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Abstract: To investigate the dynamic response and potential structural degradation of carbon fiber sucker rod
strings during operation, a torsional vibration model incorporating helical buckling-induced torque excitation has
been developed. In this model, the upper suspension boundary condition is idealized as a torsional spring, whose
stiffness is determined as a function of both axial displacement and applied load at the suspension point. The
torsional stiffness is categorized into time-dependent and mean (average) components, both of which are examined
through numerical simulation using the finite difference method. The results reveal pronounced torsional oscillations
at the upper section of the rod string, indicating significant torsional deformation of the suspension assembly. A
non-monotonic relationship is observed between stroke length and vibration amplitude, wherein torsional vibration
initially intensifies with increasing stroke before attenuating, suggesting the presence of resonance phenomena within
specific operational ranges. The simulations further demonstrate that time-varying and average torsional stiffnesses
yield comparable influences on the overall torsional response. Helical buckling deformation is shown to play a
critical role in amplifying torsional stress, with the induced torque predominantly localized in the mid-to-lower
segments of the wellbore. The presented model provides an essential theoretical framework for understanding the
complex interaction between axial deformation and torsional instability, offering new insights into the mechanisms
that may precipitate longitudinal splitting or fatigue failure in carbon fiber sucker rod strings. These findings are
expected to support the optimization of rod string design and operational strategies in advanced artificial lift systems.

Keywords: Carbon fiber sucker rod; Helical buckling; Induced torque; Torsional vibration; Dynamic simulation;
Resonance

1 Introduction

Carbon fiber sucker rods possess superior properties such as being lightweight, high- strength, and corrosion-
resistant, making them suitable for deep, ultra-deep, and corrosive wells [1, 2]. The failure modes of carbon fiber
sucker rods differ from those of steel sucker rods. According to the studied [3, 4], the primary failure modes
of carbon fiber continuous sucker rods are disengagement and rod breakage, with the most common issues being
splitting and broken wires, specifically transverse fractures and longitudinal splits. Among these, longitudinal split
failure is unique to carbon fiber rods. Currently, the design methods for carbon fiber sucker rod strings are still
based on simulations of axial vibration, axial load, and alternating axial stress, ensuring that carbon fiber rods do
not experience compressive or axial stress and meet the API strength requirements, resulting in a combination of
carbon fiber and steel heavy-duty rods [5]. Clearly, current designs for carbon fiber sucker rod strings focus solely
on preventing transverse fractures in carbon fiber rods, without considering the strength conditions necessary for
splitting. Transverse fractures are more likely to occur when subjected to alternating torque, alternating bending
moment, or a combination of both. The phenomena such as the longitudinal splitting of the rod string, the twisting
of the wire rope of the rope hanger and the helical scratch of the plunger of the oil well pump in the actual
working process of the carbon fiber sucker rod string all indicate that the carbon fiber sucker rod string has torsional
vibration [6, 7]. Therefore, establishing a torsional vibration simulation model for the carbon fiber sucker rod string
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can enable quantitative analysis of these phenomena, which aids in exploring methods to prevent the damage of the
carbon fiber sucker rod string from a theoretical perspective.

