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Abstract: Neutrosophy is a special area of philosophy that explains the nature, genesis and scope of neutralities, like
the interactions with diverse ideational hues. It showed the degree of indeterminacy as an independent component that
was the extension of an intuitionistic set. In this paper, the interpretation of the linear equation of type AX +B = C
are discussed in a neutrosophic environment. It is observed that the equations AX + B = C, AX = C − B and
AX − C = −B are same and their solution are also same in crisp sense. But, in the neutrosophic sense, the
solutions to the above equations are different. Mathematical operations on intervals are considered for the purpose
of solution and analysis. Further, an application of budgeting-financing is described with the help of neutrosophic
fuzzy equation.
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1 Introduction
1.1 Fuzzy Sets Theory with Its Extension and Applications

Zadeh [1] introduced a fuzzy set in his first paper in 1965. The degree of belongingness in terms of membership
function is captured by the theory. Further, the extension was developed in 1986 by Prof. Atanassov, namely the
intuitionistic fuzzy set theory [2]. It captured the degree of belongingness and non belongingness by non-membership
and degree of membership function. Another theory introduced by Smarandache [3] is neutrosophic sets, which are
extensions of fuzzy sets by incorporating three membership degrees: truth, indeterminacy and falsity idea. There
are several extensions like Type-2 Fuzzy Sets [4], Interval-Valued Fuzzy Sets [5], Fuzzy Rough Sets [6], etc. All
ideas are based on providing that extra flexibility in representing uncertainty.

Not only in theoretical perspective, fuzzy sets and its application are very important for modelling real world
problems. Modelling real-world problems with fuzzy sets and their extensions is vital for handling the integral
uncertainty, ambiguity, and vagueness that describe many complex fields, such as decision-making theory, control
theory, optimization, model simulation and risk valuation, etc. Fuzzy sets allow and its extensions supplementary
layers of uncertainty, such as inadequate knowledge and indistinguishability, thus making models further robust
and adaptive in uncertain settings. For example, anyone can follow the recent application in the field of Women’s
empowerment [7], Diabetes modelling [8], Industrial engineering [9], Population dynamics [10], Transportation
problem [11] and Epidemic modelling [12].

1.2 Neutrosophic Set and Its Application in Different Areas
In 1995, Smarandache [3] proposed the degree of uncertainty as an independent element representing the

neutrosophy set.
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There are many applications of neutrosophic numbers in real life, some of which are mentioned below. Majumder
et al. [13] mainly proposed single valued neutrosophic fuzzy set (SVNFS) to avoid the difficulties of some real-life
problems with the nonstandard interval of neutrosophic elements. This work also introduced the distance measures
between two SVNFS in 2020. A multi-criteria decision making (MCDM) procedure is also presented to apply
this approach [14]. Khalil et al. [15] have applied the neutrosophic number to decision making in their work [16]
respectively. Koundal et al. [17] mainly showed that prognosis and diagnosis are the most complex and challenging
work in the world of medical science due to the limited subjectivity of experts and it is generalized by neutrosophic
theory. In 2020, Fei [18] have presented the application in a wireless network with the help of a neutrosophic graph.
Gulistan et al. [19] demonstrated the application in industry performance evaluation by using neutrosophic cubic
graphs in 2018.

1.3 Motivation and Novelties of the Study
Fuzzy equations can address different real world’s problems within their mathematical representatives. These are

primarily represented by the models of the ambiguity linear system. The neutrosophic fuzzy equation investigates
various mathematical approaches to the models’ volatility with the help of neutrosophic fuzzy set theory. Sometimes,
it is used in different fields, such as artificial intelligence, decision-making, etc. To solve various real-life applications
such as budgeting and financing, we have used and processed neutrosophic fuzzy equations.

1.4 Structure of the Paper
This portion provides a proper explanation of this research. The introduction of this work is highlighted in Section

1. Then, Section 2 conveys the literature survey of this work. Then, the preliminary concepts of mathematical tools
are discussed in Section 3. Further, in Section 4, we consider three different types of linear equations and solve
these with neutrosophic numbers. Therefore, we take the numerical examples in Section 5. Additionally, Section
6 covered the application of neutrosophic fuzzy equations. The research findings are explained in Section 7 in this
paper. Finally, conclusions and future research scope are exhibited in Section 8.

2 Literature Survey of on Neutrosophic Fuzzy Set Theory
This section explains the literature review of this paper. At first, we describe the neutrosophic set and number [20,

21] and then the fuzzy equation [22] very shortly.

2.1 Background on Neutrosophic Set and Number
An extension of the fuzzy set, which is also called the classical set with a certain amount of ambiguity, was the

notion of the neutrosophic set. It studied the nature, origin and scope of neutralities and solved the problems to find
the solution of having vagueness, indeterminacy or uncertainty [1]. neutrosophic numbers are mainly used to solve
integral equations, differential equations, difference equations, etc. [23–25]. The perfect review of the neutrosophic
set are described in Table 1.

Table 1. Literature review on neutrosophic set

Author Year Improvement in Theoretical Structure Contribution in Applied Field
Smarandache [26] 2005 Beutrosophic set, intuitionistic fuzzy set,

intuitionistic set
Application on generalization of

intuitionistic set to neutrosophic set
Broumi et al. [27] 2013 Neutrosophic soft sets, interval valued

neutrosophic soft sets
Extension the concept of interval valued

intuitionstic fuzzy soft relation and
introduced interval valued neutrosophic soft

relation with its’ properties
Broumi [28] 2013 Neutrosophic set, generalized neutrosophic set,

generalized neutrosophic soft set
Development the concept of generalized

neutrosophic soft set and its’ application on
MCDM

Deli et al. [29] 2014 Soft set, neutrosophic set, neutrosophic refined
set, neutrosophic soft multi-set

Application on MCDM with the help of
neutrosophic soft multi-set theory

Broumia et al. [30] 2014 Neutrosophic sets, neutrosophic refined sets This paper mainly introduced neutrosophic
refined sets (multisets) with the help of

neutrosophic refined relation (NRR) with
it’s properties, s.t., symmetry, reflexivity,

transitivity, etc.
Broumi and

Smarandache [31]
2015 Interval-valued neutrosophic soft rough sets Discuss the interval-valued neutrosophic

soft rough sets with its’ basic properties
Das et al. [20] 2020 Fuzzy set, neutrosophic set, neutrosophic fuzzy

set, SVNFS
Application for decision making
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Table 2. Literature review on neutrosophic numbers

Author Year Improvement in Theoretical Structure Contribution in Applied Field
Deli and Subas [32] 2014 Neutrosophic set, single valued neutrosophic

numbers, trapezoidal neutrosophic numbers,
triangular neutrosophic numbers

This paper discussed about two spherical
forms which are single valued trapezoidal

and triangular neutrosophic numbers
Chakraborty et al. [33] 2018 Neutrosophic numbers and triangular

neutrosophic numbers
Several applications of TNNs and
de-neutrosophication processes

Deli [34] 2018 Single valued neutrosophic sets, neutrosophic
numbers, trapezoidal neutrosophic, single
valued trapezoidal neutrosophic numbers

Show the operators on single valued
trapezoidal neutrosophic numbers and then
apply it to the decision making process of

SVTN-group
Edalatpanah [35] 2020 Single valued neutrosophic number Application to the structure of the direct

model for triangular neutrosophic linear
programming problem

Deveci et al. [36] 2021 Fuzzy sets, Type-2 neutrosophic number Offshore wind farm site selection problem
solved in this paper based on Type-2

neutrosophic number
Muthulakshmi et al. [21] 2022 Neutrosophic numbers Describe all the properties of it

Bilgin et al. [37] 2022 Fermatean neutrosophic numbers Selection of supplier in a copper production
industry

Reig-Mullor and
Salas-Molina [38]

2022 Fuzzy set, neutrosophic fuzzy sets, non-linear
neutrosophic numbers

Discuss the notion of non-linear
neutrosophic numbers and its’ application

on multiple criteria performance assessment
Rahaman et al. [39] 2025 Neutrosophic numbers System of linear differential equations in

neutrosophic environment

Table 3. Literature review on uncertain equation with the help of different types of fuzzy number

Author Year Uncertain Environment Contribution
Buckley [40] 1992 Fuzzy equation Solve the fuzzy equations with different

techniques
Buckley and
Eslami [41]

2002 Fuzzy equation Find the solution of linear equation with fuzzy
number and show it with different examples

Chadli and
Melliani [42]

2003 Intuitionistic fuzzy set Find the required solution of fuzzy equation

Allahviranloo and
Salahshour [43]

2011 Fuzzy linear system Solve the fuzzy linear system including
triangular fuzzy number with non-zero

spreads and matrix
Behera and

Chakraverty [44]
2013 Fuzzy number, fuzzy system of linear

equations, triangular fuzzy number
A new process to solve fuzzy system of linear

equations with crisp co-efficient
Ye [45] 2017 Neutrosophic number, neutrosophic linear

equations
Application in traffic flow problems applying

neutrosophic linear equations
Mondal and
Mandal [46]

2017 Pentagonal fuzzy number Application in fuzzy equation with the help of
pentagonal fuzzy number and it’s properties

Razvarz and
Tahmasbi [47]

2017 Fuzzy equation How are fuzzy equations applied to represent
uncertain nonlinear system models

Allahviranloo et al. [48] 2018 Fuzzy number Discuss a new process of fuzzy equations to
get its’ solution

Yu and Jafari [22] 2019 Fuzzy equation The solutions of fuzzy equations and dual
fuzzy equations

Akram et al. [49] 2019 Fuzzy number, bipolar fuzzy set Development of bipolar fuzzy arithmetic and
solve the fuzzy linear equation

Edalatpanah [50] 2020 Neutrosophic set, neutrosophic number Application of neutrosophic linear equations
Abbasi and

Allahviranloo [51]
2021 Fuzzy equation A new computational technique for solving

the fuzzy equations
Saw and Hazra [52] 2021 Non-negative intuitionistic fuzzy number,

parametric form of intuitionistic fuzzy number
Find the solution of intuitionistic fuzzy linear

system of equations
Alhasan [53] 2021 Neutrosophic liner equation Application of the system of the neutrosophic

linear equations with the help of Cramer’s rule
Jdid and

Smarandache [54]
2024 Neutrosophic science Find the proper solution of systems of

neutrosophic linear equations
Sing et al. [55] 2024 Fuzzy set theory, Hukuhara difference,

generalized Hukuhara difference
Application on fuzzy linear equation

Shams et al. [56] 2024 Triangular intuitionistic fuzzy number Application on linear fuzzy equation
Alamin et al. [57] 2024 Neutrosophic fuzzy sets Solve financial problems

A neutrosophic fuzzy number (NFN) allows for a more comprehensive representation of ambiguity, especially
when addressing undetermined or unreliable information. By including truth, indeterminacy, and falsity membership
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values, it enriches fuzzy numbers. While fuzzy numbers basically depend only on membership functions, the NFN
account for the degree to which an element belongs to a set, simply because they include membership, indeterminacy
and non-membership. In 2018, Deli [34] represented many kinds of neutrosophic sets and numbers, such as single
valued neutrosophic sets, trapezoidal neutrosophic numbers, single valued trapezoidal neutrosophic numbers, etc., in
his research work. Muthulakshmi et al. [21] also discussed the neutrosophic numbers and described their properties
in 2022.

