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Abstract: Meteorological parameter modeling is imperative for predicting future atmospheric conditions. This
study focuses on the Sub-Saharan region of West Africa, a region characterized by its climatic diversity and unique
weather patterns, making it an ideal subject for meteorological research. The objective was to model meteorological
parameters using trigonometric and polynomial functions, assessing their predictive accuracy in selected West African
stations. The parameters considered include air temperature, air pressure, wind speed, rainfall, and relative humidity,
with data sourced from the HelioClim satellite archive, spanning 1980 to 2022. The data, recorded in comma-
separated value (CSV) format, were analyzed using descriptive statistics, specifically mean and standard deviation.
Each meteorological parameter underwent modeling through both polynomial and trigonometric functions. The
comparative effectiveness of these models was evaluated using the adjusted coefficient of determination and Root
Mean Square Error (RMSE). The preference for the adjusted coefficient of determination over the standard coefficient
of determination (R2) was due to its ability to account for biases arising from variances in the number of parameters
in both model types. The results indicated that both trigonometric and polynomial models are robust in their
predictive capabilities, demonstrating their utility in accurate parameter estimation and future weather prediction.
These findings suggest that such models are valuable tools in climate studies, enhancing understanding and awareness
of weather conditions in the Sub-Saharan West African region.

Keywords: Meteorological modeling; Statistical analysis; Polynomial models; Trigonometric models; Climate
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1 Introduction

Energy’s role in global development has been increasingly recognized as pivotal, as evidenced by extant research.
Its significance extends beyond environmental improvement to encompass worldwide comfort and wellbeing [1].
The environmental performance of systems, particularly in the realms of heating, air conditioning, and ventilating
of buildings, is influenced by solar cells and collectors, green power plants, and cooling towers. These systems
depend on meteorological parameters such as air temperature, wind speed, wind direction, air pressure, and relative
humidity, each contributing variably to the cooling and heating of the environment [2–5].

Research has shown that atmospheric energy consumption calculations, particularly in regions with high wind
speeds, can be enhanced by incorporating wind speed parameters into energy generation models [6–11]. Precise
planning, optimization, and performance forecasting of solar technology and environmental system control are
fundamentally grounded in weather modeling [3, 4, 12–14]. However, the accessibility of meteorological data in
Africa is hampered by several challenges. Financial constraints, mismanagement of funds by political office holders,
and population migration are notable factors impeding energy production in African nations. The development
of meteorological data characteristics for African energy production studies is based on these varied challenges.
Additionally, various mathematical and statistical methods have been employed to determine data for forecasting and
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weather modeling in diverse settings. The creation of weather data modeling utilizes these methods [15–17]. Several
studies have highlighted the influence of climatic factors on solar energy and the implications for energy concerns,
particularly wind energy, in different global regions.

Calculations of Global Solar Radiation (GSR) have been undertaken by numerous researchers [18–20], yet these
estimates often exhibit variations from the results reported by Kasten and Czeplak [21] and Poudyal et al. [22]. Such
variations encompass factors like air pressure and air temperature [23], and the positioning of rainfall [24–27]. It
has been noted that weather limitations, including relative humidity, air temperature, air pressure, wind speed and
direction, as well as environmental elements like sand and haze, show tendencies to fluctuate over the years [28].
Research conducted by various authors [3, 28–32] indicates that climatic disparities in urban areas are significantly
influenced by suburban activities due to environmental factors.

In studies focusing on correlation models for global diffuse and slanted irradiation [33], it was found that air
temperature notably influences other weather variables, including sunshine hours and relative humidity, as observed
in Valencia, Italy. The coefficient of determination for these models was reported to range between 0.75 and 0.85 [34].
Research has also been conducted to establish polynomial relationships between relative sunshine and the clearness
index in various environments [35]. Over a span of 15 years, statistical analyses of worldwide insolation data
were performed at six locations in Pakistan [36]. Additionally, Aweda et al. [3] have contributed to environmental
awareness by modeling weather characteristics in selected African sub-stations. Regression models based on
weather data collected in Oman between 1987 and 1992 have been developed for predicting future environmental
developments [15, 37, 38].

