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Abstract: An optimal homotopy asymptotic framework is developed for the numerical-semi-analytical treatment of
the time-dependent generalized Korteweg–de Vries (KdV)-modified gKdV-mKdV equation, a prototypical nonlinear
dispersive model featuring concurrent quadratic and cubic nonlinearities. The equation arises widely in optics, fluid
mechanics, plasma physics and condensed-matter systems, where the accurate resolution of solitary waves and
complex wave interactions is essential. The Optimal Homotopy Asymptotic Method (OHAM) is formulated without
reliance on an artificial small parameter and is equipped with optimally selected convergence-control parameters,
thereby overcoming limitations of classical perturbation techniques. Within this formulation, a rapidly convergent
approximate analytical solution is constructed, and error dynamics are quantified against benchmark solutions.
Comparative assessments indicate that OHAM attains high accuracy with modest computational effort, delivering
pointwise errors and global norms that are competitive with, or superior to, those obtained by Homotopy Perturbation
and Homotopy Analysis methods. The procedure is straightforward to implement, preserves the dispersive-nonlinear
balance intrinsic to the gKdV–mKdV dynamics, and accommodates important special cases (KdV and mKdV
limits) within a unified treatment. The approach is thus shown to provide a reliable and easily computable route
to soliton-bearing solutions and other nonlinear waveforms, supporting applications in waveguides, shallow-water
channels, ion-acoustic media and lattice excitations. The methodological clarity and demonstrated accuracy suggest
that OHAM can serve as a practical front-line tool for nonlinear PDEs with mixed nonlinearities and higher-order
dispersion, and that its convergence-control strategy can be extended to related integrable and near-integrable models.

Keywords: Optimal Homotopy Asymptotic Method (OHAM); Generalized KdV-mKdV equation; Nonlinear
dispersive waves; Semi-analytical approximation; Solitons; Parameter-free homotopy; Convergence control; KdV
limit; mKdV limit

1 Introduction

Over the past few decades, numerous advanced numerical techniques have been developed to yield both exact and
approximate solutions for nonlinear partial differential equations (NPDEs). These methods represent a significant
advancement in the fields of nonlinear sciences and theoretical physics. The effective implementation of these
techniques showcases the remarkable progress made in understanding and solving NPDEs [1–9]. We focus on
the Bäcklund transformation [10], the differential transformed method [11], the truncated Painlevé expansion
method [12], the modified differential transformed method [13], the sine-cosine method [14], and the modified
extended tanh function [15]. Beside these methods, we developed a recent method, which is known as the OHAM,
to achieve the approximate analytical solutions of NLPDEs. Consider a type of NPDEs named the generalized
KdV-mKdV equation [16].

∂w(y, z)

∂z
+
(
α+ βwq(y, z) + γw2q(y, z)

) ∂w(y, z)
∂y

+
∂3w(y, z)

∂y3
= 0 q ≥ 1 (1)

let α, β, γ and q represent arbitrary constants. The above Eq. (1) has several special cases, which are discussed
below:
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1. Reduces to generalized mKdV equation, when α = γ ̸= 0 and β = 0.
2. Becomes to generalized KdV equation, when α ̸= 0, β ̸= 0 and γ = 0.
3. Converts to KdV-mKdV equation, when α ̸= 0, β ̸= 0, γ ̸= 0 and q = 1.
4. Transfer to KdV equation, when α ̸= 0, β ̸= 0, γ = 0 and q = 1.
5. Becomes to mKdV equation, when α ̸= 0, γ ̸= 0, β = 0 and q = 1.
This dissertation focuses on introducing the OHAM for solving NPDEs. Specifically, it addresses the higher

nonlinear generalized KdV-mKdV equation. The approach leverages series solutions to construct analytical
approximations for these strongly nonlinear PDEs. The aim is to fully exploit the advantages of OHAM in deriving
effective approximate solutions. The OHAM is a highly effective and straightforward technique for higher-order
NPDEs. This method builds on the Homotopy Analysis Method (HAM) [17], which was further advanced with
the Homotopy Perturbation Method (HP Method) [18] introduced in 1998. In 2008, Vasile Marinca and colleagues
enhanced these perturbation methods by developing OHAM [19], which surpasses both HAM and the HP Method
in effectiveness. The OHAM [19, 20] adopts the global structure of both the HA Method and the HP Method. When
H(p) = −p, it exactly mirrors the HP Method, and when H(p) = ph, it corresponds precisely to the HA Method.