Neutrosophic numbers are used in numerous fields, including MCDM problems [58], differential equations [59]
and difference equations [25], respectively. More literature on the neutrosophic numbers are disclosed in Table 2.

2.2 Background on Uncertain Equation
In this section, we discuss different papers on fuzzy equations. We also notice here that these fuzzy equations are

solved using different fuzzy numbers, such as pentagonal fuzzy numbers, intuitionistic fuzzy numbers, neutrosophic
numbers, etc. To de-marking the ambiguity in different mathematical modelling, fuzzy equations are generally
studied in fuzzy logic and control systems. Zadeh’s major work on fuzzy sets and its improvements in uncertain
arithmetic and systems play an important role in it. Applications of fuzzy equations are now spread in various fields,
i.e., optimisation, decision-making and artificial intelligence. A short literature review on uncertain equations with
the help of different types of fuzzy numbers is noted in Table 3.

3 Preliminary Ideology
This section talks about fuzzy sets, fuzzy numbers, different properties of fuzzy numbers, fuzzy functions and

fuzzy equations in detail.

3.1 Fuzzy Set Theory
Zadeh [60] proposed the fuzzy set notion. Instead of having the single elements, the fuzzy set has ordered pair

set elements. Also, rather than being completely in or out, each element can have various membership functions and
belong to a fuzzy set.

Definition 1. Fuzzy Set
Let us choose U to be a universal set and F̃ to be a fuzzy set [61] defined on it. Then, the fuzzy set F̃ defined as,

F̃ = {(b, µF̃ ) : b ∈ U }, (1)

where, b ∈ U be arbitrary element and µF̃ : U → [0, 1] be a membership function.
Example 1. Now, we consider a real-life oriented problem. We want to estimate whether a day is warm or not.

Let, the reference set of days is U = {b1, b2, b3, b4, b5}. Using "warm" as a fuzzy term, let F̃ be the fuzzy set of
"warm" days. Since simply saying "warm" days does not express how "warm" a day is, it can be considered a fuzzy
set. Then, the fuzzy set is, F̃ = {(b1, 0.5), (b2, 0.6), (b3, 1), (b4, 0.8), (b5, 0.7)}, where the b1 day is warm of 0.5
range, b2 day is warm of 0.6 range and so on.

3.2 Fuzzy Number
A fuzzy number [62] is a type of value used in fuzzy logic, which allows for more flexibility compared to crisp

numbers in uncertain environments. It can be distinguished by a membership function. Fuzzy numbers are specially
used to model on vague environments like artificial intelligence, decision-making and control processes. It can
handle uncertainty, as opposed to crisp numbers, which makes it helpful in challenging various real-world problems
where accuracy is difficult to get.

Definition 2. Fuzzy Number
A fuzzy set F̃ on the set of real numbers R is called to be a fuzzy number [63, 64] if it fulfills the properties

listed below,
(i) F̃ is normal and here for at least one point, the membership value should be 1 of it.
(ii) The membership function of the fuzzy set needs to be pairwise continuous.
(iii) 0−cut of a fuzzy set, the support of F̃ , 0F̃ = {b;µF̃(b) ≥ 0} must be bounded.
(iv) αF̃ = {b : µF̃ (b) ≥ α} should be a closed interval for every α ∈ (0, 1].
(v) The set F̃ must be a convex fuzzy set.

Example 2. Let us choose, Sima is a "good" girl in the class. This word alone can never express how "good"
Sima is or can’t fully describe this word. So, "good" differs from person to person. Then, we can apply the fuzzy
number concept with select this as an object. So, from 0 ("Not good" in fuzzy concept) to 1 ("good" in fuzzy concept)
range be the membership function of the above stated object.

Remark 1. In fuzzy sets, the range from 0 to 1 is the degree of membership and it indicates this numeric value
in fuzzy numbers.
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3.3 α-Cut of the Fuzzy Number (or, Parametric Form of the Fuzzy Number)

Suppose, T̃ = (x, y, z) be a triangular fuzzy number. We know that the α−cut form [65] is known as the
parametric form of a fuzzy number. It is presented with an ordered pair of functions, i.e.,

T̃ =
{[

T̃L(α), T̃R(α)
]}

(2)

Eq. (2) can also be explained in the following way, s.t.,{[
T̃L(α), T̃R(α)

]}
= [(y − x)α+ x,−(z − y)α+ z] (3)

where, α ∈ [0, 1]; T̃L(α) and T̃R(α) are the left continuous non-decreasing and right continuous non-increasing
function over [0, 1]; T̃L(α) ≤ T̃R(α) when, 0 ≤ α ≤ 1.

3.4 Neutrosophic Fuzzy Number (NFN)
Definition 3. Neutrosophic Fuzzy Number (NFN)
Let us choose R to be a universal set and Ã to be a single valued NFN [66] defined on it. Then, the NFN Ã

defined as,
Ã = {(b, TÃ (b), IÃ (b),FÃ (b)) : b ∈ R}, (4)

where, TÃ (b) be the degree of membership, IÃ (b) be the degree of indeterministic and FÃ (b) be the degree
of non-membership function, where, TÃ (b), IÃ (b),FÃ (b) : R → [0, 1] and an element b ∈ R. And, the main
condition is that, 0 ≤ TÃ (b) + IÃ (b) + FÃ (b) ≤ 1.

A SVNFS Ã on the set of real numbers R is called a NFN if it satisfies the following properties,
(i) Ã is normal if ∃ b0 ∈ R, i.e., TÃ (b0) = 1, where IÃ (b0) = FÃ (b0) = 0.
(ii) Ã is convex set for membership functionTÃ (b), such that, TÃ (Λb1+(1−Λ)b2) ≥ min(TÃ (b1), TÃ (b2))∀Λ ∈

[0, 1] and b1, b2 ∈ R.
(iii) Ã is convex set for indeterministic function IÃ (b), such that, IÃ (Λb1 + (1 − Λ)b2) ≤ min(IÃ (b1),

IÃ (b2))∀Λ ∈ [0, 1] and b1, b2 ∈ R.
(iv) Ã is convex set for non-membership function FÃ (b), such that, FÃ (Λb1 + (1 − Λ)b2) ≤ min(FÃ (b1),

FÃ (b2))∀Λ ∈ [0, 1] and b1, b2 ∈ R.
Remark 2. NFN can also be concave if the degree of membership function, the degree of indeterministic function

and the degree of non-membership function, i.e., TÃ (b), IÃ (b) and FÃ (b) be concave. But in this paper, we work
on NFN with a convex concept.

3.5 (α, β, γ)-Cut of Two NFN (or, Parametric From of Two NFN)

Let, ∆̃ = {(b, T∆̃(b), I∆̃(b),F∆̃(b)) : b ∈ R} and Λ̃ = {(b, TΛ̃(b), IΛ̃(b),FΛ̃(b)) : b ∈ R} be two neutrosophic
numbers and the parametric form [67] of these are,

∆̃ =
{[

∆̃L(α), ∆̃R(α)
]
,
[
∆̃L(β), ∆̃R(β)

]
,
[
∆̃L(γ), ∆̃R(γ)

]
;α, β, γ ∈ [0, 1]

}
(5)

and
Λ̃ =

{[
Λ̃L(α), Λ̃R(α)

]
,
[
Λ̃L(β), Λ̃R(β)

]
,
[
Λ̃L(γ), Λ̃R(γ)

]
;α, β, γ ∈ [0, 1]

}
(6)

where, the three variables α, β, γ are mainly used for membership, indeterministic and non-membership functions.
Eqs. (5) and (6) satisfies the following conditions, s.t.,

(i) ∆̃L(α), ∆̃L(β), ∆̃L(γ); Λ̃L(α), Λ̃L(β), Λ̃L(γ) are left continuous non-decreasing function and they are
bounded over [0, 1].

(ii) ∆̃R(α), ∆̃R(β), ∆̃R(γ); Λ̃R(α), Λ̃R(β), Λ̃R(γ) are right continuous non-increasing function and they are
bounded over [0, 1].

(iii) ∆̃L(α) ≤ ∆̃R(α), ∆̃L(β) ≤ ∆̃R(β), ∆̃L(γ) ≤ ∆̃R(γ) and Λ̃L(α) ≤ Λ̃R(α), Λ̃L(β) ≤ Λ̃R(β), Λ̃L(γ) ≤
Λ̃R(γ) where, 0 ≤ α, β, γ ≤ 1.

3.6 Distance Between Two Neutrosophic Fuzzy Numbers in Parametric Form
The distance [68] between two neutrospheric fuzzy numbers, already mentioned in Subsection 3.5, is given here

in parametric form,

D(∆̃, Λ̃) = sup
0≤α,β,γ≤1

{
d
(
∆̃(α), Λ̃(α)

)
, d

(
∆̃(β), Λ̃(β)

)
, d

(
∆̃(γ), Λ̃(γ)

)}
(7)
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So,

D(∆̃, Λ̃) = sup
0≤α,β,γ;δ≤1

[
d
{(

∆̃R(α)− ∆̃L(α)
)
δ + ∆̃L(α),

(
Λ̃R(α)− Λ̃L(α)

)
δ + Λ̃L(α)

}
,

d
{(

∆̃R(β)− ∆̃L(β)
)
δ + ∆̃L(β),

(
Λ̃R(β)− Λ̃L(β)

)
δ + Λ̃L(β)

}
,

d
{(

∆̃R(γ)− ∆̃L(γ)
)
δ + ∆̃L(γ),

(
Λ̃R(γ)− Λ̃L(γ)

)
δ + Λ̃L(γ)

}] (8)

and by the Eq. (8), we get,

d
(
∆̃(ι), Λ̃(ι)

)
= max

(
| ∆̃L(ι), Λ̃L(ι) |, | ∆̃R(ι), Λ̃R(ι) |

)
(9)

where, ι = α, β, γ; δ.

3.7 Triangular Neutrosophic Fuzzy Number (TNFN)

A triangular neutrosophic fuzzy number (TNFN) [69] ∆̃ = ⟨(b, T∆̃(b), I∆̃(b),F∆̃(b))
(p1, p2, p3; q1, q2, q3; r1, r2, r3)⟩ is a subset of NFN in R with the base of convex membership, indeterministic and
non-membership function which is denoted by,

T∆̃(b) =


b−p1

p2−p1
; when p1 ≤ b < p2

1 ; when b = p2
p3−b
p3−p2

; when p2 < b ≤ p3

0 ; otherwise

(10)

I∆̃(b) =


q2−b
q2−q1

; when q1 ≤ b < q2

0 ; when b = q2
b−q2
q3−q2

; when q2 < b ≤ q3

1 ; otherwise

(11)

F∆̃(b) =


r2−b
r2−r1

; when r1 ≤ b < r2

0 ; when b = r2
b−r2
r3−r2

; when r2 < b ≤ r3

1 ; otherwise

(12)

where, p1 ≤ p2 ≤ p3, q1 ≤ q2 ≤ q3, r1 ≤ r2 ≤ r3, 0 ≤ T∆̃(b) + I∆̃(b) + F∆̃(b) ≤ 3 and b ∈ R.

