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Abstract: Accurate assessment of Global Navigation Satellite System (GNSS) observation data quality is essential
for ensuring the reliability of positioning and navigation applications. Traditional evaluation methods, which rely on
single-index weighting or simplistic combinations of multiple indicators, have proven insufficient in capturing the
multifaceted nature of observation quality. To address these limitations, a comprehensive evaluation framework was
developed based on a combined weighting strategy that integrates the information entropy weight method and the
coefficient of variation method. This hybrid approach enhances the objectivity and sensitivity of index weighting
by leveraging the strengths of both methods. Furthermore, fuzzy mathematics theory was incorporated to model the
uncertainty and vagueness inherent in GNSS observations, thereby enabling the systematic identification and exclu-
sion of low-quality and low-confidence data. This integration allows for the robust evaluation of multi-constellation
GNSS observation data, accommodating complex and variable observational environments. The proposed method
was validated through empirical analysis, demonstrating superior performance in distinguishing high-quality data
compared to conventional single-indicator and single-weighting approaches. Experimental results confirm that the
proposed framework yields more reliable and scientifically grounded quality assessments, contributing to improved
accuracy and stability in downstream GNSS applications.

Keywords: GNSS observation data; Data quality evaluation; Combined weighting method; Fuzzy mathematics
theory; Information entropy; Coefficient of variation

1 Introduction

GNSS refers to all the satellite navigation systems. With over 130 navigation satellites [1], GNSS can provide
users with three-dimensional coordinates and time information on the Earth’s surface or near-Earth space, achieving
functions such as positioning, velocity measurement, and timing. Leveraging its advantages of all-weather operation,
high precision, and no line-of-sight requirements, it can conduct periodic or real-time monitoring of landslides,
making it widely used in geodesy, navigation and positioning, and geological surveying [2, 3].

The accuracy of GNSS positioning results is closely related to the quality of observation data, which is mainly
affected by the surrounding observation environment and the performance of the receiver itself [4–6]. In practical
monitoring applications, landslides often occur in outdoor environments, causing the receiver to be easily obstructed
by surrounding trees, mountains, and other environmental factors when receiving satellite signals in the field, which
affects the quality of observation data and reduces the accuracy and reliability of landslide positioning and warning.

However, the traditional evaluation indicators such as signal-to-noise ratio (SNR), cycle slip ratio (CSR), multi-
path error effect and other indicators can only reflect the specific data quality, and are not suitable for evaluating
the overall quality of observations. The single entropy weight method only starts from mathematical statistical
characteristics, ignores the actual significance of indicators, and cannot reflect the actual importance of indicators.
It is extremely sensitive to extreme values in sample data. If there are extreme values in the data, it will cause a
drastic change in the entropy value of a certain indicator, thereby distorting weight allocation. Moreover, its weight
is completely determined by the degree of data dispersion. If the data fluctuation of a certain indicator is small, its
entropy value may be underestimated, resulting in unreasonable weight allocation.

Overall, in the face of such complex GNSS observation data, it is difficult for traditional quality analysis indicators
and single weighting methods to comprehensively and accurately characterize the overall quality of the multi-system
observation data. Therefore, on the basis of these two methods, the weight coefficient of each evaluation index was

https://doi.org/10.56578/atg030401

181

https://www.acadlore.com/journals/ATG
https://crossmark.crossref.org/dialog/?doi=10.56578/atg030401&domain=pdf
https://orcid.org/0000-0001-5147-7931
https://orcid.org/0009-0005-6677-2331
https://doi.org/10.56578/atg030401
https://doi.org/10.56578/atg030401


determined by combining the entropy weight method and the coefficient of variation method [7], and then combined
with the fuzzy mathematical theory to obtain the quality evaluation results in this study. The results show that the
proposed method can accurately reflect the poor-quality satellite system data in the observation data, and provide a
reliable reference for the subsequent positioning solution.

2 Data Quality Check Metrics

The quality of observed data is a critical guarantee for the accuracy and reliability of satellite navigation and
positioning. It is influenced by various factors such as the observation environment, the hardware performance of
the receiver, and the status of the satellite.