During the downward stroke, the carbon fiber sucker rod string experiences instability deformation due to axial
pressure. As the axial pressure increases, the instability process begins with sinusoidal bending and then progresses
to helical buckling [8–10]. The helical bending of the sucker rod string induces a torque [11–14], which changes
periodically as the sucker rod bottom end bends under the forces from the reciprocating motion of the sucker pump’s
suspension point, thus exciting torsional vibrations in the sucker rod string. The studies [11, 12] suggest that the
torsional vibration of the sucker rod string is caused by the torsion of the suspension rope and the torsional bending
of the sucker rod. They define the upper boundary of the torsional vibration as the initial angle of rotation when
the suspension rope experiences axial force, inducing a torsional torque, and the lower boundary as the concentrated
effect of the torsional bending-induced torque on the plunger pair. They provide an analysis of the mechanism of the
sucker rod string torsional vibration and a mechanical model. Zdvizhkov et al. [13] established a horizontal wellbore
experimental platform. Using the experimental method, it was obtained that when the tubing reached the full helical
shape, the internal torsion continued to increase with the increase of axial buckling force in the way of theoretical
prediction, but the results were not given from the theoretical research. Chen et al. [14] established a mathematical
model for the torsional vibration of the sucker rod string without considering damping, suggesting that analyzing
the torsional state of the sucker rod can solve the torsional vibration of the sucker rod string, but no solution was
provided. The studies [15, 16] investigated the torsional vibration of the rotating sucker rod string, but the rotating
sucker rod string driven by surface-driven screw pumps produces continuous unidirectional active torque, while the
torsional vibration of the rod pump sucker rod string system is mostly alternating or random effects, depending on
the working conditions, thus there are significant differences between the two. Wang et al. [17] studied the torsional
vibration of the sucker rod string under the influence of the curved wellbore trajectory in directional wells, which
is significantly different from the study of the straight well sucker rod string torsional vibration in this paper. The
studies [18–20] studied the buckling and post-buckling problems under torsional loads, exploring the influence of
active torque on buckling, which has reference significance for this paper. However, it differs significantly from the
research problem of induced torsional vibration caused by helical buckling in this paper.

The research by the aforementioned scholars provides a basis for analyzing the torsional vibration patterns
of sucker rod strings. However, this paper suggests that the upper boundary should be the constrained angular
displacement of the suspension device, the induced torque should be generated by the helical buckling segment,
and the excitation torque should be the distributed torque applied to the helical buckling segment. Therefore, in
this paper, the upper boundary of the suspension device in the mechanical model is simplified to a torsion spring,
with the stiffness of the torsion spring varying with the displacement and load of the sucker pump’s suspension
point. The lower boundary is treated as a free end, and the helical buckling-induced torque is applied to the helical
buckling segment as an excitation. A simulation model for the torsional vibration of carbon fiber sucker rod strings
is established.

2 Methodology

The angular displacement of the top cross-section of the carbon fiber sucker rod is constrained by the suspension
rope, so it is simplified as a torsion spring that responds to changes in the load and displacement at the pumping
unit’s suspension point. The bottom cross-section of the rod string, which is the plunger, is not constrained by the
pump barrel, so it is simplified as a freely rotating end. For ease of study, the following assumptions are made:

(1) Assume that the well is a vertical well, and the sucker rod string and tubing are concentric;
(2) Taking the wellhead as the coordinate origin, periodic distributed torque is applied to the helical bending

section of the rod string;
(3) The influence of coupling and centralizer on the local torsional stiffness of the rod string is not considered;
(4) The sucker rod string is a combination of two stages, and only the torsional vibration of the sucker rod string

is considered.
Under the above assumptions, the torsional vibration dynamic model of the carbon fiber sucker rod string shown

in Figure 1(a) is established. The force on the microelement at the section dx at the well depth x is shown in
Figure 1(b).

In Figure 1, Ke is the torsional stiffness of the suspension rope; G1Jp1 is the torsional stiffness of the carbon
fiber rod; G2Jp2 is the torsional stiffness of the steel rod; L1 is the length of the carbon fiber rod; L2 is the length of
the steel rod;Mn(x, t) is the distributed torque subjected to periodic variation in the helical buckling section.

2.1 Suspension Load and Axial Distributed Load Simulation Model

The fluctuation equation is applied to describe the longitudinal vibration of the carbon fiber and steel hybrid sucker
rod string, and the boundary condition and continuity condition are considered, so as to obtain the mathematical
model of the longitudinal vibration of the hybrid rod string [21].
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(a) (b)

Figure 1. Twist vibration dynamic model of carbon fiber sucker rod string. (a) Rod mechanics model, and (b) force
on a micro element
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(1)

In the formula, u1(x, t) represents the displacement of any cross-section x of the carbon fiber rod at time t
relative to the suspension point, m;u2(x, t) represents the displacement of any cross-section x of the steel rod at time
t relative to the suspension point, m; a1 and a2 are the propagation speeds of sound waves in the carbon fiber rod
and the steel rod, m/s, with ai =

√
Ei/ρi; c1 and c2 are the damping coefficients of the oil well fluid on the carbon

fiber rod and steel rod, 1/s;A1 and A2 are the cross-sectional areas of the carbon fiber rod and steel rod, m2;L1

and L2 are the lengths of the carbon fiber rod and steel rod, m;E1 and E2 are the elastic moduli of the carbon fiber
rod and steel rod, Pa; ρ1 and ρ2 are the material densities of the carbon fiber rod and steel rod, kg/m3;u∗(t) is the
displacement of the suspension point, m;F (t) is the axial load acting on the pump end, N.