3.8 (α, β, γ)-Cut of TNFN
The parametric form of NFN is actually the (α, β, γ)- cut of NFN and this is a parametric representation of

the uncertain number, which is represented in a classical way. In (α, β, γ)-cut of above Subsection 3.7 TNFN
∆̃αβγ = [∆̃L(α), ∆̃R(α); ∆̃L(β), ∆̃R(β); ∆̃L(γ), ∆̃R(γ)] is described as follows.

For the membership function, the left continuous non-decreasing bounded function obtained from Eq. (10) is,

α =
b− p1
p2 − p1

or, b =p1 + α(p2 − p1)

(13)

and the right continuous non-increasing bounded function is,

α =
p3 − b

p3 − p2

or, b =p3 − α(p3 − p2)

(14)

For the indeterministic function, the left continuous non-decreasing bounded function obtained from Eq. (11) is,

β =
q2 − b

q2 − q1

or, b =q2 − β(q2 − q1)

(15)
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and the right continuous non-increasing bounded function is,

β =
b− q2
q3 − q2

or, b =q2 + β(q3 − q2)

(16)

Lastly, for the non-membership function, the left continuous non-decreasing bounded function obtained from
Eq. (12) is,

γ =
r2 − b

r2 − r1
or, b =r2 − γ(r2 − r1)

(17)

and the right continuous non-increasing bounded function is,

γ =
b− r2
r3 − r2

or, b =r2 + γ(r3 − r2)

(18)

Here, b ∈ R and the three variables α, β, γ are used for membership, indeterministic and non-membership
functions for the TNFN. So, we can define the above equations are,

∆̃L(α) =p1 + α(p2 − p1)

∆̃R(α) =p3 − α(p3 − p2)

∆̃L(β) =q2 − β(q2 − q1)

∆̃R(β) =q2 + β(q3 − q2)

∆̃L(γ) =r2 − γ(r2 − r1)

∆̃R(γ) =r2 + γ(r3 − r2)

(19)

where, 0 < α, β, γ ≤ 1 and 0 < α+ β + γ ≤ 3.

3.9 Interval Arithmetic Concept
This section discussed interval arithmetic in detail. Guerra and Stefanini [70] and Quevedo [71] discuss the

arithmetic operations on intervals [64]. Basic operations on intervals are slightly changed compared with crisp
arithmetic.

Consider an interval I = [aL, aR], where aL ≤ aR, then we calculate the midpoint representation value as,

â =
aR + aL

2
and ā =

aR − aL
2

(20)

then the interval I can be represented as follows:

aL = â− ā and aR = â+ ā (21)

and
I = [aL, aR] = [â− ā, â+ ā] (22)

Further, the interval can be written as I = [aL, aR] = (â; ā). The set of all real intervals can be represented as
IR and in short, I.

Assume, P = [cL, cR] = (ĉ; c̄) and Q = [dL, dR] = (d̂; d̄), where ĉ = cR+cL
2 , c̄ = cR−cL

2 , d̂ = dR+dR

2 and
d̄ = dR−dL

2 , respectively. Then, the basic arithmetic operations on intervals are determined as,
1. Addition of two intervals P and Q:

P +Q = [cL, cR] + [dL, dR] = [cL + dL, cR + dR] = (ĉ+ d̂; c̄+ d̄) (23)

2. Subtraction of two intervals P and Q:

P −Q = [cL, cR]− [dL, dR] = [cL − dR, cR − dL] = (ĉ− d̂; c̄− d̄) (24)
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3. Scalar multiplication of interval P :

λP = λ× P = λ× [cL, cR] =

{
[λcL, λcR] ; if λ ≥ 0

[λcR, λcL] ; if λ < 0

= (λĉ; |λ|c̄)
(25)

where, λ is a scalar number.
4. Multiplication of two intervals P and Q:

P ×Q = [cL, cR]× [dL, dR] = [eL, eR] = (ê; ē) (26)

where, eL=min{cLdL, cLdR, cRdL, cRdR} and eR=max{cLdL, cLdR, cRdL, cRdR}, ê= eR+eL
2 and ē = eR−eL

2 ,
respectively.

5. Division of two intervals P and Q:

P ÷Q = [cL, cR]÷ [dL, dR] = [eL, eR] = (ê; ē) (27)

where, eL = min{ cL
dL

, cL
dR

, cR
dL

, cR
dR

} and eR = max{ cL
dL

, cL
dR

, cR
dL

, cR
dR

}, ê = eR+eL
2 and ē = eR−eL

2 , respectively. The
decision of two intervals only possible when 0 not in Q, i.e., 0 /∈ [dL, dR](= Q).

3.10 Hukuhara Difference Between Two Neutrosophic Number

Consider that, ∆̃, Λ̃ be two neutrosophic numbers. And, the Hukuhara difference [72] between these two numbers
is denoted by ξ̃. So, the Hukuhara difference occurs when, ∆̃ = Λ̃ + ξ̃. Then, it is represented as,

∆̃L(α) = Λ̃L(α) + ξ̃L(α)

∆̃R(α) = Λ̃R(α) + ξ̃R(α)

∆̃L(β) = Λ̃L(β) + ξ̃L(β)

∆̃R(β) = Λ̃R(β) + ξ̃R(β)

∆̃L(γ) = Λ̃L(γ) + ξ̃L(γ)

∆̃R(γ) = Λ̃R(γ) + ξ̃R(γ)

(28)

Now, we get from Eq. (28), 

ξ̃L(α) = ∆̃L(α)− Λ̃L(α)

ξ̃R(α) = ∆̃R(α)− Λ̃R(α)

ξ̃L(β) = ∆̃L(β)− Λ̃L(β)

ξ̃R(β) = ∆̃R(β)− Λ̃R(β)

ξ̃L(γ) = ∆̃L(γ)− Λ̃L(γ)

ξ̃R(γ) = ∆̃R(γ)− Λ̃R(γ)

(29)

where, ∀α, β, γ ∈ [0, 1]. Mathematically, the Hukuhara difference can be expressed as,

ξ̃ = ∆̃⊖H Λ̃ (30)

3.11 Characterisation Theorem for Neutrosophic Function and It’s Operation
Choose that, the neutrosophic fuzzy equation of the form [73],

x̃ = f̃(x̃) (31)

where, f : E × Z → E and E be the set of all fuzzy function. Now, two forms of fuzzy function using Hukuhara
difference are described below, s.t.,

(a) The parametric form of the fuzzy neutrosophic function is,
f̃(x)α,β,γ = {[fL[xL(α), xR(α), α], fR[xL(α), xR(α), α]],
[fL[xL(β), xR(β), β], fR[xL(β), xR(β), β]], [fL[xL(γ), xR(γ), γ], fR[xL(γ), xR(γ), γ]]}.

(b) The functions [fL[xL(α), xR(α), α], fR[xL(α), xR(α), α]]; [fL[xL(β), xR(β), β], fR[xL(β), xR(β), β]] and
[fL[xL(γ), xR(β), γ], fR[xL(γ), xR(γ), γ]] are taken as continuous functions, s.t.,
∥fL[xL(α), xR(α), α]− fL[xL(n1 + 1)(α), xR(α), α]∥ < η1 and
∥fL[xL(β), xR(β), β]− fR[xL(β), xR(β), β]∥ < η2 and
∥fL[xL(γ), xR(γ), n, γ] − fL[xL(γ), xR(γ), γ]∥ < η2, where, ∀α, β, γ ∈ [0, 1] and η1, η2, η3 > 0 with
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∥(xL(α), xR(α))− (xL(α), xR(α))∥ < δ1 and ∥(xL(β), xR(β))− (xL(β), xR(β))∥ < δ2 and
∥(xL(γ), xR(γ))− (xL(γ), xR(γ))∥ < δ3, where, δ1, δ2, δ3 > 0.
Then, for ∀α, β, γ ∈ [0, 1] and η4, η5, η6 > 0. So, ∥fR[xL(α), xR(α), n, α] − fR[xL(α), xR(α)]∥ < η4
and ∥fR[xL(β), xR(β), β] − fR[xL(β), xR(β)]∥ < η5 and ∥fR[xL(γ), xR(γ), γ] − fR[xL(γ), xR(γ)]∥ <
η6 with ∥(xL(α), xR(α)) − (xL(α), xR(α))∥ < δ4 and ∥(xL(β), xR(β)) − (xLβ), xR(β))∥ < δ5 and
∥(xL(γ), xR(γ))− (xL(γ), xR(γ))∥ < δ6 where δ4, δ5, δ6 > 0.

Therefore, the fuzzy Eq. (31) reduces the system of six fuzzy equations, i.e.,

xL(α) =fL[xL(α), xR(α), α]

xR(α) =fR[xL(α), xR(α), α]
(32)

and

xL(β) = fL[xL(β), xR(β), β]

xR(β) = fR[xL(β), xR(β), β]
(33)

and

xL(γ) =fL[xL(γ), xR(γ), γ]

xR(γ) =fR[xL(γ), xR(γ), γ]
(34)

4 Neutrosophic Fuzzy Equation and Its Solution
In this section, we consider one linear equation in three different forms and evaluate its solutions using

neutrosophic numbers. Let us consider the three forms of linear equations as follows:

AX + B = C (35)

AX = C − B (36)

AX − C = −B (37)

Remark 3. It is obvious that all of the above three linear equations are the same in the crisp environment. So,
their solution should be the same and the solution is X = C−B

A . But, if we consider the fuzzy or intuitionistic fuzzy
or neutrosophic coefficient, then the solution of the above three equations may not be the same. In this section, we
determine the solutions of the above three equations in the neutrosophic environment in detail.

4.1 Neutrosophic Equation (Type 1)
In this section, we determine the solution of Eq. (35) in the neutrosophic field, i.e., all the coefficients are

neutrosophic numbers. Then, we replace the crisp coefficients A, B and C with neutrosophic coefficient Ã, B̃ and
C̃, respectively, in Eq. (35). Then the solution must be a neutrosophic number, let X̃ instead of X and the equation
becomes neutrosophic equation, as

ÃX̃ + B̃ = C̃ (38)

and corresponding (α, β, γ)−cut of Eq. (38) is

{[AL(α),AR(α)] , [AL(β),AR(β)] , [AL(γ),AR(γ)]} {[WL(α),WR(α)] , [WL(β),WR(β)],

[WL(γ),WR(γ)]}+ {[BL(α),BR(α)] , [BL(β),BR(β)] , [BL(γ),BR(γ)]}
= {[CL(α), CR(α)] , [CL(β), CR(β)] , [CL(γ), CR(γ)]}

(39)

Remark 4. Since the coefficient, non-coefficient and non-homogeneous parts are neutrosophic fuzzy values,
then we consider the solution X̃ = {[WL(α),WR(α)], [YL(β),YR(β)], [ZL(γ),ZR(γ)]} to be also neutrosophic
fuzzy in nature.