Currently, the International Organization for Standardization (ISO) has long recognized multi-path effect, CSR,
SNR, data efficiency, and Geometric Dilution of Precision (GDOP) is the core evaluation index of GNSS data
quality [8]. The above indicators are independent of each other, covering the four key dimensions of the equipment’s
working environment, signal, data continuity and satellite geometry. They can fully cover the key error sources of
the whole link of satellite signals from launch, propagation, reception and calculation. According to the empirical
value, data statistics and relevant literature [9, 10], the influence degree of each index on the quality of observation
data can be divided into four levels: Tier I considers the observation data to be ideal with high confidence, suitable
for direct use in positioning; Tier II considers the observation data to be good, with some epochs having poor quality;
Tier III considers the observation quality to be poor, which will significantly affect positioning accuracy; and Tier IV
considers the quality to be very poor, unsuitable for use in positioning solutions, and should be discarded, as shown
in Table 1.

Table 1. The level of impact of the quality assessment index

Multi-Path Effects SNR CSR Data Effectiveness Rate GDOP
I ≤ 40 ≥ 50 ≤ 5 ≥ 95 ≤ 1
II ≤ 60 ≥ 40 ≤ 10 ≥ 90 ≤ 6
III ≤ 80 ≥ 35 ≤ 15 ≥ 80 ≤ 8
IV ≤ 100 > 30 ≤ 20 < 70 ≤ 20

Data efficiency is a crucial metric for assessing data quality. It is defined as the ratio of actual valid data received
over a period to theoretical observed data. Theoretical data is calculated based on the set satellite elevation angle and
satellite ephemeris, which determines the number of satellite observations that can be received. However, during
actual observation, due to environmental factors around the receiver and hardware limitations of the receiver itself,
some unusable satellite observation values are removed. The actual number of received data after such removals
constitutes the valid data. A higher ratio indicates better data efficiency and greater completeness and reliability. Its
calculation formula is given as follows:

Ra =
Hav

ExP
× 100% (1)

where, Ra represents the effective rate, Hav represents the actual number of receptions, and Exp represents the
theoretical number of receptions.

The foundation of satellite positioning is based on calculating the distance between a satellite and a receiver by
measuring the time it takes for a signal to travel from the satellite to the receiver. However, during actual signal
propagation, environmental factors such as reflection and refraction can affect the signal, causing multi-path signals
to have longer propagation paths than direct signals. This results in significant positioning errors [11], as shown in
Figure 1. Nowadays, linear combinations of pseudorange and carrier phase observations can be used to estimate
multi-path effects for dual-frequency observations of all the GNSS [12], with the formula given as follows:

MPk = Pk − Li − β (Li − Lj)
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where, MP is the multi-path effect; P is the dual-frequency pseudorange observation value; L is the dual-frequency
carrier phase observation value; f is the frequency; and k, i and j are the frequency point numbers.

The MP value reflects the change of the multi-path effect. The smaller the MP value is, the stronger the ability
to resist the multi-path effect is, and the less influence it has on the final positioning solution.

Cycle slip is the phenomenon of discontinuity in the carrier phase caused by various factors when a receiver
receives satellite signals. Factors that can cause cycle slip include brief occlusions by surrounding objects, rapid
movement of the receiver, and hardware failures of the receiver.

CSR, as an indicator of error measurement in GNSS, represents the ratio between the overall observation and
the number of times jitter occurs during the signal reception process. A higher value is better. Over the past few
decades, many algorithms have been proposed for detecting and correcting jitter ratios, including phase ionospheric
residuals [13], Kalman filter-based methods [14], polynomial fitting [15, 16], and wavelet transform [17, 18].

Anubis utilizes the combination of geometry-free and Melbourne-Wubbean methods to continuously detect
weekly slips in the study by Leick et al. [9]. By calculating the phase change of each satellite at each epoch and using
differential algorithms to calculate the phase changes between adjacent epochs, it determines whether a weekly slip
has occurred. Existing scholars have used the CSR method to evaluate the weekly slip ratio, with the calculation
formula shown in Eq. (3). The smaller the value, the fewer the number of weekly slips during the monitoring period,
indicating better quality. In the formula, O/Slip represents the weekly slip ratio.

