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Abstract: Urban air pollution remains a persistent challenge in the Global South, where rapid urbanization, limited monitoring infrastructure, and weak regulatory frameworks hinder effective environmental governance. In Lima, Peru—one of the most polluted capitals in Latin America—elevated PM2.5 and PM10 concentrations continue to pose serious threats to public health and sustainable urban development. Traditional Air Quality Index (AQIs), such as the U.S. EPA standard, often struggle to account for data uncertainty, pollutant interactions, and spatial heterogeneity. To address these gaps, this study introduces a novel AQI based on grey systems theory, applying a grey  clustering  framework  enhanced  with  center-point  triangular  whitenization  weight  functions  (CTWF).  The model was specifically designed to handle ambiguous data and overlapping pollution categories. It was applied to daily  PM2.5  and  PM10  data  from  nine  monitoring  stations  across  metropolitan  Lima,  with  validation  conducted against both Peru’s national air quality standards and the U.S. EPA AQI. Results showed that the proposed index outperformed conventional methods under uncertain conditions, revealing critical spatial disparities often missed by  traditional  models.  Beyond  diagnostic  accuracy,  the  index  offers  a  scalable  and  transferable  tool  for  urban planners  and  decision-makers  to  support  targeted  interventions,  inform  policy  development,  and  advance Sustainable Development Goals—specifically SDG 3 (Good Health and Well-Being) and SDG 11 (Sustainable Cities and Communities). 
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1. Introduction

Urban air pollution is one of the most pressing environmental and public health challenges of the 21st century. 

Among  pollutants,  particulate  matter  (PM2.5  and  PM10)  has  been  consistently  linked  to  respiratory  and cardiovascular diseases, reduced life expectancy, and increased mortality rates (Kebe et al., 2025; World Health Organization,  2021). These risks are particularly acute in cities of the Global South, where rapid urbanization and limited regulatory capacity exacerbate exposure to hazardous air quality. 

Recent research has introduced diverse approaches to improve the assessment of urban air quality, including statistical  forecasting  in  India  (Yadav  &  Ganguly, 2025),   artificial  neural  network  model  for  prediction  of  air pollution index (Basir et al., 2025), hybrid neural networks in Iraq (Altahaan & Dobslaw, 2025),  and integration of socio-demographic patterns with sensor-based measurements (Veres et al., 2025). While these methods provide valuable  insights,  they  depend  on  dense  monitoring  networks  as  well  as  large  and  continuous  datasets,  rarely present  in  urban  contexts  with  scarce  resources.  As  a  result,  their  applicability  in  cities  with  fragmented infrastructures, such as Lima, remains limited. 

Conventional Air Quality Indices (AQIs), such as those of the United States Environmental Protection Agency (EPA, 2024) and the Ministry of Ecology and Environment in China (Qin et al., 2024),  rely on rigid thresholds and dominance rules that prioritize single pollutants. These frameworks are effective for public communication but  insufficient  for  urban  planning  as  they  cannot  capture  the  interaction  of  pollutants,  manage  data  gaps,  and reflect spatial heterogeneity. These gaps underscore the need for more adaptive and uncertainty-resilient diagnostic tools. 
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Grey systems theory, specifically grey clustering with center-point triangular whitenization weight functions (CTWF), provides a robust framework to address these limitations. Unlike AI or  purely statistical models, grey clustering  does  not  require  large  datasets  and  can  explicitly  incorporate  incomplete  or  limited  information (Delgado  et  al., 2018;   Delgado  &  Romero, 2017; Li, 2013).   It  is  therefore particularly  suitable  for  data-scarce cities, where pollutants interact in complex ways and monitoring systems are inconsistent. 