Here, we take the concept of Hukuhara difference and characterisation theorem with Eq. (39) and convert it as{
min {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)}+ BL(α) = CL(α)
max {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)}+ BR(α) = CR(α)

(40)

{
min {AL(β)YL(β),AL(β)YR(β),AR(β)YL(β),AR(β)YR(β)}+ BL(β) = CL(β)
max {AL(β)YL(β),AL(β)YR(β),AR(β)YL(α),AR(β)YR(β)}+ BR(β) = CR(β)

(41)
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{
min {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)}+ BL(γ) = CL(γ)
max {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)}+ BR(γ) = CR(γ)

(42)

After applying the interval arithmetic described in paper [74] and we already know that 0 ≤ α, β, γ ≤ 1. Here,
we consider WL(α) and WR(α) are always positive ∀α ∈ [0, 1]. Now, using Interval arithmetic on Eq. (40), we get{

AL(α)WL(α) + BL(α) = CL(α)
AR(α)WR(α) + BR(α) = CR(α)

(43)

where, [min {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)} ,
max {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)}] is [AL(α)WL(α),AR(α)WR(α)].

Further, we consider YL(β) and YR(β) are always positive ∀β ∈ [0, 1]. Then, form Eq. (41) using interval
arithmetic, we get {

AL(β)YL(β) + BL(β) = CL(β)
AR(β)YR(β) + BR(β) = CR(β)

(44)

where, [min {AL(β)YL(β),AL(β)YR(β),AR(β)YL(β),AR(β)YR(β)} ,
max {AL(β)YL(β),AL(β)YR(β),AR(β)YL(α),AR(β)YR(β)}] is [AL(β)YL(β),AR(β)YR(β)].

Simultaneously, considering ZL(γ) and ZR(γ) are always positive ∀γ ∈ [0, 1] and form Eq. (42) utilizing
interval arithmetic, we obtain {

AL(γ)ZL(γ) + BL(γ) = CL(γ)
AR(γ)ZR(γ) + BR(γ) = CR(γ)

(45)

where, [min {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)} ,
max {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)}] is [AL(γ)ZL(γ),AR(γ)ZR(γ)].

Now, from Eq. (43), we find {
WL(α) =

CL(α)−BL(α)
AL(α)

WR(α) =
CR(α)−BR(α)

AR(α)

(46)

In Eq. (46), d
dα (WL(α)) > 0, then WL(α) be a monotonically increasing function of α and d

dα (WR(α)) < 0
then WR(α) be a monotonically decreasing function of α when 0 ≤ α ≤ 1. Then the membership part
(α−cut) of the solution of Eq. (39) is Eq. (46). If d

dα (WL(α)) < 0 and d
dα (WR(α)) > 0 for all α ∈ [0, 1]

simultaneously, then WL(α) and WR(α) are monotonically decreasing and increasing functions, respectively
and WL(α) > WR(α) for all α ∈ [0, 1]. Then the corrected solution of Eq. (46) is [WL(α)

∗,WR(α)
∗] =

[min {WL(α),WR(α)} ,max {WL(α),WR(α)}] = [WR(α),WL(α)].
Similarly, from Eq. (44), we find {

YL(β) =
CL(β)−BL(β)

AL(β)

YR(β) =
CR(β)−BR(β)

AR(β)

(47)

In Eq. (47), d
dβ (YL(β)) < 0, then YL(β) be a monotonically decreasing function of β and d

dβ (YR(β)) > 0 then
YR(β) be a monotonically increasing function of β when 0 ≤ β ≤ 1. Then the indeterminacy part (β−cut) of the
solution of Eq. (39) is Eq. (47). If d

dβ (YL(β)) > 0 and d
dβ (YR(β)) < 0 for all β ∈ [0, 1] simultaneously, thenYL(β)

andYR(β) are monotonically increasing and decreasing functions, respectively andYL(β) > YR(β) for allβ ∈ [0, 1].
Then the corrected solution of Eq. (47) is [YL(β)

∗,YR(β)
∗] = [min {YL(β),YR(β)} ,max {YL(β),YR(β)}]

= [YR(β),YL(β)].
Further more, from Eq. (45), we find {

ZL(γ) =
CL(γ)−BL(γ)

AL(γ)

ZR(γ) =
CR(γ)−BR(γ)

AR(γ)

(48)

In Eq. (48), d
dγ (ZL(γ)) < 0, then ZL(γ) be a monotonically decreasing function of γ and d

dγ (ZR(γ)) > 0 then
ZR(γ) be a monotonically increasing function of γ when 0 ≤ γ ≤ 1. Then the non-membership part (γ−cut) of the
solution of Eq. (39) is Eq. (48). If d

dγ (ZL(γ)) > 0 and d
dγ (ZR(γ)) < 0 for all γ ∈ [0, 1] simultaneously, thenZL(γ)

andZR(γ) are monotonically increasing and decreasing functions, respectively andZL(γ) > ZR(γ) for allγ ∈ [0, 1].
Then the corrected solution of Eq. (48) is [ZL(γ)

∗,ZR(γ)
∗] = [min {ZL(γ),ZR(γ)} ,max {ZL(γ),ZR(γ)}]

= [ZR(γ),ZL(γ)].
The above solution exists when Eqs. (46)-(48) are satisfied the following conditions as follows:

(a) WL(α),YR(β),ZR(γ) be a monotonically increasing functions ofα, β, γ, respectively, when 0 ≤ α, β, γ ≤ 1.
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(b) WR(α),YL(β),ZL(γ) be a monotonically decreasing functions ofα, β, γ, respectively, when 0 ≤ α, β, γ ≤ 1.
(c) WL(α) ≤ WR(α), YL(β) ≤ YR(β) and ZL(γ) ≤ ZR(γ), for all α, β and γ, respectively.

Then the solution X̃ = {[WL(α),WR(α)] , [YL(β),YR(β)] , [ZL(γ),ZR(γ)]} of Eq. (38) is evaluated by Eqs.
(46)-(48), respectively.

4.2 Neutrosophic Equation (Type 2)
In this section, we determine the solution of Eq. (36) in the neutrosophic field, i.e., all the coefficients are

neutrosophic numbers. Then, we replace the crisp coefficients A, B and C with neutrosophic coefficient Ã, B̃ and
C̃, respectively, in Eq. (36). Then the solution must be a neutrosophic number, let X̃ instead of X and the equation
becomes neutrosophic equation, as

ÃX̃ = C̃ − B̃ (49)

and corresponding (α, β, γ)−cut of Eq. (49) is

{[AL(α),AR(α)] , [AL(β),AR(β)] , [AL(γ),AR(γ)]} {[WL(α),WR(α)] , [WL(β),WR(β)] ,

[WL(γ),WR(γ)]} = {[CL(α), CR(α)] , [CL(β), CR(β)] , [CL(γ), CR(γ)]}
− {[BL(α),BR(α)] , [BL(β),BR(β)] , [BL(γ),BR(γ)]}

(50)

Remark 5. Since the coefficient, non-coefficient and non-homogeneous parts are neutrosophic fuzzy values,
then we consider the solution X̃ = {[WL(α),WR(α)] , [YL(β),YR(β)] , [ZL(γ),ZR(γ)]} to be also neutrosophic
fuzzy in nature.

Here, we consider the Hukuhara difference and characterisation theorem with Eq. (50) and convert it as{
min {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)} = CL(α)− BR(α)

max {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)} = CR(α)− BL(α)
(51)

and {
min {AL(β)YL(β),AL(β)YR(β),AR(β)YL(β),AR(β)YR(β)} = CL(β)− BR(β)

max {AL(β)YL(β),AL(β)YR(β),AR(β)YL(β),AR(β)YR(β)} = CR(β)− BL(β)
(52)

and {
min {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)} = CL(γ)− BR(γ)

max {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)} = CR(γ)− BL(γ)
(53)

After applying the interval arithmetic described in paper [74] and we already know that 0 ≤ α, β, γ ≤ 1. Here,
we consider WL(α) and WR(α) are always positive ∀α ∈ [0, 1]. Now, using Interval arithmetic on Eq. (51), we get{

AL(α)WL(α) = CL(α)− BR(α)

AR(α)WR(α) = CR(α)− BL(α)
(54)

where, [min {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)} ,
max {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)}] is [AL(α)WL(α),AR(α)WR(α)].

Further, we consider YL(β) and YR(β) are always positive ∀β ∈ [0, 1]. Then, form Eq. (52) using interval
arithmetic, we get {

AL(β)YL(β) = CL(β)− BR(β)

AR(β)YR(β) = CR(β)− BL(β)
(55)

where, [min {AL(β)YL(β),AL(β)YR(β),AR(β)YL(β),AR(β)YR(β)} ,
max {AL(β)YL(β),AL(β)YR(β),AR(β)YL(α),AR(β)YR(β)}] is [AL(β)YL(β),AR(β)YR(β)].

Simultaneously, considering ZL(γ) and ZR(γ) are always positive ∀γ ∈ [0, 1] and form Eq. (53) utilizing
interval arithmetic, we obtain {

AL(γ)ZL(γ) = CL(γ)− BR(γ)

AR(γ)ZR(γ) = CR(γ)− BL(γ)
(56)

where, [min {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)} ,
max {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)}] is [AL(γ)ZL(γ),AR(γ)ZR(γ)].