CSR =
1000

O/Slip
(3)

SNR refers to the ratio of the strength of a satellite signal to the intensity of environmental noise, measured in
dB·Hz. It is primarily influenced by factors such as the satellite’s elevation angle, receiver antenna, and the multi-path
error. The higher the SNR, the stronger the signal and the better the quality of the observed signal. Furthermore,
studies have shown that the SNR can also indirectly reflect the environment around the receiver, allowing for the
reduction of multi-path effects through appropriate algorithms [19]. Its calculation formula is given as follows:

SNR = 10 lg
Ps

Pn
(4)

where, SNR represents the signal-to-noise ratio, Ps represents the signal power, and Pn represents the noise power.
In the field of satellite positioning, the precision factor is an indicator that measures the geometric conditions

possessed during GNSS measurements, and its value is related to the distribution of receivers and satellites. GDOP
reflects the amplification effect of the geometric distribution between the station and satellites on ranging errors.
When the angles between the receiver and satellites are close and all observable satellites are concentrated in a certain
area, the GDOP value is high, leading to poorer positioning accuracy [20]. In actual observations, it is necessary to
ensure that satellites are evenly distributed across different directions.

3 Fuzzy Mathematics Theory

At the end of the 19th century, the famous German mathematician Cantor first proposed set theory, which greatly
promoted the development of mathematics. In 1956, American Chad proposed the concept of fuzzy set on the basis
of set theory [21], which is mainly used to describe the uncertainty and randomness of the objective world, and has
been widely used in various fields. In the traditional set theory, it is believed that for an element u of a set A, there
are only two states: either it belongs to the set A or not. There will be no third situation.

However, in real life, many situations are not “either-or.” Instead, they involve more ambiguous concepts where
it is impossible to give an absolute yes or no answer to whether each object fits. The answer lies between “good”
and “bad” and “yes” and “no,” presenting a relationship that is both this and that. Therefore, it is necessary to extend
the results of characteristic functions from traditional set theory, which can only take values of 0 and 1, to the closed
interval of [0,1]. This means that different elements in a set can have different degrees of membership within the
same set, thereby quantifying the relationship between elements and sets.

To reflect the mapping relationship between fuzzy subsets and membership functions, it is necessary to establish
a membership function. For a given fuzziness set A, the membership function u(x) can map element x to [0, 1].
Common membership functions include triangular membership functions, trapezoidal membership functions, and
Gaussian membership functions, among others. In depicting the grading boundaries of GNSS data quality, a reduced
half-trapezoidal distribution was used to characterize the membership. Finally, these three membership functions
were brought into Table 1 to obtain the specific membership functions.

In the trapezoidal membership function, the partial membership function is as follows:
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µA(x) =

 1 x < a
(b− x)/(b− a) a ≤ x ≤ b

0 x > b
(5)

The intermediate membership function is as follows:

µA =


x−a
b−a a ≤ x ≤ b

1 b ≤ x ≤ c
d−x
d−c c ≤ x ≤ d

0 x < a, x ≥ d

(6)

The defuzzification membership function is as follows:

µA =


0 x < a

x−a
b−a a ≤ x ≤ b

1 x > b
(7)

4 Comprehensive Evaluation Index Construction and Algorithm Steps

The comprehensive evaluation index proposed in this study is based on the following fundamental idea: using two
weighting methods—entropy weight method and coefficient of variation method—to obtain the weight coefficients
for each satellite system in the observed data through linear combination. Here, the “entropy” in the entropy weight
method refers to information entropy, which reflects the degree of disorder in information and can measure the
amount of information. In the quality assessment of observed values, the more information an indicator carries, the
smaller its entropy value, indicating that the indicator plays a greater role in quality evaluation.

However, the weight obtained by the entropy weight method is derived from actual observations, which, while
reducing the impact of outliers, also has the drawback of weight distribution equilibrium [22]. This is because
the entropy weight method determines weights based on observed data without considering the varying degrees of
influence that different evaluation indicators have on the quality of observed data. Therefore, the weights should not
be balanced. The weights from the entropy weight method were adjusted using the coefficient of variation method,
and then the comprehensive evaluation index for each satellite system in the observed data was derived through linear
combination. A higher value indicates better quality.

Standardized data processing: Since the dimensions of various indicators are not the same, the data need to
be normalized. According to the evaluation relationship between indicators and quality, it can be divided into the
following two formulas (forward pointer and negative indicators):

Qij =
Xij −Min (Xi)

Max (Xi)−Min (Xi)
(8)

Qij =
Max (Xi)−Xij

Max(Xi)−Min(Xi)
(9)

where, Qij is the j-th sample data under the value of the i-th index after dimensionalization, Xi is the j-th sample
data of the i-th index, and Min (Xi) and Max (Xi) represent the minimum and maximum values of the sample under
the i-th index, respectively.