The impact of climate change on national development has been acknowledged as either positive or negative,
presenting a range of challenges. This variability can significantly influence global energy growth and development.
Notably, there has been limited research on climatic studies in the African sub-region and Asian countries [17, 39, 40].
Consequently, this study aims to model meteorological parameters in selected Sub-Saharan West African stations
through the comparison of trigonometric and polynomial functions. This approach intends to enhance occupant
awareness by providing more accurate predictive models for meteorological parameters.

2 Material and Methods
2.1 Data Collection

For the purpose of this study, a range of meteorological variables was sourced from the HelioClim-1 Solar
Radiation Data, as delineated in previous research [41]. These variables included air pressure, relative humidity, air
temperature, rainfall, wind speed, and wind direction. Data retrieval occurred on March 5, 2023, and encompassed
a time frame from January 1980 to December 2022, spanning 42 years. The data, in CSV format, were downloaded
following protocols outlined in prior studies [37, 42].

2.2 Study Area

The study was conducted across selected locations within the West African sub-region, as indicated in Figure 1.
Six sites were specifically chosen for their distinct geographic and climatic characteristics: Abidjan, Abuja, Bamako,
Conakry, Dakar, and Niamey. Data spanning from 1980 to 2022 were utilized for all these stations. Distinctions
between hinterland and coastal regions at each station were systematically tabulated (Table 1), providing a clear
differentiation of the geographical context of each location.

Figure 1. Map of selected West Africa pinpointing stations of the study
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Table 1. Separation of the hinterland and coastal regions of the African stations

Location Geographical Distinction Nation Longitude Latitude Data Timeframe
Abidjan Coastal region Cote d’Ivoire 04.008◦W 05.360◦N 1980− 2022
Abuja Hinterland region Nigeria 07.399◦W 09.077◦N 1980− 2022
Bamako Hinterland region Mali 08.003◦W 12.639◦N 1980− 2022
Conakry Coastal region Guinea 13.578◦W 09.641◦N 1980− 2022
Dakar Coastal region Senegal 17.366◦W 14.765◦N 1980− 2022
Niamey Hinterland region Niger 12.125◦W 13.512◦N 1980− 2022

2.3 Statistical Analysis

The collected data were subjected to descriptive statistical analysis, specifically employing mean and standard
deviation, to evaluate the meteorological parameters. Subsequently, these parameters were modeled using both
polynomial and trigonometric functions. To compare the efficacy of these models, the adjusted coefficient of
determination and RMSE were utilized. The preference for the adjusted coefficient of determination over the
standard coefficient of determination (R2) was to mitigate biases arising from the differences in the number of
parameters in the polynomial and trigonometric models. In instances where a contradiction between the adjusted R2

and RMSE was observed, the RMSE was given precedence. This was due to its focus on measuring the agreement
between actual and predicted values, which is crucial for this study. The parameters of these functions were estimated
using the Econometric View (E-view 7.0) software. Statistical significance was determined at a 5% threshold, with
a p-value of less than 0.05 deemed to indicate statistical significance. Table 2 provides a comprehensive summary
of the functions employed in this study, with ’m’ representing the month in all equations.

Table 2. Summary of the models used in the study

S/N Meteorological Parameters Trigonometric Function Polynomial Function
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3 Results and Discussion

Table 3 delineates the results from the comparative analysis of polynomial and trigonometric functions in
modeling meteorological parameters across six African capital cities. It was observed that the trigonometric
function exhibited superior performance over the polynomial function in modeling temperature for Abidjan (Adj. R2

= 0.987627, RMSE = 0.110032), Abuja (Adj. R2 = 0.569552, RMSE = 0.761431), Bamako (Adj. R2 = 0.854366,
RMSE = 0.940537), Conakry (Adj. R2 = 0.964589, RMSE = 0.098281), and Niamey (Adj. R2 = 0.876062, RMSE
= 0.999433). However, in Dakar (Adj. R2 = 0.937577, RMSE = 1.0258864), the polynomial function outperformed
the trigonometric model (Table 2). In the cases of Abidjan, Abuja, and Bamako, the trigonometric function yielded
more accurate predictions for atmospheric pressure compared to the polynomial function, whereas in other locations,
the polynomial model provided superior results. Regarding wind speed, the trigonometric function was found to
be more effective in Abidjan, Abuja, Bamako, and Niamey, while in Conakry and Dakar, the polynomial function
demonstrated better performance (Table 3). Additionally, the trigonometric function consistently resulted in lower
RMSE for rainfall across all locations compared to the polynomial function (Table 2).