Now, from Eq. (54), we find {
WL(α) =

CL(α)−BR(α)
AL(α)

WR(α) =
CR(α)−BL(α)

AR(α)

(57)
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In Eq. (57), d
dα (WL(α)) > 0, then WL(α) be a monotonically increasing function of α and d

dα (WR(α)) < 0
then WR(α) be a monotonically decreasing function of α when 0 ≤ α ≤ 1. Then the membership part
(α−cut) of the solution of Eq. (50) is Eq. (57). If d

dα (WL(α)) < 0 and d
dα (WR(α)) > 0 for all α ∈ [0, 1]

simultaneously, then WL(α) and WR(α) are monotonically decreasing and increasing functions, respectively
and WL(α) > WR(α) for all α ∈ [0, 1]. Then the corrected solution of Eq. (57) is [WL(α)

∗,WR(α)
∗] =

[min {WL(α),WR(α)} ,max {WL(α),WR(α)}] = [WR(α),WL(α)].
Similarly, from Eq. (55), we find {

YL(β) =
CL(β)−BR(β)

AL(β)

YR(β) =
CR(β)−BL(β)

AR(β)

(58)

In Eq. (58), d
dβ (YL(β)) < 0, then YL(β) be a monotonically decreasing function of β and d

dβ (YR(β)) > 0 then
YR(β) be a monotonically increasing function of β when 0 ≤ β ≤ 1. Then the indeterminacy part (β−cut) of the
solution of Eq. (50) is Eq. (58). If d

dβ (YL(β)) > 0 and d
dβ (YR(β)) < 0 for all β ∈ [0, 1] simultaneously, thenYL(β)

andYR(β) are monotonically increasing and decreasing functions, respectively andYL(β) > YR(β) for allβ ∈ [0, 1].
Then the corrected solution of Eq. (58) is [YL(β)

∗,YR(β)
∗] = [min {YL(β),YR(β)} ,max {YL(β),YR(β)}]

= [YR(β),YL(β)].
Further more, from Eq. (56), we find {

ZL(γ) =
CL(γ)−BR(γ)

AL(γ)

ZR(γ) =
CR(γ)−BL(γ)

AR(γ)

(59)

In Eq. (59), d
dγ (ZL(γ)) < 0, then ZL(γ) be a monotonically decreasing function of γ and d

dγ (ZR(γ)) > 0 then
ZR(γ) be a monotonically increasing function of γ when 0 ≤ γ ≤ 1. Then the non-membership part (γ−cut) of the
solution of Eq. (50) is Eq. (59). If d

dγ (ZL(γ)) > 0 and d
dγ (ZR(γ)) < 0 for all γ ∈ [0, 1] simultaneously, thenZL(γ)

andZR(γ) are monotonically increasing and decreasing functions, respectively andZL(γ) > ZR(γ) for allγ ∈ [0, 1].
Then the corrected solution of Eq. (59) is [ZL(γ)

∗,ZR(γ)
∗] = [min {ZL(γ),ZR(γ)} ,max {ZL(γ),ZR(γ)}]

= [ZR(γ),ZL(γ)].
The above solution exists when Eqs. (57)-(59) are satisfied the following conditions as follows:

(a) WL(α),YR(β),ZR(γ) be a monotonically increasing functions ofα, β, γ, respectively, when 0 ≤ α, β, γ ≤ 1.
(b) WR(α),YL(β),ZL(γ) be a monotonically decreasing functions ofα, β, γ, respectively, when 0 ≤ α, β, γ ≤ 1.
(c) WL(α) ≤ WR(α), YL(β) ≤ YR(β) and ZL(γ) ≤ ZR(γ), for all α, β and γ, respectively.

Then the solution X̃ = {[WL(α),WR(α)] , [YL(β),YR(β)] , [ZL(γ),ZR(γ)]} of Eq. (49) is evaluated by Eqs.
(57)-(59), respectively.

4.3 Neutrosophic Equation (Type 3)
In this section, we determine the solution of Eq. (37) in the neutrosophic field, i.e., all the coefficients are

neutrosophic numbers. Then, we replace the crisp coefficients A, B and C with neutrosophic coefficient Ã, B̃ and
C̃, respectively, in Eq. (37). Then the solution must be a neutrosophic number, let X̃ instead of X and the equation
becomes neutrosophic equation, as

ÃX̃ − C̃ = −B̃ (60)

and corresponding (α, β, γ)−cut of Eq. (60) is

{[AL(α),AR(α)] , [AL(β),AR(β)] , [AL(γ),AR(γ)]} {[WL(α),WR(α)] , [WL(β),WR(β)] ,

[WL(γ),WR(γ)]} − {[CL(α), CR(α)] , [CL(β), CR(β)] , [CL(γ), CR(γ)]}
= −{[BL(α),BR(α)] , [BL(β),BR(β)] , [BL(γ),BR(γ)]}

(61)

Remark 6. Since the coefficient, non-coefficient and non-homogeneous parts are neutrosophic fuzzy values,
then we consider the solution X̃ = {[WL(α),WR(α)] , [YL(β),YR(β)] , [ZL(γ),ZR(γ)]} to be also neutrosophic
fuzzy in nature.

Here, we consider the Hukuhara difference and characterisation theorem with Eq. (61) and convert it as{
min {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)} − CR(α) = −BR(α)

max {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)} − CL(α) = −BL(α)
(62)

{
min {AL(β)YL(β),AL(β)YR(β),AR(β)YL(β),AR(β)YR(β)} − CR(β) = −BR(β)

max {AL(β)YL(β),AL(β)YR(β),AR(β)YL(α),AR(β)YR(β)} − CL(β) = −BL(β)
(63)
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{
min {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)} − CR(γ) = −BR(γ)

max {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)} − CL(γ) = −BL(γ)
(64)

After applying the interval arithmetic described in paper [74] and we already know that 0 ≤ α, β, γ ≤ 1. Here,
we consider WL(α) and WR(α) are always positive ∀α ∈ [0, 1]. Now, using Interval arithmetic, we get from Eq.
(62), {

AL(α)WL(α) = −BR(α) + CR(α)
AR(α)WR(α) = −BL(α) + CL(α)

(65)

where, [min {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)} ,
max {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)}] is [AL(α)WL(α),AR(α)WR(α)].

Further, we consider YL(β) and YR(β) are always positive ∀β ∈ [0, 1]. Then, form Eq. (63) using interval
arithmetic, we get {

AL(β)YL(β) = −BR(β) + CR(β)
AR(β)YR(β) = −BL(β) + CL(β)

(66)

where, [min {AL(β)YL(β),AL(β)YR(β),AR(β)YL(β),AR(β)YR(β)} ,
max {AL(β)YL(β),AL(β)YR(β),AR(β)YL(α),AR(β)YR(β)}] is [AL(β)YL(β),AR(β)YR(β)].

Simultaneously, considering ZL(γ) and ZR(γ) are always positive ∀γ ∈ [0, 1] and form Eq. (64) utilizing
interval arithmetic, we obtain {

AL(γ)ZL(γ) = −BR(γ) + CR(γ)
AR(γ)ZR(γ) = −BL(γ) + CL(γ)

(67)

where, [min {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)} ,
max {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)}] is [AL(γ)ZL(γ),AR(γ)ZR(γ)].

Now, from Eq. (65), we find {
WL(α) =

−BR(α)+CR(α)
AL(α)

WR(α) =
−BL(α)+CL(α)

AR(α)

(68)

In Eq. (68), d
dα (WL(α)) > 0, then WL(α) be a monotonically increasing function of α and d

dα (WR(α)) < 0
then WR(α) be a monotonically decreasing function of α when 0 ≤ α ≤ 1. Then the membership part
(α−cut) of the solution of Eq. (61) is Eq. (68). If d

dα (WL(α)) < 0 and d
dα (WR(α)) > 0 for all α ∈ [0, 1]

simultaneously, then WL(α) and WR(α) are monotonically decreasing and increasing functions, respectively
and WL(α) > WR(α) for all α ∈ [0, 1]. Then the corrected solution of Eq. (68) is [WL(α)

∗,WR(α)
∗] =

[min {WL(α),WR(α)} ,max {WL(α),WR(α)}] = [WR(α),WL(α)].
Similarly, from Eq. (66), we find {

YL(β) =
−BR(β)+CR(β)

AL(β)

YR(β) =
−BL(β)+CL(β)

AR(β)

(69)

In Eq. (69), d
dβ (YL(β)) < 0, then YL(β) be a monotonically decreasing function of β and d

dβ (YR(β)) > 0 then
YR(β) be a monotonically increasing function of β when 0 ≤ β ≤ 1. Then the indeterminacy part (β−cut) of the
solution of Eq. (61) is Eq. (69). If d

dβ (YL(β)) > 0 and d
dβ (YR(β)) < 0 for all β ∈ [0, 1] simultaneously, thenYL(β)

andYR(β) are monotonically increasing and decreasing functions, respectively andYL(β) > YR(β) for allβ ∈ [0, 1].
Then the corrected solution of Eq. (69) is [YL(β)

∗,YR(β)
∗] = [min {YL(β),YR(β)} ,max {YL(β),YR(β)}]

= [YR(β),YL(β)].
Further more, from Eq. (67), we find {

ZL(γ) =
−BR(γ)+CR(γ)

AL(γ)

ZR(γ) =
−BL(γ)+CL(γ)

AR(γ)

(70)

In Eq. (70), d
dγ (ZL(γ)) < 0, then ZL(γ) be a monotonically decreasing function of γ and d

dγ (ZR(γ)) > 0 then
ZR(γ) be a monotonically increasing function of γ when 0 ≤ γ ≤ 1. Then the non-membership part (γ−cut) of the
solution of Eq. (61) is Eq. (70). If d

dγ (ZL(γ)) > 0 and d
dγ (ZR(γ)) < 0 for all γ ∈ [0, 1] simultaneously, thenZL(γ)

andZR(γ) are monotonically increasing and decreasing functions, respectively andZL(γ) > ZR(γ) for allγ ∈ [0, 1].
Then the corrected solution of Eq. (70) is [ZL(γ)

∗,ZR(γ)
∗] = [min {ZL(γ),ZR(γ)} ,max {ZL(γ),ZR(γ)}]

= [ZR(γ),ZL(γ)].
The above solution exists when Eqs. (60)-(70) are satisfied the following conditions as follows:

(a) WL(α),YR(β),ZR(γ) be a monotonically increasing functions ofα, β, γ, respectively, when 0 ≤ α, β, γ ≤ 1.
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(b) WR(α),YL(β),ZL(γ) be a monotonically decreasing functions ofα, β, γ, respectively, when 0 ≤ α, β, γ ≤ 1.
(c) WL(α) ≤ WR(α), YL(β) ≤ YR(β) and ZL(γ) ≤ ZR(γ), for all α, β and γ, respectively.

Then the solution X̃ = {[WL(α),WR(α)] , [YL(β),YR(β)] , [ZL(γ),ZR(γ)]} of Eq. (60) is evaluated by Eqs.
(60)-(70), respectively.

Remark 7. Here, we consider the three different types of neutrosophic equations. Ã, B̃ and C̃ are consider as
NFN. After applying the (α, β, γ)-cut, we convert the Eq. (38), Eq. (49) and Eq. (60), respectively with Hukuhara
difference and Characterization theorem. Then, we find the six equations and finally, we get the required value of X̃
using the classical method.

Remark 8. To solve the neutrosophic equations, we considered
min {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)} = AL(α)WL(α),
max {AL(α)WL(α),AL(α)WR(α),AR(α)WL(α),AR(α)WR(α)} = AR(α)WR(α) for all α ∈ [0, 1];
min {AL(β)YL(β),AL(β)YR(β),AR(β)YL(β),AR(β)YR(β)} = AL(β)YL(β),
max {AL(β)YL(β),AL(β)YR(β),AR(β)YL(α),AR(β)YR(β)} = AR(β)YR(β) for all β ∈ [0, 1] and
min {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)} = AL(γ)ZL(γ),
max {AL(γ)ZL(γ),AL(γ)ZR(γ),AR(γ)ZL(γ),AR(γ)ZR(γ)} = AR(γ)ZR(γ) for all γ ∈ [0, 1] in all three

cases. If anyone considered other maximum and minimum values, then the solutions may differ. Then, it is one of
the solutions, not the only solution.