In brief, the HA Method and the HP Method are special cases of OHAM.

2 The Algorithm of OHAM

Consider the boundary value problem,

D(w(y, z)) + f(y, z) = 0, y ∈ δ, z ≥ 0 (2)

ψ

(
w0(y, z),

∂w0(y, z)

∂z

)
= 0, z ∈ Γ (3)

where, D represents a differential operator, ψ is a boundary operator, Γ is the boundary of the domain δ and f(y, z)
is a known analytic function.

Step 1: Let L and N denote the differential operators corresponding to the simple and the complicated parts,
respectively, such that D = L+N .

Step 2: Solve the following equations for problems Eqs. (2) and (3):

L (w0(y, z)) + f = 0, ψ

(
w0(y, z),

∂w0(y, z)

∂z

)
= 0,

L (w1 (y, z; C1)) = C1N0 (w0(y, z)) , ψ

(
w1 (y, z; C1) ,

∂w1 (y, z;C1)

∂z

)
= 0,

L (wr(y, z)) = L (wr−1(y, z)) + CrN0 (w0(y, z))+

r−1∑
j=1

Cj [L (wr−j(y, z)) +Nr−j (w0(y, z), w1(y, z), . . . , wr−j(y, z))] ,

r = 2, 3, . . . , ψ

(
wr(y, z),

∂wr(y, z)

∂z

)
= 0

Step 3: A modal series solution, which is to be used for the approximate solution of Eq. (2) is: wr (y, z; Ci) =
w0(y, z) + w1 (y, z;C1) + w2 (y, z;C1, C2) + . . . ..wr−1 (y, z, C1, . . . ..Cr−1) + wr (y, z;C1, . . . ..Cr).

The procedure to determine Ci is carried out as follows:
Step 4: If value of R = D(w̃(y, z)) + f(y, z) is zero, stop.
Step 5: If R ̸= 0, then choose J (C1, C2, . . .) =

∫ z

0

∫
δ
R2 (y, z;C1, C2, C3 . . .) dydz and evaluate Ci, i =

1, 2, 3, . . . . . . r using ∂J
∂C1

= ∂J
∂C2

= ∂J
∂C3

= . . . . . . .. = 0.

3 Application of OHAM to the Problem GKdV-mKdV

In this section, the significance and originality of the OHAM for finding analytical approximate solutions to
NLPDEs have been demonstrated. Several cases of the KdV–mKdV equations were solved to assess the efficiency of
the OHAM. The results obtained by OHAM exhibited excellent agreement with the corresponding exact solutions,
thereby confirming both the accuracy and reliability of the proposed approach.

Problem 1: Consider the generalized KdV equation

∂w(y, z)

∂z
+ (α+ βwq(y, z))

∂w(y, z)

∂y
+
∂3w(y, z)

∂y3
= 0 (4)
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The solitary wave solution is:

w(ε) =

(
A

2β

(
q2 + 3q + 2

)
Sech2

(
q
√
Aε

2

)) 1
q

where, ε = y − (α+ β)z, β > 0.
Condition:

w(0, z) =

(
A

2β

(
q2 + 3q + 2

)
Sech2

(
q
√
A(α+ β)z

2

)) 1
q

w(y, 0) =

(
A

2β

(
q2 + 3q + 2

)
Sech2

(
q
√
Ay

2

)) 1
q

where, A,α, β and q are arbitrary constants. As regard the OHAM’s basic selection in the start of the procedure, we
will choose L(F (y, z; q)) and N(F (y, z; q)) for Eq. (4), so that:

L(F (y, z; q)) =
∂F (y, z; q)

∂z

N(F (y, z; q)) = (α+ β(F (y, z; q))q)
∂F (y, z; q)

∂y
+
∂3F (y, z; q)

∂y3

with boundary conditions:

F(y, 0; q) =

(
A
(
q2 + 3q + 2

)
2β

Sech2
(
1

2
q
√
Ay

)) 1
q

Using the method of OHAM, the zeroth-order linear partial differential (LPD) equation as:

∂w(y, z)

∂z
= 0, with w0(y, 0) =

(
A

2β

(
q2 + 3q + 2

)
Sech2

(
q
√
Ay

2

)) 1
q

Solution of the zeroth-order problem is w0(y, z) =

(
A(q+2)(q+1)

8β cosh( A1/2qz)
2

)1/q

.