In subgraph (A) of Figure 2 illustrates the trend in mean monthly temperature, showing a consistent decrease in
Abidjan and Abuja, while in Bamako, Conakry, Dakar, and Niamey, a decline was observed between July and August
(Figure 2). Mean monthly relative humidity across all locations was found to increase consistently from January
to August in subgraph (D) of Figure 2). Air pressure remained relatively constant throughout the year with minor
variations month-to-month in subgraph (C) of Figure 2. From January to April, a consistent decrease in monthly
mean wind speed was recorded in Bamako, Dakar, and Niamey, whereas in Abidjan, an increase was noted from
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February to March, followed by a decrease towards year-end in subgraph (D) of Figure 2. A rise in monthly mean
rainfall was observed in all locations from January to mid-year, followed by a consistent decrease towards year-end
in subgraph (E) of Figure 2).

Figure 2. Average monthly Air temperature (A), relative humidity (B), air pressure (C), wind speed (D), and
rainfall (E) in the selected African capital cities

The analysis of the monthly variations in meteorological parameters across the studied stations, as depicted in
Figure 1, revealed distinct patterns. Air temperature exhibited a sinusoidal trend, peaking around April, May, and
June, as shown in subgraph (A) of Figure 2. This period represents the hottest months across all observed stations.
Notably, Dakar and Abidjan recorded the highest temperatures, ranging between 34.5℃ and 34.7℃. The cooler
months, specifically January and December, were characterized by lower temperatures in Dakar, approximately
20℃. August, typically the wettest month in Africa, marked a significant temperature decline at all stations. It
has been observed that Dakar, influenced by the country’s distinctive natural characteristics and the implications of
human activities, exhibits a notable range in temperature extremes.

Air temperature and relative humidity are interconnected meteorological parameters. The study found that air
temperature significantly influences relative humidity, which varied between 15% to 80% across the different study
areas, as shown in subgraph (B) of Figure 2. The highest relative humidity levels, around 80%, were recorded in
Abidjan, Conakry, and Abuja. Dakar exhibited the lowest relative humidity, indicating a wetter climate possibly
influenced by the city’s topography. It is established that meteorological factors such as cloud cover, wind speed,
and rainfall impact relative humidity. A notable decrease in relative humidity was observed in January at all stations,
potentially due to the onset of winter conditions.

It was observed from subgraph (C) of Figure 2 that Conakry and Abidjan registered the highest air pressure
readings, each measuring 1005 hPa, predominantly in July. While these peak values were recorded during this month,
the average pressure for both locations typically fluctuated around 1000 hPa. The investigation further revealed a
gradual increase in atmospheric pressure, culminating in the highest recorded values in July. Conversely, the lowest
temperature readings across all the observed stations were recorded in the same month, indicating a significant
correlation between air pressure and temperature. Specifically, higher air temperatures were associated with elevated
air pressure. Abuja, in contrast, exhibited the lowest air pressure, approximately 960 hPa, noted in March. An
increase in air pressure was observed in December, following a consistent decline in November. Notably, November
emerged as the month with the second-highest temperatures across all study locations.

Further analysis, as depicted in subgraph (D) of Figure 2, focused on wind speed measurements in selected West
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African sites. The highest wind speed was recorded in Dakar, reaching 5.3 m/s, while Bamako reported the lowest at
0.56 m/s. The average minimum wind speed across all stations was identified as 1.5 m/s. These findings suggest that
the wind speeds in West African stations are generally low, rendering these locations less suitable for wind energy
production.

Rainfall patterns, as shown in subgraph (E) of Figure 2, revealed that rainfall was relatively low during January,
February, March, April, October, November, and December. Conakry experienced the highest rainfall in July,
indicating favorable climatic conditions for its inhabitants. A gradual increase in rainfall was observed across all
locations, peaking in July. This indicates that July is the month of highest rainfall. In contrast, Abuja experienced its
heaviest rainfall in August, approximately 500 mm. Other locations like Abidjan, Bamako, and Dakar also recorded
significant rainfall values. Notably, the values highlighted in bold represent the highest adjusted R2 and the lowest
RMSE, indicating the most effective model for each parameter and city.