Remark 9. We notice that Eq. (38), Eq. (49) and Eq. (60) give three different solutions when treated as
neutrosophic equation. However, it gives the same solution when we consider all equations as crisp.

5 Numerical Example
In this section, we process the neutrosophic fuzzy equations numerically. Here, we consider three neutrosophic

equations and solve them using the methods mentioned above.

5.1 Numerical Example of Neutrosophic Equation (Type 1)
Consider the neutrosophic equation Type 1 shown in Eq. (38) as follows:

ÃX̃ + B̃ = C̃ (71)

and we consider the constants
Ã = {1, 3, 5; 2, 3, 4; 1.5, 3, 4.5},
B̃ = {2, 4, 6; 3, 4, 5; 2.5, 4, 5.5},
C̃ = {4, 7, 10; 3, 7, 11; 5, 7, 9} are three with neutrosophic numbers, and the variable,
X̃ = {[WL(α),WR(α)] , [YL(β),YR(β)] , [ZL(γ),ZR(γ)]}.
In this study, we only consider triangular neutrosophic numbers as coefficients and variables. Now, we take the

(α, β, γ)−cut of Ã, B̃, C̃ and X̃ with the help of Subsection 3.8, as follows

A(α) = [1 + 2α, 5− 2α]

B(α) = [2 + 2α, 6− 2α]

C(α) = [4 + 3α, 10− 3α]

X (α) = [WL(α),WR(α)]

where, 0 ≤ α ≤ 1 and

A(β) = [3− β, 3 + β]

B(β) = [4− β, 4 + β]

C(β) = [7− 4β, 7 + 4β]

X (β) = [YL(β),YR(β)]

where, 0 ≤ β ≤ 1 and

A(γ) = [3− 1.5γ, 3 + 1.5γ]

B(γ) = [4− 1.5γ, 4 + 1.5γ]

C(γ) = [7− 2γ, 7 + 2γ]

X (γ) = [ZL(γ),ZR(γ)]
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where, 0 ≤ γ ≤ 1 and 0 ≤ α + β + γ ≤ 3. We consider here the basic concept of Hukuhara difference and
characterisation theorem with Eq. (71) and it is converted as,{

min {(1 + 2α)WL(α), (1 + 2α)WR(α), (5− 2α)WL(α), (5− 2α)XR(α)}+ (2 + 2α) = (4 + 3α)

max {(1 + 2α)WL(α), (1 + 2α)WR(α), (5− 2α)WL(α), (5− 2α)WR(α)}+ (6− 2α) = (10− 3α)
(72)

and {
min {(3− β)YL(β), (3− β)YR(β), (3 + β)YL(β), (3 + β)YR(β)}+ (4− β) = (7− 4β)

max {(3− β)YL(β), (3− β)YR(β), (3 + β)YL(β), (3 + β)YR(β)}+ (4 + β) = (7 + 4β)
(73)

and{
min {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)}+ (4− 1.5γ) = (7− 2γ)

max {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)}+ (4 + 1.5γ) = (7 + 2γ)
(74)

After applying the interval arithmetic described in paper [74] and we already know that 0 ≤ α, β, γ ≤ 1. Here,
we consider WL(α) and WR(α) are always positive ∀α ∈ [0, 1]. Now, using Interval arithmetic, we get from Eq.
(72), as {

(1 + 2α)WL(α) + (2 + 2α) = (4 + 3α)

(5− 2α)WR(α) + (6− 2α) = (10− 3α)
(75)

where, [min {(1 + 2α)WL(α), (1 + 2α)WR(α), (5− 2α)WL(α), (5− 2α)WR(α)},
max {(1 + 2α)WL(α),(1 + 2α)WR(α),(5− 2α)WL(α),(5− 2α)WR(α)}] is [(1 + 2α)WL(α),(5− 2α)WR(α)].

Further, we consider YL(β) and YR(β) are always positive ∀β ∈ [0, 1]. Then, form Eq. (73) using interval
arithmetic, we get {

(3− β)YL(β) + (4− β) = (7− 4β)

(3 + β)YR(β) + (4 + β) = (7 + 4β)
(76)

where, [min {(3− β)YL(β), (3− β)YR(β), (3 + β)YL(β), (3 + β)YR(β)},
max {(3− β)YL(β), (3− β)YR(β), (3 + β)YL(β), (3 + β)YR(β)}] is [(3− β)YL(β), (3 + β)YR(β)].

Simultaneously, considering ZL(γ) and ZR(γ) are always positive ∀γ ∈ [0, 1] and form Eq. (74) utilizing
interval arithmetic, we obtain {

(3− 1.5γ)ZL(γ) + (4− 1.5γ) = (7− 2γ)

(3 + 1.5γ)ZR(γ) + (4 + 1.5γ) = (7 + 2γ)
(77)

where, [min {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)},
max {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)}] is [(3− 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)].

Now, from Eq. (75), 

WL(α) =
(4 + 3α)− (2 + 2α)

(1 + 2α)

=
2 + α

(1 + 2α)

WR(α) =
(10− 3α)− (6− 2α)

(5− 2α)

=
4− α

(5− 2α)

(78)

Since, in Eq. (78), d
dα (WL(α)) < 0, then WL(α) be a monotonically decreasing function of α when 0 ≤ α ≤ 1

and d
dα (WR(α)) > 0 then WR(α) be a monotonically increasing function of α when 0 ≤ α ≤ 1. This implies

WL(α) > WR(α), then the correct solution is, W∗
L(α) = min {WL(α),WR(α)} = WR(α) and WR ∗ (α) =

max {WL(α),WR(α)} = WL(α). Now, the proper solution is,
W∗

L(α) =
(4− α)

(5− 2α)

W∗
R(α) =

(2 + α)

(1 + 2α)

(79)
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Then, from Eq. (76), 

YL(β) =
(7− 4β)− (4− β)

(3− β)

=
3− 3β

(3− β)

YR(β) =
(7 + 4β)− (4 + β)

(3 + β)

=
3 + 3β

(3 + β)

(80)

Since, in Eq. (80), d
dβ (YL(β)) < 0, then YL(β) be a monotonically decreasing function of β when 0 ≤ β ≤ 1

and d
dβ (YR(β)) > 0, then YR(β) be a monotonically increasing function of β when 0 ≤ β ≤ 1. Then, from Eq.

(77), 

ZL(γ) =
(7− 2γ)− (4− 1.5γ)

(3− 1.5γ)

=
3− 0.5γ

(3− 1.5γ)

ZR(γ) =
(7 + 2γ)− (4 + 1.5γ)

(3 + 1.5γ)

=
3 + 0.5γ

(3 + 1.5γ)

(81)

Since, in Eq. (81), d
dγ (ZL(γ)) > 0, then ZL(γ) be a monotonically increasing function of γ when 0 ≤

γ ≤ 1 and d
dγ (ZR(γ)) < 0, then ZR(γ) be a monotonically decreasing function of γ when 0 ≤ γ ≤ 1. This

implies ZL(γ) > ZR(γ), then the correct solution is, Z∗
L(γ) = min {ZL(γ),ZR(γ)} = ZR(γ) and ZR ∗ (γ) =

max {ZL(γ),ZR(γ)} = ZL(γ). Now, the modified solution is,
Z∗

L(γ) =
(3 + 0.5γ)

(3 + 1.5γ)

Z∗
R(γ) =

(3− 0.5γ)

(3− 1.5γ)

(82)

So, the solution ofW∗
L(α) andW∗

R(α); YL(β) andYR(β); Z∗
L(γ) andZ∗

R(γ) are confirmed using (α, β, γ)−cut.
Here, Figure 1 shows the membership, indeterminacy and non-membership curves of the solutions of the Type 1
example (Eq. (71)) of the neutrosophic equation.

Figure 1. Membership, indeterminacy, non-membership curves of the solutions of Type 1
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Remark 10. Figure 1 graphically illustrates that the membership function is increasing but both the indeterminacy
and non-membership functions are decreasing. After reaching the maximum value 1, the membership function will
decrease and the rest will increase.

Remark 11. When α = 0.9 then W∗
L(α) > 0, when β = 0.9 then YL(β) < 0 and when γ = 0.9 then

Z∗
L(γ) < 0, simultaneously, when α = 0.5 then W∗

R(α) < 0, when β = 0.5 then YR(β) > 0 and when γ = 0.5
then Z∗

R(γ) > 0. Then, the solution of Eq. (71) is Eqs. (79), (80), and (82), respectively.
Remark 12. When [WL(α),WR(α)], [YL(β),YR(β)] and [ZL(γ),ZR(γ)] are partially positive or partially

negative in interval for 0 ≤ α, β, γ ≤ 1, then the solution may differ.

5.2 Numerical Example of Neutrosophic Equation (Type 2)
Consider the neutrosophic equation Type 2 shown in Eq. (37) as follows:

ÃX̃ = C̃ − B̃ (83)

and we consider the constants
Ã = {1, 3, 5; 2, 3, 4; 1.5, 3, 4.5},
B̃ = {2, 4, 6; 3, 4, 5; 2.5, 4, 5.5},
C̃ = {4, 7, 10; 3, 7, 11; 5, 7, 9} are three with neutrosophic numbers, and the variable,
X̃ = {[WL(α),WR(α)] , [YL(β),YR(β)] , [ZL(γ),ZR(γ)]}.
In this study, we only consider triangular neutrosophic numbers as coefficients and variables. Now, we take the

(α, β, γ)−cut of Ã, B̃, C̃ and X̃ with the help of Subsection 3.8, as follows

A(α) = [1 + 2α, 5− 2α]

B(α) = [2 + 2α, 6− 2α]

−B(α) = [−(6− 2α),−(2 + 2α)] = [−6 + 2α,−2− 2α]

C(α) = [4 + 3α, 10− 3α]

X (α) = [WL(α),WR(α)]

where, 0 ≤ α ≤ 1 and

A(β) = [3− β, 3 + β]

B(β) = [4− β, 4 + β]

−B(β) = [−(4 + β),−(4− β)] = [−4− β,−4 + β]

C(β) = [7− 4β, 7 + 4β]

Y(β) = [YL(β),YR(β)]

where, 0 ≤ β ≤ 1 and

A(γ) = [3− 1.5γ, 3 + 1.5γ]

B(γ) = [4− 1.5γ, 4 + 1.5γ]

−B(γ) = [−(4 + 1.5γ),−(4− 1.5γ)] = [−4− 1.5γ,−4 + 1.5γ]

C(γ) = [7− 2γ, 7 + 2γ]