The first-order problem:

∂w1(y, z; C)

∂z
= C1N0 (w0(y, z)) = C1

(
(α+ βuq0(y, z))

∂w0(y, z)

∂y
+
∂3w0(y, z)

∂y3

)
, w1(y, 0) = 0

Solution of the first-order problem is:

w1(y, z) =
(
2(q−3)/qA(q+2)/2qC1s sinh

(
A1/2qy

) (
q2 + 3q + 2

)1/q(
15A

4
+

45Aq2

8
− a cosh

(
A1/2qy

)2
− 4A cosh

(
A1/2qy

)
+

15Aq2

8

)
/β1/q cosh

(
A1/2qy

)(3q+2)/q

The second-order problem:

∂w2 (y, z;C1, C2)

∂z
= C2N0 (w0(y, z)) + C1N1 (w0(y, z), w1 (y, z;C1)) + (1 + C1)L (w1 (y, z;C1))

= C2

(
(α+ wq

0(y, z)β)
∂w0(y, z)

∂y
+
∂3w0(y, z)

∂y3

)
+ C1

(
(α+ βwq

1 (y, z;C1))
∂w1 (y, z;C1)

∂y
+
∂3w1(y, z)

∂y3

)
+ (1 + C1)

∂w1 (y, z;C1)

∂y

with boundary solution w2(y, 0) = 0 and the solution will be w2, w2 (y, z;C1, C2) = w2.
Using w0, w1 and w2 to obtain the 2nd order approximation of Eq. (4) as:

w̃ (y, z;C1, C2) = w0(y, z) + w1 (y, z;C1) + w2 (y, z;C1, C2) (5)

103



Residual of Eq. (5) is:

R (y, z;C1, C2) =
∂

∂z
w̃(y, z) + (α+ βw̃q(y, z))

∂

∂y
w̃(y, z) +

∂3

∂y3
w̃(y, z)

Values of the constants are:

C1 = 0.0387704210478710455605628807543

C2 = −0.0211204855958792429849186173140

Table 1. OHAM’s solution, exact solution and error of Eq. (4), when α = 0.006, β = 0.05, A = 0.0004, and q = 1

z y woham Exact L∝ ∗ 108

1
1 0.00599759977784 0.00599763124533 3.1467486437
2 0.00599040850653 0.00599047144215 6.2935619859
3 0.00597844914763 0.00597854335653 9.4208900491

0.5
1 0.00599760020887 0.00599761596713 1.5758262646
2 0.00599040936865 0.00599044086086 3.1492212110
3 0.00597845044105 0.00597849756971 4.7128657727

0.1
1 0.00599760055366 0.00599760370924 0.3155575614
2 0.005990410058311 0.00599041636066 0.6302346723
3 0.00597845147577 0.00597846090537 0.9429604671

0.05
1 0.00599760059676 0.00599760217479 0.1578032999
2 0.00599041014452 0.00599041329594 0.3151417379
3 0.00597845160511 0.00597845632015 0.4715044404

0.01
1 0.00599760063124 0.00599760094688 0.0315645830
2 0.00599041021348 0.00599041084381 0.0630322519
3 0.00597845170858 0.00597845265162 0.0943047612

Table 2. OHAM’s solution, exact solution and error of 2nd order approximations of Eq. (4), when A = 0.002,
α = 0.0005, β = 5, q = 2

z y woham Exact L∝ ∗ 106

1.5

1 0.02439785356 0.02439797199 0.118439690
2 0.02410930036 0.02410956749 0.26714413
3 0.02364039101 0.02364085971 0.46869257
4 0.02300861045 0.02300934358 0.73312810
5 0.02223624727 0.02223730347 1.05619228
6 0.02134860351 0.02135002492 1.42140679