The solution method of the suspension point displacement u∗(t) and the pump end axial load F (t) is given in
detail by the study [18], which will not be repeated in this paper.

The difference method is applied to solve Eq. (1) to obtain u1(x, t) and u2(x, t). Considering the self-weight of
the sucker rod string, the load of the pumping unit suspension point is calculated by the following formula:

P = Wr +
E1A1

∆x1

(
−3

2
u0,j + 2u1,j −

1

2
u2,j

)
(2)

In the formula, Wr is the weight of the carbon fiber and steel sucker rod string, N.
The axial distributed load of the sucker rod string at any section x at time t is:{

q1(x, t) =
∂{ρ2A2gL2+ρ1A1g(L1−x)+E1A1[u1(x+1,t)−u1(x−1,t)]/(2∆x1)}

∂x 0 ≤ x ≤ L1

q2(x, t) =
∂{ρ2A2g(L1+L2−x)+E2A2[u2(x+1,t)−u2(x−1,t)]/(2∆x2)}

∂x L1 < x ≤ L1 + L2

(3)
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2.2 Torsional Stiffness Calculation Model

Figure 2 illustrates the schematic of a pumping unit suspension rope. The suspension rope consists of two steel
wire ropes with opposite twists. If the suspension rope is subjected to a torsional moment T and rotates through an
angle θ, as shown in Figure 3, the torque acting on the suspension rope can be divided into three components: the
same- twist torsional moment Ts, the opposite-twist torsional moment Tn, and the swinging torsional moment TBT,
which can be expressed as: 

T = Ts + Tn + TBT

Ts = θJtGs

Tn = θJtGn

TBT = Ph sinβ/2

(4)

Figure 2. Schematic diagram of the suspension pulley

Figure 3. Force diagram of the suspension pulley

In the formula, Jt is the section modulus of the steel wire rope Jt = πa4

32 , m4; a is the diameter of the steel
wire rope, m;Gs is the shear modulus of the same-twist direction of the steel wire rope, in N/m2;Gn is the shear
modulus of the opposite-twist direction of the steel wire rope, N/m2;P is the load on the suspension point, N; h
is the distance between the two steel wire ropes, m; β is the angle between the steel wire rope and the vertical line,
β ≈ sinβ = θh

2Ls
, ◦;L is the length of the steel wire rope Ls = S − x+∆S, m; S is the stroke length, m;x is the

suspension point displacement, m, and ∆S is the safety distance between the sucker rod string and the donkey head,
m.
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Write Eq. (4) in the form of T
θ = JgGg , the torsional stiffness of the suspension device can be obtained in the

form of JgGg .

2.3 Torsional Buckling Configuration and Induced Torque Calculation Model

The three-stage rod buckling mechanical model shown in Figure 4 is established: helical buckling bc section,
spatial suspension Ab and cB section.

(a) (b)

(c) (d)

Figure 4. Mechanical model of three-stage bending configuration of sucker rod string. (a) Mechanics model, (b)
sucker rod buckling configuration, (c) geometric position of the rod string, and (d) elevation view of rod string

buckling

In the diagram, L1 and L2 represent the lengths of the carbon fiber rod and steel rod, m; q1 and q2 are the axial
distributed loads on the carbon fiber rod and steel rod, respectively, N/m;E1I1 and E2I2 are the bending stiffness
of the carbon fiber rod and steel rod, respectively, N ·m2;F is the axial pressure at the bottom end of the sucker rod,
N; a is the connection point between the carbon fiber rod and the steel rod; b and c are the contact points between
the bottom suspension section and the upper suspension section with the tubing; Lb and Lc are the lengths from the
bottom of the rod to the contact points with the tubing, m; θ represents the lateral deflection y and z at any axial
position x along the suspension section in the Cartesian coordinate system, and the polar angle at any axial position
x along the helical section in the polar coordinate system; θb and θc are the polar coordinates corresponding to the
Cartesian coordinates b and c.