Z(γ) = [ZL(γ),ZR(γ)]

where, 0 ≤ γ ≤ 1 and 0 ≤ α + β + γ ≤ 3. We consider here the basic concept of Hukuhara difference and
characterisation theorem with Eq. (83) and it is converted as,{

min {(1 + 2α)WL(α), (1 + 2α)WR(α), (5− 2α)WL(α), (5− 2α)WR(α)} = (4 + 3α) + (−6 + 2α)

max {(1 + 2α)WL(α), (1 + 2α)WR(α), (5− 2α)WL(α), (5− 2α)WR(α)} = (10− 3α) + (−2− 2α)
(84)

and {
min {(3− β)YL(β), (3− β)YR(β), (3 + β)YL(β), (3 + β)YR(β)} = (7− 4β) + (−4− β)

max {(3− β)YL(β), (3− β)YR(β), (3 + β)YL(β), (3 + β)YR(β)} = (7 + 4β) + (−4 + β)
(85)

and{
min {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)} = (7− 2γ) + (−4− 1.5γ)

max {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)} = (7 + 2γ) + (−4 + 1.5γ)
(86)
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After applying the interval arithmetic described in paper [74] and we already know that 0 ≤ α, β, γ ≤ 1. Here,
we consider WL(α) and WR(α) are always positive ∀α ∈ [0, 1]. Now, using Interval arithmetic, we get from Eq.
(84), as {

(1 + 2α)WL(α) = (4 + 3α) + (−6 + 2α)

(5− 2α)WR(α) = (10− 3α) + (−2− 2α)
(87)

From the basic interval arithmetic operation (multiplication), we know that,
[min {(1 + 2α)WL(α), (1 + 2α)WR(α), (5− 2α)WL(α), (5− 2α)WR(α)} ,
max {(1 + 2α)WL(α), (1 + 2α)WR(α), (5− 2α)WL(α), (5− 2α)WR(α)}] is
[(1 + 2α)WL(α), (5− 2α)WR(α)]. We choose YL(β) and YR(β) are always positive ∀β ∈ [0, 1] and form Eq.

(85), {
(3− β)YL(β) = (7− 4β) + (−4− β)

(3 + β)YR(β) = (7 + 4β) + (−4 + β)
(88)

From the basic interval arithmetic operation (multiplication), we know that,
[min {(3− β)YL(β), (3− β)YR(β), (3 + β)YL(β), (3 + β)YR(β)} ,
max {(3− β)YL(β), (3− β)YR(β), (3 + β)YL(β), (3 + β)YR(β)}] is [(3− β)YL(β), (3 + β)YR(β)].
So, we consider here ZL(γ) and ZR(γ) are always positive ∀γ ∈ [0, 1] and form Eq. (86),{

(3− 1.5γ)ZL(γ) = (7− 2γ) + (−4− 1.5γ)

(3 + 1.5γ)ZR(γ) = (7 + 2γ) + (−4 + 1.5γ)
(89)

From the basic interval arithmetic operation (multiplication), we know that,
[min {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)} ,
max {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)}] is
[(3− 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)].
Then, from Eq. (87), 

WL(α) =
(4 + 3α) + (−6 + 2α)

(1 + 2α)

=
(−2 + 5α)

(1 + 2α)

WR(α) =
(10− 3α) + (−2− 2α)

(5− 2α)

=
8− 5α

(5− 2α)

(90)

From Eq. (90), d
dα (WL(α)) > 0. So, (WL(α)) be a monotonically increasing function of α when 0 ≤ α ≤ 1

and d
dα (WR(α)) < 0. So, (WR(α)) be a monotonically decreasing function of α when 0 ≤ α ≤ 1.

Then, from Eq. (88), we get 

YL(β) =
(7− 4β) + (−4− β)

(3− β)

=
3− 5β

(3− β)

YR(β) =
(7 + 4β) + (−4 + β)

(3 + β)

=
3 + 5β

(3 + β)

(91)

From Eq. (91), d
dβ (YL(β)) < 0. So, (YL(β)) be a monotonically decreasing function of β when 0 ≤ β ≤ 1 and

d
dβ (YR(β)) > 0. So, (YR(β)) be a monotonically increasing function of β when 0 ≤ β ≤ 1 and from Eq. (89),

ZL(γ) =
(7− 2γ) + (−4− 1.5γ)

(3− 1.5γ)

=
(3− 3.5γ)

(3− 1.5γ)

ZR(γ) =
(7 + 2γ) + (−4 + 1.5γ)

(3 + 1.5γ)

=
(3 + 3.5γ)

(3 + 1.5γ)

(92)
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From Eq. (92), d
dγ (ZL(γ)) < 0. So, (ZL(γ)) be a monotonically decreasing function of γ when 0 ≤ γ ≤ 1 and

d
dγ (ZR(γ)) > 0. So, (ZR(γ)) be a monotonically increasing function of γ when 0 ≤ γ ≤ 1.

Here, the solution of WL(α) and WR(α); YL(β) and YR(β); ZL(γ) and ZR(γ) are confirmed using (α, β, γ)-
cut. Now, Figure 2 shows the graphical structure of membership, indeterminacy and non-membership curves of the
solutions of the Type 2 example of the neutrosophic equation.

Figure 2. Membership, indeterminacy, non-membership curves of the solutions of Type 2

Remark 13. Figure 2 indicates that the membership function is increasing but both the indeterminacy and
non-membership functions are decreasing. After reaching the maximum value 1, the membership function is
decreasing and the indeterminacy and non-membership functions are increasing. This actually makes for the perfect
visualisation.

5.3 Numerical Example of Neutrosophic Equation (Type 3)
Consider the neutrosophic equation Type 3 shown in Eq. (37) as follows:

ÃX̃ − C̃ = −B̃ (93)

and we consider the constants
Ã = {1, 3, 5; 2, 3, 4; 1.5, 3, 4.5},
B̃ = {2, 4, 6; 3, 4, 5; 2.5, 4, 5.5},
C̃ = {4, 7, 10; 3, 7, 11; 5, 7, 9} are three with neutrosophic numbers, and the variable,
X̃ = {[WL(α),WR(α)] , [YL(β),YR(β)] , [ZL(γ),ZR(γ)]}.
In this study, we only consider triangular neutrosophic numbers as coefficients and variables. Now, we take the

(α, β, γ)−cut of Ã, B̃, C̃ and X̃ with the help of Subsection 3.8, as follows

A(α) = [1 + 2α, 5− 2α]

B(α) = [2 + 2α, 6− 2α]

−B(α) = [−(6− 2α),−(2 + 2α)] = [−6 + 2α,−2− 2α]

C(α) = [4 + 3α, 10− 3α]

−C(α) = [−(10− 3α),−(4 + 3α)] = [−10 + 3α,−4− 3α]

W(α) = [WL(α),WR(α)]
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where, 0 ≤ α ≤ 1 and

A(β) = [3− β, 3 + β]

B(β) = [4− β, 4 + β]

−B(β) = [−(4 + β),−(4− β)] = [−4− β,−4 + β]

C(β) = [7− 4β, 7 + 4β]

−C(β) = [−(7 + 4β),−(7− 4β)] = [−7− 4β,−7 + 4β]

Y(β) = [YL(β),YR(β)]

where, 0 ≤ β ≤ 1 and

A(γ) = [3− 1.5γ, 3 + 1.5γ]

B(γ) = [4− 1.5γ, 4 + 1.5γ]

−B(γ) = [−(4 + 1.5γ),−(4− 1.5γ)] = [−4− 1.5γ,−4 + 1.5γ]

C(γ) = [7− 2γ, 7 + 2γ]

−C(γ) = [−(7 + 2γ),−(7− 2γ)] = [−7− 2γ,−7 + 2γ]

Z(γ) = [ZL(γ),ZR(γ)]

where, 0 ≤ γ ≤ 1 and 0 ≤ α+ β + γ ≤ 3.
We consider here the basic concept of Hukuhara difference and characterisation of the theorem with Eq. (93)

and it is converted as,{
min {(1 + 2α)WL(α), (1 + 2α)WR(α), (5− 2α)WL(α), (5− 2α)WR(α)} − (10− 3α) = −(6− 2α)

max {(1 + 2α)WL(α), (1 + 2α)WR(α), (5− 2α)WL(α), (5− 2α)WR(α)} − (4 + 3α) = −(2 + 2α)
(94)

and {
min {(3− β)YL(β), (3− β)YR(α), (3 + β)YL(β), (3 + β)YR(β)} − (7 + 4β) = −(4 + β)

max {(3− β)YL(β), (3− β)YR(α), (3 + β)YL(β), (3 + β)YR(β)} − (7− 4β) = −(4− β)
(95)

and{
min {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)} − (7 + 2γ) = −(4 + 1.5γ)

max {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)} − (7− 2γ) = −(4− 1.5γ)
(96)

After applying the interval arithmetic described in paper [74] and we already know that 0 ≤ α, β, γ ≤ 1. Here,
we consider WL(α) and WR(α) are always positive ∀α ∈ [0, 1]. Now, using Interval arithmetic, we get form Eq.
(94), as {

(1 + 2α)WL(α)− (10− 3α) = −(6− 2α)

(5− 2α)WR(α)− (4 + 3α) = −(2 + 2α)
(97)

From the basic interval arithmetic operation (multiplication), we know that,
[min {(1 + 2α)WL(α), (1 + 2α)WR(α), (5− 2α)WL(α), (5− 2α)WR(α)} ,
max {(1 + 2α)WL(α), (1 + 2α)WR(α), (5− 2α)WL(α), (5− 2α)WR(α)}] is
[(1 + 2α)WL(α), (5− 2α)WR(α)] when (1 + 2α) ≥ 0, WL(α) ≤ 0.
Now, we consider YL(β) and YR(β) are always positive ∀β ∈ [0, 1]. Form Eq. (95),{

(3− β)YL(β)− (7 + 4β) = −(4 + β)

(3 + β)YR(β)− (7− 4β) = −(4− β)
(98)

From the basic interval arithmetic operation (multiplication), we know that,
[min {(3− β)YL(β), (3− β)YR(β), (3 + β)YL(β), (3 + β)YR(β)} ,
max {(3− β)YL(β), (3− β)YR(β), (3 + β)YL(β), (3 + β)YR(β)}] is [(3− β)YL(β), (3 + β)YR(β)] when

(3 + β) ≤ 0, YL(β) ≤ 0.
Here, we consider ZL(γ) and ZR(γ) are always positive ∀γ ∈ [0, 1]. Form Eq. (96),{

(3− 1.5γ)ZL(γ)− (7 + 2γ) = −(4 + 1.5γ)

(3 + 1.5γ)ZR(γ)− (7− 2γ) = −(4− 1.5γ)
(99)
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From the basic interval arithmetic operation (multiplication), we know that,
[min {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)} ,
max {(3− 1.5γ)ZL(γ), (3− 1.5γ)ZR(γ), (3 + 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)}] is
[(3− 1.5γ)ZL(γ), (3 + 1.5γ)ZR(γ)] when (3 + 1.5γ) ≤ 0, ZL(γ) ≤ 0.
Then, from Eq. (97), 

WL(α) =
−(6− 2α) + (10− 3α)

(1 + 2α)

=
4− α

(1 + 2α)

WR(α) =
−(2 + 2α) + (4 + 3α)

(5− 2α)

=
2 + α

(5− 2α)

(100)

From Eq. (100), d
dα (WL(α)) < 0. So, (WL(α)) be a monotonically decreasing function of α when 0 ≤ α ≤ 1

and d
dα (WR(α)) > 0. So, (WR(α)) be a monotonically increasing function of α when 0 ≤ α ≤ 1.