The proportion of the j-th sample under the i-th index can be calculated as follows:

Pij =
Xij∑n
i=1 Xij

(10)

The entropy value and the weight of index i can be calculated as follows:

ei = −K×
n∑

i=1

(Pij × ln (Pij)) (11)
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Di =
1− ej∑n

i=1 1− ej0
(12)

where, ei represents the entropy value of index i, and Di represents the weight of index i.
Coefficient of variation in the legal authority process is as follows:

CVl =
σl

µl
(13)

Pi =
CVl∑n
i=1 CVl

(14)

where, CV is the coefficient of variation, P is the weight based on the coefficient of variation, and σ and µ are the
standard and mean values, respectively.

The weighting factor in the combination weighting can be calculated according to the variance contribution rate
as follows:

λ =
Pi

Pi +Di
(15)

The final combination weight was constructed by combining the two results through the weighting factor as
follows:

wj = λDi + (1− λ)Pi (16)

5 Experimental Application

To verify the effectiveness of the method presented in this study, test validation was conducted using actual
measurement data. The test data was obtained from the monitored and measured data of the same slope from 00:00
to 12:00 on different dates (August 13, 2024, September 29, 2024 and October 20, 2024). The calculation process
takes the station data on August 13 as an example. Data corresponding to the observation values from the station
were extracted and used to calculate the effective availability, the multi-path effect index, SNR, and CSR, among
others. The results are shown in Table 2.

Table 2. Extraction and summary of observation data on August 13, 2024

Satellite
System

Effective
Percentage MP1 MP2 MP3 MP4 MP5 MP6 MP7 CSR Average SNR

Global Positioning
System (GPS) 100.0% 26.8 39.8 49.9 - 46.2 - - 3.2 45

Galileo (GAL) 93.3% 44.2 - - - 49.5 - 51.1 55.6 41.1
GLONASS (GLO) 92.6% 61.0 69.0 - - - - - 16.1 41.3
BeiDou Navigation

Satellite System (BDS) 100.0% - 29.3 - - - 35.0 32.6 0 42.0

The observed data index was brought into the corresponding membership function, and the fuzzy degree
relationship matrix of each satellite system capacity was obtained as follows:

RGPS =


0.5 0.5 0 0
1 0 0 0
0 0.966 0.033 0
1 0 0 0
0.6 0.4 0 0

 RBDS =


0.3 0.3 0 0
1 0 0 0

0.385 0.615 0 0
1 0 0 0

0.67 0.33 0 0



RGAL =


0.214 0.214 0 0
0 0 0 1
0 0.587 0.413 0

0.66 0.66 0 0
0 0 0 1

 RGLO =


0.532 0.532 0 0
0 0 0.774 0.226
0 0 0.635 0.365

0.72 0.72 0 0
0.454 0.546 0 0


(17)
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After normalizing the data, the information entropy weighting method was used to calculate the information
entropy to obtain the weight value. Therefore, the observed data was substituted into the above formula to obtain the
weight coefficient as follows:

w =
(
0.271 0.139 0.150 0.287 0.151

)
(18)

B = w · R was used to obtain the fuzzy comprehensive evaluation results of GNSS observation data quality
based on the information entropy weighting method. The results are shown in Table 3.

The evaluation results can also be roughly divided into four levels: Level I considers the observation data to
be ideal with high confidence, suitable for direct use in positioning; Level II considers the observation data to be
good, but some historical data have poor quality; Level III considers the observation quality to be poor, which will
significantly affect the positioning accuracy; and Level IV considers the quality to be very poor, unsuitable for use
in positioning calculations, and should be excluded.

Table 3. Evaluation results of the entropy weighting method

System I II III IV Evaluation Results
GPS 0.545 0.232 0.005 0 I
BDS 0.640 0.223 0 0 I
GAL 0.163 0.336 0.062 0.288 II
GLO 0.256 0.263 0.211 0.079 II

Firstly, the characteristic value matrix of the evaluation index was constructed according to the data in Table 1 as
follows: 

50 5 20 95 1
40 10 40 90 6
35 15 60 80 8
30 20 80 70 20


The weight based on the coefficient of variation method was calculated by Eqs. (10)-(11), and finally the weight

coefficient of the combined weighting after the weight adjustment based on the coefficient of variation method was
obtained by Eqs. (12)-(13),

w =
(
0.154 0.186 0.200 0.098 0.360

)
(19)

The fuzzy comprehensive evaluation results of GNSS observation data based on combination weighting were
obtained by using B = w ·R, as shown in Table 4.