The differential equation of rod string helical buckling is:

E2I2θ
(4) − 6E2I2θ

′2θ′′ +

[(
F −

∫ L1+L2

x

q2(x)dx

)
θ′

]′
= 0 Lb ≤ x ≤ Lc (5)
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The upper suspended section is a carbon fiber sucker rod string and a steel sucker rod string, and the bending
equation is:
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d4y
dx4 + d

dx

[(
F −

∫ L2

0
q2(x)dx−
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dz
dx
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dx
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∫ L1+L2
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)
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dx

]
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1
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1
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1
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1
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(6)

The bending equation of the bottom suspended section is:E2I2
d4y
dx4 + d

dx

[(
F −

∫ L1+L2

x
q2(x)dx

)
dy
dx

]
= 0 Lc ≤ x ≤ L1 + L2

E2I2
d4z
dx4 + d

dx

[(
F −

∫ L1+L2

x
q2(x)dx

)
dz
dx

]
= 0 Lc ≤ x ≤ L1 + L2

(7)

The boundary conditions are that both the top end of the rod and the pump end are fixed ends. Continuity
conditions: the geometric, moment, and shear continuity conditions are satisfied at contact point b; the geometric,
moment, and shear continuity conditions are satisfied at contact point c.

The numerical simulation process of the bending configuration is given in detail by the study [22]. From the
above numerical simulation, the length of the spiral buckling section can be further calculated as follows:

Ld = Lc − Lb (8)

In the study of rod buckling, a small unit is taken as the research object. Assuming the rod undergoes elastic
deformation and the material is uniform across all segments, the rod can be considered a cylinder throughout the
process. Based on these assumptions, the rod that exhibits helical buckling can be simplified into a cylindrical helix
formed by an elastic line, as illustrated in Figure 5.

Figure 5. Mechanical analysis model of helical buckling rod string

In the figure, K⃗ represents the curvature vector of the simplified cylindrical helical space curve; t⃗ is the tangent
vector of the cylindrical helical space curve; s denotes the arc length of any segment of the cylindrical helix, m; n⃗ is

88



the normal vector of the spatial curve; b⃗ is the secondary normal vector of the spatial curve; u⃗ is the spatial position
vector; r is the radial clearance, m.

If M is the external torque in the rod string, then the equilibrium equation of torque is

M⃗ = EIκ⃗b+Mnt⃗ (9)

In the formula, EIκ⃗b is the bending moment in the rod string; κ is the curvature of the spatial curve; Mn is the
torque in the rod string.

The cylindrical helical spatial curve has the following relationship:{
b⃗ = t⃗× n⃗

K⃗ = dt⃗
ds = κn

(10)

The tangent vector of a cylindrical helical space curve is

t⃗ =
du⃗

ds
=

(
dy

ds

)
i⃗+

(
dz

ds

)
j⃗ +

(
dx

ds

)
k⃗ (11)

where, i⃗, j⃗, k⃗ respectively represent the unit vectors of the y, z, and x axis.
The curvature vector of the space curve is

K⃗ =
dt⃗

ds
=

(
d2y

ds2

)
i⃗+

(
d2z

ds2

)
j⃗ +

(
d2x

ds2

)
k⃗ (12)

The gap r between the rod and the tubing is very small compared to the helix formed by the rod, so it can be
assumed that dz is three ds. Then we get

M⃗ = (−EIz′′ +Mny
′) i⃗+ (−EIy′′ +Mnz

′) j⃗ + (Mn + EI (y′z′′ − z′y′′)) k⃗ (13)

From the above formula, we can get the torque of each axis: My = −EIz′′ +Mny
′

Mz = −EIy′′ +Mnz
′

Mx = Mn + EI (y′z′′ − z′y′′)
(14)

It can be obtained from Eq. (5):
y = r cos θ z = r sin θ

y′ = −r sin θθ′ z′ = r cos θθ′

y′′ = −r cos θθ′2 − r sin θθ′′

z′′ = −r sin θθ′2 + r cos θθ′′

(15)