Table 3, Table 4, Table 5 encompass monthly parameter estimates from 1980 to 2022 for air temperature, air
pressure, wind speed, rainfall, and relative humidity across the West African stations. These meteorological charac-
teristics were derived from the HelioClim satellite’s archive and modeled using specifically developed polynomial
and trigonometric models. The models’ parameters (a, b, c, d, and e) were determined based on the predictor variable
for the 12 calendar months. Figure 3, Figure 4, Figure 5, Figure 6, Figure 7 graphically represent the outcomes of the
data under investigation, offering visual insights into the temporal patterns and variations of these meteorological
parameters.

Table 3. Summary of the models used in the study

Polynomial Function Trigonometric Function
Parameters Cities Adj. R2 RMSE Adj. R2 RMSE

Temperature

Abidjan 0.821035 0.418463 0.987627 0.110032
Abuja 0.553166 0.775788 0.569552 0.761431

Bamako 0.711436 1.323932 0.8543662 0.940537
Conakry 0.610523 0.325944 0.964589 0.098281

Daka 0.937577 1.0258864 0.936335 1.036024
Niamey 0.767679 1.368343 0.876062 0.999433

Relative humidity

Abidjan 0.965789 0.633172 0.957141 0.708694
Abuja 0.956999 2.818256 0.968617 2.407623

Bamako 0.937462 4.921210 0.987659 2.186102
Conakry 0.987303 0.811618 0.940283 1.760160

Daka 0.575555 6.770688 0.923755 2.869646
Niamey 0.871642 6.031381 0.966022 3.103150

Pressure

Abidjan 0.650581 0.353862 0.910264 0.344415
Abuja 0.458817 0.315741 0.703239 0.502397

Bamako 0.478922 0.486730 0.621890 0.630402
Conakry 0.498133 0.284950 0.799790 0.376006

Daka 0.879559 0.536230 0.873317 0.599942
Niamey 0.559615 0.639941 0.692521 0.714088

Wind speed

Abidjan 0.799428 0.218187 0.800379 0.224606
Abuja -0.114642 0.184043 -0.021995 0.324418

Bamako 0.676810 0.476439 0.604958 0.613943
Conakry 0.705858 0.558136 0.827614 0.431710

Daka 0.618720 0.687925 0.676000 0.684713
Niamey 0.062119 0.584839 0.005871 0.791989

Rainfall

Abidjan 0.095654 40.67009 0.686795 25.21385
Abuja 0.620787 78.09367 0.914404 45.04271

Bamako 0.575719 36.27035 0.897049 19.63651
Conakry 0.810411 89.81055 0.984948 31.23856

Daka 0.243695 7.316231 0.640960 5.444344
Niamey 0.460500 15.84816 0.798712 10.46585

In Table 4, the comparative analysis of the best models for temperature and relative humidity across various
African cities is presented. For Abidjan, the trigonometric model was identified as the most effective for temperature,
evidenced by an adjustedR2 of 0.987627 and RMSE of 0.110032 (Table 3), and a significant p-value of less than 0.01 .
In contrast, the polynomial model was found to be superior for relative humidity in Abidjan, as indicated by an adjusted
R2 of 0.965789 and RMSE of 0.633172 (Table 3), with a p-value signifying significance at the 5% level (Table 4).
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Table 4. Parameter estimates for the best models for temperature and relative humidity across various African cities

Temperature Relative Humidity
Cities BM MP Estimates P-value BM MP Estimates P -value

Abidjan Trig.

a 26.49385

0.000 ∗ ∗ Poly.

a 66.12922

0.0000∗∗
b -0.447818 b 5.799516
c 1.562093 c -0.579862
d 0.664873 d 0.024093
e - e -0.000817

Abuja Trig.

a 25.07733

0.02045∗ Trig

a 67.34932

0.0000∗∗
b -0.491269 b -3.049751
c 1.483299 c -22.46636
d -0.275201 d 7.260378
e - e -

Bamako Trig.

a 27.15154

0.0002 ∗ ∗ Trig.

a 45.65734

0.0000∗∗
b -1.925019 b 5.320054
c 3.358603 c -31.92620
d -0.875937 d 6.917727
e - e -

