [22] and can guarantee
that the optimal value has practical significance. We choose different initial points and use RSTTCG algorithm to
solve the optimization problem Eq. (43), the results are shown in Table 2 and Table 3. In Table 2 and Table 3, k
represents the number of iterations.

As can be seen from Table 2 and Table 3, with certain parameters, RSTTCG algorithm can be used to solve
the optimization problem, so as to obtain the optimal pricing strategy with maximum profit in the supply chain led
by suppliers under centralized decision making. In addition, the global convergence and effectiveness of RSTTCG
algorithm are verified according to different initial values and the number of iterations.

5 Conclusion

In this paper, based on the random technique and a new search direction, a class of spectral three-term spectral
three-term CG methods with random parameters are proposed. The random parameters are introduced to simplify
the derived parameter. This is achieved by minimizing distance between the symmetric matrixAk+1 and memoryless
BFGS matrix in Frobenius norm. Global convergence of new algorithm is proved for uniformly convex functions
and general nonlinear functions. Some classical test problems are selected for numerical experiments and compared
with other methods to verify the effectiveness of proposed algorithm. Numerical experiments show that our methods
have nice numerical performance, more relaxed and elastic.
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