0.9

1 0.02439760975 0.02439768088 0.07112709
2 0.02410883541 0.02410899581 0.16040031
3 0.02363974790 0.02364002929 0.28139461
4 0.02300784459 0.02300828472 0.44011544
5 0.02223541829 0.02223605229 0.63399101
6 0.02134776757 0.02134862069 0.85312599

0.1

1 0.02439728412 0.02439729204 0.00791238
2 0.02410821509 0.02410823293 0.01783912
3 0.02363889022 0.02363892151 0.03129259
4 0.02300682347 0.02300687240 0.04893705
5 0.02223431316 0.02223438365 0.07048427
6 0.02134665325 0.02134674808 0.09483353

0.05

1 0.02439726375 0.02439726771 0.00395648
2 0.02410817630 0.02410818522 0.00892009
3 0.02363883661 0.02363885225 0.01564712
4 0.02300675965 0.02300678412 0.02446963
5 0.02223424409 0.02223427934 0.03524341
6 0.02134658362 0.02134663103 0.04741807

104



Figure 1. Approximate solution and exact solution of problem 1 at A = 0.002, α = 0.0005, β = 5, q = 2

Figure 2. Error between approximate solution and exact solution of problem 1

Using the above-mentioned values of C1 and C2 into Eq. (5), we obtained the approximate solution of Eq. (4).
The 2nd order approximate solutions obtained by OHAM, together with the exact solutions and the corresponding
errors, are presented in Table 1, Table 2, Figure 1 and Figure 2, where the errors were quantified by L∝ =
|wex(y, z)− wOHAM (y, z)|. Figure 1 shows that the OHAM’s solution closely agrees with the exact solution,
which is indicates the high accuracy and effectiveness of the OHAM method. Figure 2 illustrates the error between
the exact and approximate solutions. The error is minimal, further supporting the method’s precision. These results
confirm the reliability of OHAM in providing accurate approximations.

Problem 2: Consider the 2nd special case generalized mKdV equation

∂w(y, z)

∂z
+
(
α+ γw2q

) ∂w(y, z)
∂y

+
∂3w(y, z)

∂y3
= 0 (6)
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The solitary wave solution is:

w(y, z) =

(√
A

γ
(2q2 + 3q + 1) Sech(q

√
Aε)

) 1
q

, A > 0, γ > 0, ε = y − (α+A)z

where, conditions are:

w(0, z) =

(√
A

γ
(2q2 + 3q + 1) Sech(q

√
A(α+ β)z)

) 1
q

w(y, 0) =

(√
A

γ
(2q2 + 3q + 1) Sech(q

√
Az)

) 1
q

As in the study [19], again choose L and N of Eq. (6) as:

L(F (y, z; q)) =
∂F (y, z; q)

∂z

N(F (y, z; q)) =
(
α+ γF 2q(y, z; q)

) ∂F (y, z; q)
∂y

+
∂3F (y, z; q)

∂y3

with condition:

F (y, 0) =

(√
A

γ
(2q2 + 3q + 1) Sech(q

√
Ay)

) 1
q

Again, construct a sequence of problems, the zeroth-order problem of this sequence is:

∂w0(y, z)

∂z
= 0, with w0(y, 0) =

(√
A

γ
(2q2 + 3q + 1) Sech(q

√
Ay)

) 1
q

Table 3. OHAM’s solution, exact solution and error of problem 2 by using α = 0.001, γ = 1, A = 0.0003

z y woham Exact L∝ ∗ 106

1.5

-1 0.25892423349 0.25892402988 0.2036080
1 0.25892443250 0.25892463552 0.2030180
3 0.25830519282 0.25830579907 0.6062510
5 0.25707681068 0.25707781013 0.9994540
7 0.25525940149 0.25526077795 1.3764570
9 0.25288198284 0.25288371466 1.7318150