Assuming there is no external torque on the x-axis, the internal torque of the rod string can be expressed as
follows:

Mn(x, t) = E Ir2 θ′3 (16)

3 Mathematical Model of Twisting Vibration of Sucker Rod String
3.1 Equation of Torsional Vibration of Carbon Fiber and Steel Hybrid Rod String

The mathematical model of the torsional vibration of carbon fiber and steel hybrid rod string is obtained by
micro-element force analysis:

ρ1Jp1
∂2θ
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∂θ
∂t −G1Jp1

∂2θ
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∂2θ
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∂θ
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∂x L1 ≤ x ≤ L1 + L2
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∂θ
∂x

∣∣
x=0

= Ke(t)θ(0, t)

G2Jp2
∂θ
∂x

∣∣
x=L1+L2

= 0

θ|x=L−
1
= θ|x=L+

1

G1Jp1
∂θ
∂x

∣∣
x=x=L−

1
= G2Jp2

∂θ
∂x

∣∣
x=x=L+

1

(17)

In the formula, ρ1 and ρ2 represent the densities of the carbon fiber rod and steel rod, kg/m3; ν1 and v2 are the
resistance coefficients of the oil well fluid to the carbon fiber rod and steel rod, Pa.s; G1 and G2 are the shear moduli
of the carbon fiber rod and steel rod, Pa; Jp1 and Jp2 are the polar moments of inertia of the cross-sections of the
carbon fiber rod and steel rod, m4;Ke(t) is the torsional spring stiffness derived from the simplified suspension
device, N ·m/rad;Mn(x, t) is the distributed excitation torque, N ·m.
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3.2 Initial Condition

Assuming that the initial position of the carbon fiber and steel hybrid draw rod string is at the dead point under the
suspension point and is in a natural stationary state, the initial condition of the whole system satisfying t = t0 = 0
is: {

θ(x, 0) = 0
∂θ(x,0)

∂t = 0
(18)

4 Vibration Torsion Simulation Method

The torsional spring stiffness varies with the displacement and load of the suspension point, making it time-
varying. This paper first establishes a numerical simulation model for nonlinear vibration equations using the finite
difference method, considering the time-varying torsional stiffness. To analyze the effect of stiffness on torsional
vibration, we assume that the torsional stiffness is constant and take the average value of the torsional stiffness over
one cycle. In this case, the torsional vibration is considered linear, and the mode superposition method is used for
simulation and calculation.

4.1 The Difference Method Is Used to Establish the Simulation Model

The mathematical model for torsional vibration, which is a nonlinear differential equation, is used to describe the
changes in torsional stiffness. The carbon fiber rod and steel rod are discretized into I1 and I2 units along the axis
with unit lengths ∆x1 and ∆x2, respectively. The time t is discretized into J + 1 nodes with a step length of ∆t.
θi,j (i = 0, 1, 2, . . . , I1, . . . , I1 + I2) ; j = 0, 1, 2, . . . , J denotes the angular displacement of node i on the sucker
rod string at time j.

Differential form of the differential equation at the carbon fiber rod:

θi,j+1 =
1

1 + γs1

[
γ1 (θi+1,j + θi−1,j) + 2

(
1− γ2

1

)
θi,j − θi,j−1 + γs1θi,j

]
(19)

In the formula, γs1 = v1∆t; γ1 =
√

G1

ρ1

∆t
∆x1

.
Differential form of the differential equation at the steel rod:

θi,j+1 =
ς

1 + γs2

∂Mn(i, j)

∂x
+

1

1 + γs2

[
γ2 (θi+1,j + θi−1,j) + 2

(
1− γ2

2

)
θi,j − θi,j−1 + γs2θi,j

]
(20)

In the formula, ς = ∆t2

ρ2Jp2
; γs2 = v2∆t; γ2 =

√
G2

ρ2

∆t
∆x2

. The difference form of the differential equation at the
connection point between the carbon fiber rod and the steel rod:

θi,j+1 =
1

αs + βs
[(2αs + βs − µ1 − µ2) θi,j − αsθi,j−1 + µ1θi−1,j + µ2θi+1,j ] (21)

In the formula, αs = α1 + α2;βs = β1 + β2;αi =
∆xi(GiJpi)

2(ci∆t)2
, i = 1, 2;βi =

∆xi(GiJpi)vi
2c2i∆t

, i = 1, 2;

µi =
GiJpi

∆xi
, i = 1, 2; ci =

√
Gi/ρi, i = 1, 2.