This implies WL(α) > WR(α), then the correct solution is, W∗
L(α) = min {WL(α),WR(α)} = WR(α) and

WR ∗ (α) = max {WL(α),WR(α)} = WL(α). Now, the proper solution is,
W∗

L(α) =
(2 + α)

(5− 2α)

W∗
R(α) =

(4− α)

(1 + 2α)

(101)

Then, from Eq. (98), 

YL(β) =
−(4 + β) + (7 + 4β)

(3− β)

=
3 + 3β

(3− β)

YR(β) =
−(4− β) + (7− 4β)

(3 + β)

=
3− 3β

(3 + β)

(102)

From Eq. (102), d
dβ (YL(β)) > 0. So, (YL(β)) be a monotonically increasing function of β when 0 ≤ β ≤ 1

and d
dβ (YR(β)) < 0. So, (YR(β)) be a monotonically decreasing function of β when 0 ≤ β ≤ 1.

This implies YL(β) > YR(β), then the correct solution is, Y∗
L(β) = min {YL(β),YR(β)} = YR(β) and

YR ∗ (β) = max {YL(β),YR(β)} = YL(β). Now, the modified solution is,
Y∗
L(β) =

(3− 3β)

(3 + β)

Y∗
R(β) =

(3 + 3β)

(3− β)

(103)

From Eq. (99), 

ZL(γ) =
−(4 + 1.5γ) + (7 + 2γ)

(3− 1.5γ)

=
3 + 0.5γ

(3− 1.5γ)

ZR(γ) =
−(4− 1.5γ) + (7− 2γ)

(3 + 1.5γ)

=
3− 0.5γ

(3 + 1.5γ)

(104)

From Eq. (104), d
dγ (ZL(γ)) > 0. So, (ZL(γ)) be a monotonically increasing function of γ when 0 ≤ γ ≤ 1

and d
dγ (ZR(γ)) < 0. So, (ZR(γ)) be a monotonically decreasing function of γ when 0 ≤ γ ≤ 1.
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This implies ZL(γ) > ZR(γ), then the correct solution is, Z∗
L(γ) = min {ZL(γ),ZR(γ)} = ZR(γ) and

ZR ∗ (γ) = max {ZL(γ),ZR(γ)} = ZL(γ). Now, the modified solution is,
Z∗

L(γ) =
(3− 0.5γ)

(3 + 1.5γ)

Z∗
R(γ) =

(3 + 0.5γ)

(3− 1.5γ)

(105)

Here, the solution of W∗
L(α) and W∗

R(α); Y∗
L(β) and Y∗

R(β); Z∗
L(γ) and Z∗

R(γ) are confirmed using (α, β, γ)-
cut. And, Figure 3 demonstrates the membership, indeterminacy and non-membership curves of the solutions of the
Type 3 example of the neutrosophic equation.

Figure 3. Membership, indeterminacy, non-membership curves of the solutions of Type 3

Remark 14. Figure 3 explains that the membership function is increasing but both the indeterminacy and
non-membership functions are decreasing. And after touching the maximum point 1, the opposite happens.

6 Application
The application of this proposed model is presented in this section. These are presented as follows:

6.1 Budgeting and Finance
Problem statement: A pharmaceutical company needs to identify their profit (P) and revenue (R) after

accounting for fixed and variable costs. Let, X be the number of products sold, U be the variable cost per product,
S be the selling cost per unit and V be the maintenance costs. The company wants to earn W , which is also known
as the target revenue, at a certain time. The total cost can be computed with the equation U X + V = W . Now,
apply the triangular neutrosophic numbers in the above equation and get Ũ X̃ + Ṽ = W̃ . Now, considering both
fixed and variable costs, the profit of this pharmaceutical company will be determined here.

Model formulation: The given total production cost of this pharmaceutical company is,

Ũ X̃ + Ṽ = W̃ (106)

where, Ũ X̃ and Ṽ are the total variable cost and the fixed maintenance costs, respectively. Then, the total money
earned from selling units is defined as the revenue cost (R), i.e.,

Revenue cost (R̃) = Selling cost per unit ∗ X̃ = S X̃ (107)
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where, S is the company’s cost of sales per unit in neutrosophic uncertain environment. And, the profit (P̃) of this
particular company is,

Profit (P̃) =Revenue cost − Total cost

=R̃ − W̃

=S X̃ − (Ũ X̃ + Ṽ )

(108)

Remark 15. In the above application, the break-even point originates when revenue cost and total cost are equal,
which means no profit or loss will happen and if the revenue cost exceeds the total cost, then the pharmaceutical
company makes a profit, otherwise it faces a loss. We consider all the co-efficienmt of Eq. (106) as neutrosophic
fuzzy variable. So, the solution will also be fuzzy in nature.

Example 3. To bring into the uncertain environment, this is a numerical example to find the profit (P) and
revenue (R) after accounting for fixed and variable costs of the pharma company. The above considered equation
is converted into neutrosophic environment, let, Ũ , Ṽ , W̃ and X̃ are triangular neutrosophic number, where,
let, Ũ = {501, 503, 505; 502, 503, 504; 501.5, 503, 504.5}, Ṽ = {502, 504, 506; 503, 504, 505; 502.5, 504, 505.5}
and W̃ = {504, 507, 510; 503, 507, 511; 505, 507, 509} and X̃ . And, the selling price per unit be Rs. 20. After
calculating by the similar way of Subsection 4.1, at first, we get the number of sold units by (α, β, γ)-cut in uncertain
neutrosophic environment. Here, we use the basic concept of Hukuhara difference and characterisation theorem.
So, the equations of total cost are,{

(501 + 2α)WL(α) + (506− 2α) = (504 + 3α)

(505− 2α)WR(α) + (502 + 2α) = (510− 3α)
(109)

{
(503− β)YR(β) + (504 + β) = (507− 4β)

(503 + β)YL(β) + (504− β) = (507 + 4β)
(110)

{
(503− 1.5γ)ZR(γ) + (504 + 1.5γ) = (507− 2γ)

(503 + 1.5γ)ZL(γ) + (504− 1.5γ) = (507 + 2γ)
(111)

So, the required solutions of above Eqs. (109)-(111) are,{
WL(α) =

−2+5α
(501+2α)

WR(α) =
8−5α

(505−2α)

(112)

{
YR(β) =

3−5β
(503−β)

YL(β) =
3+5β

(503+β)

(113)

{
ZR(γ) =

3−3.5γ
(503−1.5γ)

ZL(γ) =
3+3.5γ

(503+1.5γ)

(114)

Here, Figure 4 displays the membership, indeterminacy and non-membership curves of Eqs. (112)-(114).
The revenue costs (R) of this particular pharma company are,{

R1 = 20× −2+5α
(501+2α)

R2 = 20× 8−5α
(505−2α)

(115)

{
R3 = 20× 3−5β

(503−β)

R4 = 20× 3+5β
(503+β)

(116)

{
R5 = 20× 3−3.5γ

(503−1.5γ)

R6 = 20× 3+3.5γ
(503+1.5γ)

(117)

Then, the profits (P) of this company are,
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Figure 4. Membership, indeterminacy, non-membership curves of the solutions of the application

Figure 5. Graphical structure of the profits (properly define here in loss) of described pharmaceutical company

P1 =
[
20× −2+5α

(501+2α)

]
− (504 + 3α)

P2 =
[
20× 8−5α

(505−2α)

]
− (510− 3α)

(118)

P3 =
[
20× 3−5β

(503−β)

]
− (507− 4β))

P4 =
[
20× 3+5β

(503+β)

]
− (507 + 4β))

(119)

P5 =
[
20× 3−3.5γ

(503−1.5γ)

]
− (507− 2γ))

P6 =
[
20× 3+3.5γ

(503+1.5γ)

]
− (507 + 2γ))

(120)

From Eqs. (118)-(120), we notice that the total cost exceeds the revenue cost here. So, the pharmaceutical
company faces a loss actually.
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So, the profit (properly define here in loss) of this particular company is,PL = (504 + 3α)−
[
20× −2+5α

(501+2α)

]
PR = (510− 3α)−

[
20× 8−5α

(505−2α)

] (121)

PL = (507− 4β))−
[
20× 3−5β

(503−β)

]
PR = (507 + 4β))−

[
20× 3+5β

(503+β)

] (122)

PL = (507− 2γ)−
[
20× 3−3.5γ

(503−1.5γ)

]
PR = (507 + 2γ)−

[
20× 3+3.5γ

(503+1.5γ)

] (123)

Now, Figure 5 illustrates the graphical representation of the profits (properly define here in loss) of the
pharmaceutical company described.

7 Research Findings
In this portion, we briefly discuss what we found from this total research paper. The study findings are described

as below,
(a) Three different types of linear equations are solved in neutrosophic environment and their behaviour are also

addressed.
(b) We convert the linear equation into a neutrosophic equation and obtain the final result with three different

cases.
(c) A real-life application, like budgeting and finance, is depicted for a better understanding of neutrosophic

equations.

8 Conclusions and Future Research Scope
Traditional fuzzy numbers are extended by NFN with incorporating degrees of membership, indeterminacy

and non-membership, making them more appropriate for controlling ambiguous data. We have solved the linear
fuzzy differential equation with the concept of neutrosophy. In various real-life applications, like decision-making,
healthcare diagnosis and engineering related problems, these equations are highly productive. These equations
deliver a more elaborate mathematical structural work by integrating neutrosophic concepts for handling tough
situations with uncertain environments. Their applications exhibit increased accuracy and scalability compared
to standard fuzzy set theory. Finally, neutrosophic fuzzy equations offer strong equipment for solving different
kinds of problems, including uncertainty and ambiguity in several fields. We exhibit the required solution of
the neutrosophic equation of the three different cases with the help of the basic concept of Hukuhara difference,
neutrosophic characterization theorem and interval arithmetic operations, which are constructed in this research
paper. The solutions of neutrosophic equation concepts are also applied here to real-life applications.

This research work has some limitations. So, its extension of future research work describes here. We use
triangular neutrosophic number to solve the linear fuzzy equation. The solution of these equations can also be
found with different types of neutrosophic numbers, s.t., non-linear neutrosophic numbers, trapezoidal neutrosophic
numbers, single valued trapezoidal neutrosophic numbers, type-2 neutrosophic numbers, etc. We can also consider
the non-linear, non-homogeneous neutrosophic equations and find more numerical and analytical methods to solve
these. Moreover, we can solve more real-life oriented applications associated with uncertain data.
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