1

-1 0.25892426666 0.25892413098 0.1356730
1 0.25892439933 0.25892453474 0.1354110
3 0.25830509387 0.25830549810 0.4042310
5 0.25707664758 0.25707731394 0.6663650
7 0.25525917689 0.25526009459 0.9176970
9 0.25288170027 0.25288285487 1.1545980

0.5

-1 0.25892429982 0.25892423202 0.0678040
1 0.25892436616 0.25892443390 0.0677380
3 0.25830499492 0.25830519706 0.2021480
5 0.25707648448 0.25707681769 0.3332140
7 0.25525895229 0.25525941116 0.4588780
9 0.25288141769 0.25288199502 0.5773260

0.1

-1 0.25892432636 0.25892431280 0.0135560
1 0.25892433963 0.25892435318 0.0135530
3 0.25830491575 0.25830495619 0.0404350
5 0.25707635399 0.25707642064 0.0666480
7 0.25525877260 0.25525886438 0.0917800
9 0.25288119163 0.25288130710 0.1154690
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Table 4. The absolute error of OHAM approximation with exact and approximate solution of problem 2 for
A = 0.0003, α = 0.001, γ = 2, q = 2

z y woham Exact L∝ ∗ 107

1.5

-3 0.217207411429 0.217206901147 5.1028146827
-1 0.217728459761 0.217728288548 1.7121288077
1 0.217728627112 0.217728797829 1.7071702653
3 0.217207910685 0.217208420479 5.0979387960

1

-3 0.217207494638 0.217207154505 3.4013346973
-1 0.217728487653 0.217728373566 1.1408682585
1 0.217728599220 0.217728713086 1.1386644619
3 0.217207827476 0.217208167393 3.3991676366

0.5

-3 0.217207577848 0.217207407808 1.7003964683
-1 0.217728515544 0.217728458529 0.57015865540
1 0.2177285713282 0.217728628289 0.569607706
3 0.2172077442666 0.217207914252 1.699854703

0.1

-3 0.2172076444152 0.217207610412 0.340035953
-1 0.2177285378579 0.217728526459 0.113987655
1 0.2177285490147 0.217728560411 0.113965617
3 0.2172076776989 0.217207711700 0.340014282

Table 5. OHAM’s result, exact result, and error of Eq. (6) by using α = 0.0005, γ = 5, A = 0.002, q = 1

z y woham Exact L∝ ∗ 107

0.9
-2 0.0487943428329 0.0487940485292 2.94303686
0 0.0489897948557 0.0489897946077 0.00248011
2 0.0487946306778 0.0487949244953 2.93817504

0.5
-2 0.0487944067984 0.0487942433564 1.63442027
0 0.0489897948557 0.0489897947791 0.00076547
2 0.0487945667122 0.0487947300042 1.63291971

0.1
-2 0.0487944707639 0.0487944380875 0.32676401
0 0.0489897948557 0.0489897948526 0.00003062
2 0.0487945027467 0.0487945354171 0.32670399

0.05
-2 0.0487944787596 0.0487944624222 0.16337450
0 0.0489897948557 0.0489897948549 0.00000766
2 0.0487944947509 0.0487945110869 0.16335949

0.01
-2 0.0487944851562 0.0487944818888 0.03267369
0 0.0489897948557 0.0489897948556 0.00000031
2 0.0487944883545 0.0487944916218 0.03267309

Solution of the zeroth-order problem is:

w0(y, z) =

((
A

γ

(
2q2 + 3q + 1

))1/2

sech
(
A1/2qy

)) 1
q

The first-order problem is:

∂w1 (y, z;C1)

∂z
= C1N0 (w0(y, z)) = C1

((
α+ γw2q

0 (y, z)
) ∂w0(y, z)

∂y
+
∂3w0(y, z)

∂y3

)
, and w1(y, 0) = 0

Solution of the first-order problem is:

w1 (y, z;C1) = −
(
A(q+1)/2qC1z(A+ α)

(
2q2 + 3q + 1

)1/2q
sinh

(
A1/2qy

))
/

(
γ1/2q cosh

(
A1/2qy

)(q+1)/q
)