The difference form of the upper boundary condition:

θ0,j+1 =

G1Jp1

∆xi
(3θ1,j+1 − θ2,j+1)

Ke(j + 1) +
2G1Jp1

∆xi

(22)

The difference form of the lower boundary condition:

θI1+I2,j+1 =
G2Jp2 (3θI1+I2−1,j+1 − θI1+I2−2,j+1)

2G2Jp2
(23)

From the initial conditions, we know that θ(x, 0) = 0 and θ(x, 1) = 0. We discretize θ(x, 0) and θ(x, 1) along
the axis.

The differential form of the differential equation, boundary condition, continuity condition, and initial condition
established above constitute the simulation model of torsional vibration of carbon fiber sucker rod string.

4.2 The Superposition Method of Vibration Modes Is Used to Establish the Simulation Model

If the torsional spring stiffness Ke is taken as the average value of the torsional stiffness of a period, then the
torsional vibration is linear vibration, so the super-position method of vibration modes is used to solve it.
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4.2.1 Damping-free vibration equation of carbon fiber sucker rod string
The damping and induced torque in Eq. (17) can be removed to obtain the equation of free torsional vibration,

whose solution is: θ1 (x1, t) = Θ1 (x1)F (t) =
(
C1 sin

ω
a1
x1 +D1 cos

ω
a1
x1

)
(A1 sinωt+B1 cosωt)

θ2 (x2, t) = Θ2 (x2)F (t) =
(
C2 sin

ω
a2
x2 +D2 cos

ω
a2
x2

)
(A2 sinωt+B2 cosωt)

(24)

In the formula, Θi(x) is referred to as the mode shape; ω represents the natural frequency of the torsional
vibration of the carbon fiber sucker rod string. The eight undetermined coefficients can be determined through the
boundary conditions, continuity conditions, and initial conditions. Substituting Eq. (24) into the boundary and
continuity conditions yields the natural angular frequency equation and the mode shape function:
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(
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)
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(
ω
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)
=
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(
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L2

)
− G1Jp1

G2Jp2

G1Jp1
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a2
a1

ω

a1
tg

(
ω

a1
L1

)
(25)

Θ(x) =

{
C1 sin

ω
a1
x+D1 cos

ω
a1
x 0 ≤ x ≤ L1

C2 sin
ω
a2

(x− L1) +D2 cos
ω
a2

(x− L1) L1 ≤ x ≤ L1 + L2

(26)

In the formula, C1 = 1, D1 =
G1Jp1ω
Kea1

, C2 =
G1Jp1

G2Jp2

(
a2

a1
cos ω

a1
L1 − G1Jp1ωa2

Kea2
1

sin ω
a1
L1

)
, D2 = sin ω

a1
L1 +

G1Jp1

Kea1
cos ω

a1
L1.

4.2.2 Regular mode
The orthogonality of the moment of inertia with respect to the main vibration mode can be obtained:

Yr(x) = ArΘ(x) =

 Ar

(
sin ωr

a1
x+D1 cos

ωr
a1

x
)

0 ≤ x ≤ L1

Ar

[
C2 sin
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]

L1 ≤ x ≤ L1 + L2

r = 1, 2, · · · (27)

In which Ar is the regularization coefficient:
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4.2.3 Regular force and regular damping

When the carbon fiber sucker rod string is excited by induced distributed torque, the regular force is

Qr(t) =

∫ L1+L2

0

Mn(x, t)Yr(x)dx (28)

The regular damping is

CNr =

∫ L1+L2

0

veY
2
r (x)dx =
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]}2
(29)

4.2.4 Canonical equation
The regular coordinate qr(t) is introduced, and qr(t) satisfies the following relation:

θ(x, t) =

∞∑
r=1

Yr(x)qr(t) (30)

The canonical equation is

q̈r + CNr · q̇r + ω2
rqr = Qr(t) r = 1, 2, · · · (31)