Conakry Trig.

a 26.94685

0.0000∗∗ Poly.

a 62.95621

0.0000∗∗
b -0.452497 b -1.097139
c 0.712343 c 1.344814
d 19.49772 d -0.106692
e - e 0.000305

Dakar Poly.

a 13.00654

0.0000∗∗ Trig.

a 24.80436

0.000023∗∗
b 6.728311 b 8.130538
c -0.558213 c -14.35138
d -0.002020 d 6.800895
e 0.000542 e -

Niamey Trig.

a 28.54337

0.0002 ∗ ∗

a 36.15838

0.000001∗∗
b -2.142196 b 6.257349
c -4.037011 Trig. c -26.83707
d 8.177715 d 7.021166
e - e -

**Significant at 1% (p¡.01), *significant at 5 %( p¡.05), BM- Best model, MP - model parameters

Similarly, in Abuja, Bamako, and Conakry, the trigonometric model showed better performance for temperature,
while for Dakar, the polynomial regression model was more effective (adjustedR2 = 0.937577,RMSE = 1.0258864
) as outlined in Table 3.

Figure 3. Graph of the actual and predicted temperature for the different African cities. The designations ”A” and
”F” precede city abbreviations to denote ’actual’ and ’predicted’ data, respectively.

In the analysis presented in Table 4, trigonometric models were identified as the most effective for relative humidity
in Abuja, Bamako, Dakar, and Niamey, as indicated by high adjusted R2 values and low RMSEs. Conversely, in
Abidjan and Conakry, polynomial models demonstrated superior performance (Table 3). Table 4 summarizes the best
model estimates for temperature and relative humidity, with all study locations showing significant p-values, ranging
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Table 5. Parameter estimates for the best models for pressure and wind speed

Pressure Wind Speed
City BM MP Estimates P-value BMA MP Estimates P-value

Abidjan Trig.

a 1007.348

0.0000∗∗ Poly.

a 1.943611

0.003827 ∗ ∗
b 0.571421 b 0.496931
c -1.751883 c -0.079811
d 13.36563 d 0.010696
e - e -0.000627

Abuja Trig.

a 963.1581

0.02045∗∗ Poly.

a 2.767525

0.024520∗∗
b 0.477319 b -1.750868
c -1.249084 c 0.630849
d 13.07528 d -0.079500
e - e 0.003212

Bamako Trig.

a 967.1373

0.0002∗∗ Poly:

a 6.294823

0.00839∗∗
b 0.778008 b -2.563289
c -1.195484 c 0.633935
d 12.09733 d -0.075196
e - e 0.003221

Conakry Poly

a 1011.128

0.0007 ∗ ∗ Trig.

a 2.538059

0.000577 ∗ ∗
b -4.859096 b 0.609879
c 1.536227 c 1.511391
d -0.167237 d 11.05659
e 0.005901 e -

Dakar Poly-

a 985.8604

0.0005∗∗ Trig.

a 3.707578

0.006833∗∗
b -5.918450 b 0.214354
c 1.114903 c -1.773804
d -0.086875 d 10.57882
e 0.002639 e -

Niamey Poly

a 991.9065 a 2.921020
b -8.127671 b 0.361979
c 1.998818 0.0095∗∗ Poly. c -0.594285 0.432696∗∗

d -0.191172 d 10.17621
e 0.006395 e -

**Significant at 1% (p¡.01), *significant at 5%( p¡.05), BM- Best model, MP - model parameters

between 0.0000 and 0.02045 for pressure, and between 0.000577 and 0.432696 for wind speed. The regression
results were significant at all stations for pressure (p<.05), except for wind speed in Niamey, where the regression
did not reach significance (p<.05) as shown in Table 5.

Regarding wind speed, polynomial functions were determined to be the best model for Abidjan, Abuja, and
Bamako, while trigonometric models were more suitable for Conakry, Dakar, and Niamey (Table 3). For rainfall,
trigonometric functions consistently outperformed polynomial functions across all considered stations (Table 3),
with p-values below 0.05, indicating a well-fitting model (Table 6).