Using w0(y, z) and w1 (y, z;C1), we can get OHAM’s solution of Eq. (6):

w̃ (y, z;C1) = w0(y, z) + w1 (y, z;C1) (7)
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Residual of Eq. (6) is given by:

R (y, z;C1) =
∂

∂z
w̃(y, z) +

(
α+ γw̃2q(y, z)

) ∂
∂y
w̃(y, z) +

∂3

∂y3
w̃(y, z)

The constant value C1 can be obtained using the above-mentioned method in Section 2 , that is:

C1 = −0.32860278600541432276196849048

By introducing constant C1 into Eq. (7), we obtain the approximate solution of problem 2. The results are also
given in Tables 3–5, Figure 3 and Figure 4 of the same problem. Figure 3 shows that exact solution and approximate
solution are closed to each other, while Figure 4 shows the absolute error of OHAM’s solution and exact solution.

Figure 3. OHAM’s solution and exact solution of problem 2 at α = 0.001, γ = 1, A = 0.0003

Figure 4. Error between exact and approximate solution of problem 2
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Problem 3: Consider the Generalized KdV-mKdV

∂w(y, z)

∂z
+
(
α+ βwq(y, z) + γw2q(y, z)

) ∂w(y, z)
∂y

+
∂3w(y, z)

∂y3
= 0, q > 0 (8)

with the exact solution: w(y, z)β < 0, γ > 0, ε = y − αz, where, the conditions are: w(0, z) and w(y, 0). By
taking L and N for problem 3 as:

L(F (y, z; q)) =
∂F (y, z; q)

∂z

N(F (y, z; q)) =
(
α+ βF q(y, z; q) + γF 2q(y, z; q)

) ∂F (y, z; q)
∂y

+
∂3F (y, z; q)

∂y3

with conditions: F (0, z; q) and F (y, 0; q).

Figure 5. OHAM’s solution and exact solution of problem 3 at α = 0.05, β = 0.01, γ = 5, q = 1

Figure 6. Error between exact and approximate solution of problem 3
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Table 6. OHAM’s result, exact result and errors of Eq. (8) taking α = 0.05, β = 0.01, γ = 5, q = 1