The initial conditions give us theqr|t=0 = q̇r|t=0 = 0.
The fourth-order Runge-Kutta method is used to solve Eq. (31) to solve the torsional vibration equation of the

rod string.
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5 Simulation Engineering Example
5.1 Essential Parameter

Basic parameters of simulation: carbon fiber rod diameter D1 = 19 mm, carbon fiber rod length L1 = 1400 m,
carbon fiber rod density ρ1 = 2100 kg/m3, the shear elastic modulus of the carbon fiber rod G1 = 0.653 GPa, the
diameter of the steel rod D2 = 22 mm, the length of the steel rod L2 = 600 m, the density of the steel rod ρ2 = 7800
kg / m3, the shear elastic modulus of the steel roa G2 = 8 GPa, the inner diameter of the oil pipe Dr = 63.5 mm,
the number of strokes n = 3, and the axial distributed load q(x, t) and the hanging point load P (t) are shown in
Figures 6 and 7. The simplified torsional spring stiffness Ke of the suspension device is shown in Figure 8. The
helical buckling of the rod at time t1 is illustrated in Figure 9. The distributed torque is calculated using this buckling
configuration. Since the movement of the sucker rod is periodic, each t1 + nT moment provides an excitation to the
system, as shown in Figure 10.

(a) (b)

Figure 6. Axial distributed load of carbon fiber and steel hybrid rod. (a) Carbon fiber rod axial distributed load,
and (b) axial distributed load on steel rod

Figure 7. Load at the suspension point
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Figure 8. Spring torsional stiffness

Figure 9. Helical buckling configuration

Figure 10. Time of induced distributed torque excitation
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5.2 Analysis of Simulation Result
5.2.1 Twist vibration analysis of top rod string

According to the above simulation model, a torsional vibration simulation system of carbon fiber sucker rod
string under the torque excitation induced by helical buckling is developed. Figure 11 shows the vibration law of the
top rod string in different strokes n in the first 15 cycles.

(a) (b) (c)

(d) (e) (f)

Figure 11. Twist vibration of the top rod string under different strokes. (a) n=3, (b) n=4, (c) n=5, (d) n= 6, (e)
n=7, and (f) n= 8

Figure 12. Amplitude-frequency characteristics of the maximum amplitude of vibration at the top of the rod string
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As can be seen from Figure 11, with the increase of stroke, the maximum amplitude of the top vibration first
increases and then decreases, indicating that resonance is generated. The amplitude-frequency characteristic curve
of the maximum amplitude of the top rod string is drawn as shown in Figure 12.

As shown in Figure 12, the torsional vibration system of the carbon fiber sucker rod string has two wave peaks,
which are the two resonance points. By averaging the torsional spring stiffness and using the superposition method
of vibration modes, the first six natural angular frequencies are calculated, as shown in Table 1. Converting the
first-order natural angular frequency to a natural frequency yields 0.1117 Hz, indicating that the second wave peak, or
stroke, near 6.7 Hz is the resonance point. The first wave peak occurs because the induced torque is a non-sinusoidal
periodic wave, which can be decomposed into a sum of a sine wave of the same frequency and many integer multiples
of the frequency. When the integer multiple frequency equals the natural frequency, high-order harmonic resonance
occurs.

Table 1. First six order natural angular frequencies

Order First Order Second Order Third Order Fourth Order Fifth Order Sixth Order
Natural angular frequency 0.7020 4.0641 7.9200 11.7895 15.4307 17.0640

Figure 13. Vibration of the top end of a rod with variable torsional stiffness

Figure 14. Vibration of the top end of a rod with average torsional stiffness
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Figures 13 and 14 show the vibration response curves of the rod string top with variable torsional stiffness
and average torsional stiffness. It can be seen that the angular displacement response curves calculated by the finite
difference method and the mode superposition method are almost the same. The use of these two calculation methods
can verify the correctness of the simulation results in this paper.
5.2.2 Parameter sensitivity analysis

The dynamic characteristics of rod pumping systems are influenced by stroke length, frequency, damping, pump
diameter, dynamic liquid level, and well depth. These parameters are of significant interest in the engineering field.