Table 4. Evaluation results of combined weighting

System I II III IV Evaluation Results
GPS 0.412 0.274 0.006 0 I
BDS 0.511 0.224 0 0 I
GAL 0.060 0.199 0.074 0.389 IV
GLO 0.174 0.178 0.256 0.096 III

The quality analysis index in the observation data, the comprehensive evaluation model based on the information
entropy weighting method and related results are summarized in Table 5.

Table 5. Comparison of data evaluation results on August 13, 2024

System SNR Multi-Path
Effect

Data
Efficiency CSR GDOP Entropy

Weight Method
Combining

Empowerment
GPS II II I I I I I
BDS II II I I I I I
GAL II II II IV IV II IV
GLO II III I III II II III

As shown in the table above, using a single evaluation metric for assessing GNSS observation quality has obvious
limitations, leading to contradictory results from different single metrics. For example, under the multi-path metric,
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GLO quality is rated as Level III, indicating poor quality and low confidence; however, under the data efficiency
metric, GLO quality reaches its best level. The inherent flaws of this single-metric evaluation system prevent it from
comprehensively reflecting the overall system quality, making it difficult to balance the weight relationships among
various quality metrics and lacking a unified standard for assessment.

The information entropy weighting method calculates the weights of each indicator and then combines them
through linear methods to encompass all aspects of observational data. It can represent the overall quality of
observations through its composite indicators, indicating that the evaluation results obtained using the information
entropy weighting method are more reliable and reasonable compared to those from single indicators. The calculation
results of the information entropy weighting method show that the observation values of GPS and BDS have excellent
quality and high confidence, making them suitable for direct use in positioning solutions. The observation data of
GAL and GLO also have good quality, with most epoch data being usable for positioning solutions. According to
the calculation results of the information entropy weighting method, the data from certain epochs of GLO and GAL
should be excluded in data processing.

The comprehensive evaluation model constructed using a combination of information entropy weighting and
coefficient of variation shows that the quality of BDS and GPS satellite observation data is equally excellent with
high confidence levels, meeting the quality requirements for high-precision positioning calculations, and can be
directly used in subsequent positioning calculations. However, the quality of GLO satellite observations is poor,
requiring further assessment of application risks. The GAL observation data are the most severely affected with
very low confidence levels, and should be excluded in subsequent positioning calculations to avoid impacting overall
positioning accuracy.

The results obtained from the combined weighting method differ slightly from those of the information entropy
weighting method. This is because the combined weighting method takes into account not only the actual observed
conditions but also the overall impact of indicators on observation quality. By adjusting the weights derived from
the information entropy weighting method using the coefficient of variation, its weight coefficients tend to be more
reasonable compared to those obtained solely through the information entropy weighting method.

Table 6. Comparison of weight coefficients of evaluation indicators between the two methods

Method SNR CSR Multi-Path Effect Data Integrity Rate GDOP
Information entropy
weighting method 0.272 0.140 0.150 0.287 0.151

Composite
weighting method 0.141 0.172 0.180 0.096 0.216

Table 7. Comparison of the evaluation results of the other two groups

2024/9/29 2024/10/20

System Entropy
Weight Method

Combining
Empowerment

Entropy
Weight Method

Combining
Empowerment

GPS I I I I
BDS I I I I
GAL II IV III IV
GLO III IV IV IV

The weights obtained from the information entropy weighting method and the combined weighting method
are summarized in Table 6. According to the table, under the information entropy weighting system, the weight
coefficients of each indicator are ranked as follows: data completeness > SNR > geometric accuracy factor >
multi-path effect > CSR. Under the combined weighting method, the weight coefficients of each indicator are ranked
as follows: geometric accuracy factor > multi-path effect > CSR > SNR > data completeness. In the combined
weighting method, the geometric accuracy factor has the highest weight coefficient, indicating that this indicator is
the most important. This is because the geometric accuracy factor encompasses both horizontal and vertical satellite
position distributions. Additionally, when the satellite’s elevation angle is too low, it can lead to longer signal
propagation paths, which also increases the multi-path effect value. Since this indicator covers the most information,
its weight should be the largest. The multi-path effect directly impacts positioning accuracy and should not have an
excessively small weight. Conversely, since the SNR and data completeness of each satellite system are relatively
high and not significantly different, they should not be considered the most influential factors. This indirectly proves
that compared to the information entropy weighting method, the combined weighting method is more scientifically
accurate.
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According to the above calculation process, the calculation results of the other two days were calculated respec-
tively, as shown in Table 7.