z y woham Exact L∝

0.001

1 0.00399998661661 0.00399998666804 5.14322592 ∗ 10−11

2 0.00399997328341 0.00399994667004 2.6613368146 ∗ 10−8

3 0.00399995995030 0.00399988000759 7.994270208 ∗ 10−8

4 0.00399994662 0.00399978668338 1.59933903235 ∗ 10−7

5 0.00399993328 0.00399966670111 2.66583239143 ∗ 10−7

0.05

1 0.00399998416 0.00399998673329 2.5715312615 ∗ 10−9

2 0.00399997085 0.00399994680062 2.40279552391 ∗ 10−8

3 0.003999957495 0.00399988020351 7.72919804898 ∗ 10−8

4 0.003999944162 0.00399978694459 1.57217880799 ∗ 10−7

5 0.003999930829 0.00399966702764 2.63801926309 ∗ 10−7

0.01

1 0.003999986166 0.00399998668004 5.143195908 ∗ 10−10

2 0.003999972833 0.00399994669404 2.61384843835 ∗ 10−8

3 0.003999959499 0.00399988004359 7.94558228448 ∗ 10−8

4 0.0039999461664 0.00399978673137 1.594350299701 ∗ 10−7

5 0.0039999328335 0.00399966676109 2.660723737667 ∗ 10−7

0.1

1 0.0039999816568 0.00399998679971 5.1428957924 ∗ 10−9

2 0.00399996832365 0.00399994693370 2.13899438571 ∗ 10−8

3 0.00399995499057 0.00399988040324 7.45873275795 ∗ 10−8

4 0.00399994165758 0.00399978721099 1.54446594350 ∗ 10−7

5 0.00399992832468 0.00399966736067 2.609640169732 ∗ 10−7

Table 7. Distinct results of Eq. (9) at α = 0.0005, β = 0.0007, γ = 2, q = 3

z y woham Exact L∝

0.05

0 0.09932883882831 0.09932883883793 9.61717358263 ∗ 10−12

1 0.09932883371784 0.09932883372771 9.87269497939 ∗ 10−12

2 0.09932882860737 0.09932881839657 1.0210802989959 ∗ 10−8

3 0.09932882349691 0.09932879284452 3.06523909503605 ∗ 10−8

4 0.09932881838644 0.09932875707158 6.131485963463961 ∗ 10−8

5 0.09932881327598 0.09932871107781 1.021981648706080 ∗ 10−7

0.09

0 0.09932883882062 0.09932883883793 1.731090784925 ∗ 10−11

1 0.09932883371015 0.09932883372792 1.777084636343 ∗ 10−11

2 0.09932882859968 0.09932881839698 1.02027004217097 ∗ 10−8

3 0.09932882348921 0.09932879284513 3.064408396575131 ∗ 10−8

4 0.09932881837875 0.09932875707240 6.13063482344274 ∗ 10−8

5 0.09932881326829 0.09932871107884 1.0218944905580 ∗ 10−7

0.5

0 0.09932883874176 0.09932883883793 9.617144835881 ∗ 10−11

1 0.09932883363129 0.09932883373001 9.872666232664 ∗ 10−11

2 0.0993288285208 0.09932881840117 1.01196493328797 ∗ 10−8

3 0.0993288234104 0.09932879285142 3.055893760922868 ∗ 10−8

4 0.09932881829989 0.09932875708078 6.121910661797351 ∗ 10−8

5 0.099328813189425 0.09932871108931 1.021001121897659 ∗ 10−7

1

0 0.09932883864558 0.09932883883793 1.9234225790098 ∗ 10−10

1 0.09932883353512 0.09932883373257 1.9745268583705 ∗ 10−10

2 0.09932882842465 0.09932881840628 1.001836809855508 ∗ 10−8

3 0.09932882331418 0.09932879285908 3.045510117039903 ∗ 10−8

4 0.09932881820372 0.09932875709100 6.111271498410321 ∗ 10−8

5 0.09932881309325 0.09932871110209 1.019911653734744 ∗ 10−7

Similarly, the 2nd order approximation of Eq. (8) is given as:

w̃ (y, z;C1, C2) = w0(y, z) + w1 (y, z;C1) + w2 (y, z;C1, C2) (9)

Again, for residual R (y, z;C1, C2), we obtain constants C1 and C2 via the same method in Section 2 as:
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C1 = −10.29425281204460518340070049545

C2 = −11.712931999307360654060629927

By substituting C1 and C2 into Eq. (9), and we get the OHAM’s solution of problem 3. Moreover, the efficiency
of problem 3 is shown in Table 6, Table 7, Figure 5, and Figure 6, where we justify that OHAM’s technique is a
powerful method for the solution of linear and non-linear PDEs.

4 Conclusions

In this research work, we have systematically investigated the applicability and proficiency of the Optimal
Homotopy Asymptotic Method (OHAM) in solving a class of non-linear partial differential equations (PDEs), with a
particular focus on the generalized KdV-mKdV equation and its special cases. Our study demonstrates that OHAM
is not only a flexible and robust analytical technique but also a highly accurate one for treatment of complex nonlinear
systems. Unlike many traditional numerical or perturbation-based methods, OHAM does not rely on small or large
parameters, making it more broadly applicable and less restrictive.

The achievement of OHAM lies in its ability to systematically construct a convergent series solution through
an optimal selection of auxiliary functions and parameters. This approach allows for rapid convergence to the
exact or highly accurate approximate solutions with relatively a few iterations. The OHAM’s implementation is
straightforward and does not require discretization, linearization, or perturbation, which are common limitations in
many other analytical or semi-analytical techniques.

All necessary calculations and simulations for the generalized KdV-mKdV equation and its various special cases
were performed using MATLAB. The computational results confirm the method’s capability to handle nonlinearities
effectively and produce solutions that are consistent with those available in this research work.

Overall, this work confirms that OHAM is a powerful tool for researchers working with nonlinear PDEs. Its
ease of implementation, high accuracy, and wide applicability make it a valuable addition to the existing methods
for solving complex mathematical models arising in physics, engineering, and applied sciences.
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