(a) (b)

(c) (d)

(e)

Figure 15. The influence of different parameters on the vibration at the top of the rod string. (a) Damping
coefficient v, (b) stroke n, (c) pump diameter Db, (d) dynamic fluid Hd, and (e) rod length L
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Figure 15 illustrates the effects of different parameters on the vibration at the top of the rod string. Figure 15(a)
shows that as the damping coefficient increases, the torsional vibration of the rod string decreases. Figure 15(b)
indicates that a longer stroke results in a greater amplitude of the stroke pressure under pump end load, leading to a
higher induced torque and more intense rod string vibration. Figure 15(c) shows that a smaller pump diameter tends
to increase rod string vibration. Figure 15(d) indicates that a lower dynamic liquid level height leads to a greater
amplitude of the stroke pressure under pump end load, resulting in a higher induced torque and more intense rod
string vibration. Figure 15(e) shows that a longer rod string results in weaker wellhead rod string vibration. The
conclusions from Figure 15 are highly consistent with real-world engineering conditions.
5.2.3 Analysis of torsional vibration of rod string excited by bending configuration

In order to obtain the torsional angular displacement along the entire length of the rod, the influence of the
suspension device is ignored, and the wellhead is simplified as a fixed end. Two methods are used for simulation.
One is without applying the bending configuration excitation, and the other is to apply the bending configuration
excitation according to this paper.

1. Analysis of torsion angle of rod string without helical buckling
It can be concluded from Figures 16 and 17 that, under the condition of no bending configuration excitation,

the torsional angular displacement difference along the entire well depth is not large, and the torsion situation is
relatively uniform along the well depth, slightly larger near the bottom of the well.

Figure 16. Angle displacement with rod length (bending excitation unapplied)

Figure 17. Angle displacement at x=1000 m

2. Analysis of torsion angle of rod string under helical buckling excitation in this paper
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Figure 18. Torsion angle with rod length (bending excitation applied)

(a) (b)

(c) (d)

Figure 19. Angle displacement with rod length variation (buckling excitation applied). (a) x=1800 m,
(b) x=1500 m, (c) x=1000 m, and (d) x=200 m

From Figures 18 and 19, it is evident that the application of bending configuration excitation significantly affects
the torsional vibration of the sucker rod string. The amplitude of the torsional vibration angle displacement increases
as the depth of the well approaches the bottom. At the same depth, the angular displacement changes through four
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stages over time: In the first stage, the elastic torsional energy of the sucker rod string accumulates, and there is
no relative torsional movement; in the second stage, the rod body begins to experience relative torsional movement
due to reaching the critical torque, which occupies most of the downstroke; in the third stage, the elastic torsional
energy of the sucker rod string is released, and the rod stops experiencing relative torsional movement, typically
occurring in the latter part of the downstroke; in the fourth stage, during the upstroke, the bending is minimal, and
its effect on torsion can be disregarded. Figures 18 and 19 demonstrate that helical buckling has a significant impact
on the overall torsional vibration of the sucker rod string, with the torsional effect primarily concentrated in the
middle and lower parts of the well. This conclusion aligns with the analysis of the torsional process described in the
study [12], indicating consistency between the simulation results and previous practical experience, and can serve
as an experimental validation for this study.

6 Conclusions

(1) The mechanical model and the mathematical model of torsional vibration of carbon fiber sucker rod string
with top torsion spring constraint are established, and the response is calculated by the finite difference method and
the mode superposition method.

(2) Through the analysis of the torsional vibration law of carbon fiber sucker rod string, it can be concluded that
with the increase of stroke, the torsional vibration first increases and then decreases, so as to avoid the generation of
resonance; damping coefficient, stroke, pump diameter, dynamic liquid level, and rod length have a great influence
on the torsional vibration of the rod string.

(3) Through the simulation of torsional vibration by helical buckling, it is concluded that helical buckling has a
significant influence on the overall torsional vibration of the rod string, and the torsion is mainly concentrated in the
middle and lower part of the well depth.

(4) The torsional vibration simulation model of the carbon fiber sucker rod string under the torque excitation
induced by helical buckling can further analyze the longitudinal splitting mechanism of the carbon fiber sucker rod,
and provide a theoretical basis for improving the working life and design of the carbon fiber sucker rod string.
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