6 Result Comparison of Location Solutions

The solutions can be categorized into fixed and floating solutions based on whether the ambiguity is fixed. A
floating solution is obtained when the ambiguity cannot be fixed, while the accuracy of a fixed solution is much
higher than that of a floating solution. The success rate of fixing the ambiguity directly reflects the quality of the
solution. In the solution result file, Q = 1 indicates a fixed solution, and Q = 2 indicates a floating solution. The
solution mode shall be consistent, and the specific settings are shown in Table 8. Due to the selected same slope,
it is considered that environmental factors have basically the same impact on the observation data. From the above
analysis, it can be concluded that during monitoring, the combined index values of GLO and GAL are relatively
low, significantly interfering with the positioning results. To verify whether the comprehensive index can accurately
reflect the data quality of the observation value, the observation value was solved using different positioning methods,
and the quality of the positioning results was reflected through the success rate of fixing the ambiguity. In the final
positioning solution, the satellite systems involved in the positioning were divided into two groups: GPS + BDS +
GAL + GLO, and GPS + BDS. The positioning results are shown in Figure 1 to Figure 6.

Figure 1. GPS + BDS combination solution results on August 13, 2024

Table 8. Data solution mode

Name Parameter
Mode Static

Data frequency L1 + L2
Cutoff angle 15◦

Iono correction Broadcast
Tropospheric correction Saastamoinen

Satellite clock error Broadcast
Ambiguity fixed mode Fix and hold

The above calculation results were summarized, obtaining the information in Table 9.
The mean value of the standard deviation in the above table represents the average standard deviation of the

baseline length during the monitoring process, indicating the stability of the baseline during the whole monitoring
process. Therefore, it can be seen from the table that the mean value of the standard deviation of the multi-system
combination (GPS + GLO + GAL + BDS) is significantly higher than that of the GPS + BDS combination. At the
same time, the success rate of ambiguity fixation of the two systems is significantly higher than that of the other
system combinations, indicating that the higher the success rate of ambiguity fixation, the more stable the baseline
solution results. This indicates that the data quality of GAL and GLO is poor, which has a great impact on the
positioning results. The experimental results are consistent with the comprehensive indicators, and it is also verified
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that eliminating the satellite system data with poor quality has a significant effect on improving the positioning
accuracy and stability.

Table 9. Data solution mode

Date System Mean Value
of Standard Deviation

Fixed
Success Rate

2024/8/13 GPS + GLO + GAL + BDS 4.65 80.4%
GPS + BDS 2.03 99.4%

2024/9/29 GPS + GLO + GAL + BDS 5.17 71.9%
GPS + BDS 2.04 99.4%

2024/10/20 GPS + GLO + GAL + BDS 5.17 71.6%
GPS + BDS 2.03 98.9%

Figure 2. GPS + BDS + GLO + GAL combination solution results on August 13, 2024

Figure 3. GPS + BDS combination solution results on September 29, 2024
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Figure 4. GPS + BDS + GLO + GAL combination solution results on September 29, 2024

Figure 5. GPS + BDS combination solution results on October 20, 2024

Figure 6. GPS + BDS + GLO + GAL combination solution results on October 20, 2024

190



7 Conclusion

A GNSS observation quality assessment method based on fuzzy mathematics theory was proposed in this study.
Five evaluation indicators were selected, namely, average SNR, average multi-path effect, data efficiency, CSR, and
the average DGOP value. After combining the entropy weighting method with the coefficient of variation method
for weighting, these indicators were used in conjunction with fuzzy mathematics theory to characterize the quality
of observation data. Experimental data show that this indicator can accurately and scientifically reflect the quality
of observation data, making it an effective evaluation metric for GNSS observation data, suitable for application in
engineering experiments. However, the number of samples in this experiment is small. Future experiments could
increase the sample size to further verify the reliability of this indicator.
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