The range of wind speed values across the studied stations was determined to be between 2.538059 and 3.707578
m/s. The p-values for these stations varied from 0.003827 to 0.432696. When these results were compared with
those documented in source [5], it was evident that the models used in this study yielded improved performance. This
enhancement in predictive accuracy can be ascribed to the specific climatic conditions prevailing at the examined
stations. Furthermore, it was ascertained that the polynomial function exhibited superior performance over the
trigonometric function in modeling both air pressure and wind speed. As presented in Table 6, the significance of
the models was affirmed by p-values less than 0.05 (p¡.05) at all stations, validating the statistical significance of the
models in these contexts.

The results were further validated by plotting graphs of the actual versus predicted monthly mean for each
meteorological parameter in each of the six African capital cities. These visual representations, as illustrated in
Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, revealed a general agreement between actual and predicted values
for all meteorological parameters, except for rainfall, where some discrepancies were observed in certain months (
Figure 7).

This format is consistent across 3, Figure 4, Figure 5, Figure 6, Figure 7, facilitating easy comparison between
actual observations and model predictions for each city.
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Table 6. Parameter estimates for the best models for rainfall

City BM MP Estimates P-value

Abidjan Trig.

a 163.5817

0.005990 ∗ ∗b -58.81370
c 28.22748
d 4.452345

Abuja Trig.

a 149.4851

0.000036 ∗ ∗b 101.6396
c 225.8660
d 4.111632

Bamako Trig.

a 53.29268

0.000075 ∗ ∗b 47.27955
c 84.67203
d 3.948423

Conakry Trig.

a 275.6750

0.000000 ∗ ∗b 137.4656
c 395.9395
d 3.916508

Daka Trig.

a 5.894232

0.010172 ∗ ∗b 7.461341
c 10.45099
d 4.023459

Niamey Trig.

a 19.64075

0.001062 ∗ ∗b 18.19402
c 30.52752
d 4.013247

**Significant at 1% (p¡.01), *significant at 5 %( p¡.05), BM- Best model, MP - model parameters

Figure 4. Graph of the actual and predicted relative humidity for the different African cities

Figure 5. Graph of the actual and predicted pressure for the different African cities
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Figure 6. Graph of the actual and predicted wind speed for the different African cities

Figure 7. Graph of the actual and predicted rainfall for the different African cities

4 Conclusion

This study, utilizing data from the HelioClim satellite archive, analyzed meteorological variables including air
temperature, air pressure, wind speed, relative humidity, and rainfall in selected Sub-Saharan West African stations.
The study employed five-parameter models (a, b, c, d, and e) and concluded that trigonometric and polynomial
functions were the most suitable for modeling these meteorological parameters. Notably, Dakar was observed to
experience both the highest and lowest temperatures, while Abidjan and Dakar recorded the highest and lowest
relative humidity, respectively. Conakry exhibited the highest air pressure, with Abuja having the lowest. In terms of
wind speed, Dakar reported the highest values, whereas Bamako had the lowest. Furthermore, Conakry experienced
the highest rainfall, contrasting with Dakar’s minimal precipitation.

The regression analysis of the weather data indicated that air temperature had a higher RMSE than other
factors, with the polynomial function generally outperforming the trigonometric function. However, for air pressure
predictions, the trigonometric function was more accurate in Abidjan, Abuja, and Bamako, while the polynomial
function was preferable in other locations. For wind speed, the trigonometric function surpassed the polynomial
model in Abidjan, Abuja, Bamako, and Niamey, whereas the opposite was true for Conakry and Dakar. Moreover, the
trigonometric function consistently yielded the lowest RMSE for rainfall across all locations. The study posits that
the developed models can serve as effective tools in climatic studies, enhancing understanding of weather conditions
in various regions.

Therefore, this study concludes that the trigonometric function generally demonstrates superior performance in
modeling meteorological parameters in most West African stations assessed. This work could guide further research
and development in Africa’s meteorological studies.

5 Recommendation

It is recommended that African governments prioritize the establishment of more research centers dedicated
to data collection for research and application. This initiative is crucial for raising awareness about environmental
cleanliness and the urgent need to curb deforestation and bush burning across the continent. Such practices contribute
to ozone depletion, potentially leading to increased solar radiation and adversely affecting agricultural productivity.
Furthermore, it is imperative that African governments formulate and implement policies to mitigate environmental
pollution and disruptions, which have significantly contributed to the continent’s ecological challenges.
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