Lima in Peru exemplifies the challenges of a megacity with severe pollution from PM2.5 and PM10, fragmented monitoring network, and high socio-environmental inequality. To address these conditions, this study developed and applied a novel AQI based on grey clustering with CTWF, using daily data from nine monitoring stations (Ministerio  del  Ambiente-SENAMHI, 2024). The  results  were  validated  against  both  Peruvian  environmental standards (MINAM,  2017) and the U.S. EPA AQI (EPA, 2024),  thus proving the capacity of the model to generate nuanced  classifications  and  actionable  insights.  More  broadly,  the  proposed  index  contributed  to  Sustainable Development Goal (SDG) 3 (Good Health and Well-Being) and SDG 11 (Sustainable Cities and Communities) by offering a scalable decision-support tool for urban environmental governance. 




2. Literature Review 

Urban  air  quality  has  become  a  central  theme  in  Environmental  Science  due  to  its  critical  impact  on  public health  and  sustainable  city  planning.  Conventional  QIs,  while  widely  used,  are  often  criticized  for  their  rigid classification rules and limited capability to integrate multi-pollutant dynamics or capture uncertainty under data-sparse conditions. In response, recent research has explored a variety of statistical, AI-driven, and grey system approaches to enhance pollutant assessment and decision-making in complex urban environments. 



2.1 Statistical and Data-Driven Models 



Statistical  models  continue  to  play  a  vital  role  in  air  quality  assessment,  particularly  in  urban  regions  with expanding  but  incomplete  monitoring  infrastructures.  Zhang  et  al.  (2025a)  introduced  an  innovative  real-time monitoring system utilizing drone-mounted mass spectrometry to achieve high spatiotemporal-resolution mapping of  air  pollutants  in  complex  urban  environments.  Their  system  provided  enhanced  capabilities  for  detecting localized  emission  sources  and  transient  pollution  events,  thus  contributing  significantly  to  urban  air  quality surveillance (Granella et al., 2024; Kazemi et al., 2025). 

Istiana et al. (2023) further explored data-driven methodologies by conducting a causality analysis between air quality parameters and meteorological conditions in Jakarta. Their findings confirmed strong correlations between PM2.5  concentrations  and  meteorological  variables  such  as  humidity  and  wind  speed,  thus  emphasizing  the potential  for  incorporating  climate  data  into  predictive  pollution  models  to  improve  their  reliability  and responsiveness under dynamic environmental conditions (Istiana et al., 2023; Tume-Bruce et al., 2022). 

Though  applying  in  a  different  domain,  Garini  et  al.  (2025)  demonstrated  the  effectiveness  of  data  pre-processing  and  imputation  techniques  through  the  development  of  filling-well  method  for  incomplete  dataset handling.  Their  work  highlighted  the  broader  applicability  of  data  cleansing  and  optimization  techniques  to improve the quality and accuracy of machine learning models in environmental and geospatial analyses. 



2.2 AI and Machine Learning Approaches 



The application of AI-powered frameworks has significantly advanced environmental monitoring and air quality prediction in recent years. Basir et al. (2025) proposed an autoencoder artificial neural network model to predict the Air Pollution Index (API) with high accuracy, particularly in data-sparse urban environments. Their approach utilized feature extraction and dimensionality reduction to improve model  performance, rendering it suitable for complex atmospheric datasets (Basir et al., 2025; Roslan et al., 2025).  

Lakshmi  &  Krishnamoorthy  (2024)  further  enhanced  predictive  modelling  via  a  multi-step  air  quality forecasting  system  with  a  bidirectional  convolutional  long  short-term  memory  (ConvLSTM)  encoder-decoder architecture with a spatial-temporal attention (STA) mechanism. Their model demonstrated superior accuracy in predicting  PM2.5  and  PM10  concentrations  across  varying  temporal  horizons  compared  to  traditional  machine learning methods. 

In a complementary study, Ortiz-Grisales et al. (2025) developed a temperature-sensitive dynamic modelling approach  that  incorporated  the  interaction  between  PM2.5  and  negative  ions  to  predict  indoor  and  outdoor  air quality.  Their  results  emphasized  the  necessity  of  incorporating  local  microclimatic  conditions  into  modelling frameworks to improve exposure risk predictions and adapt forecasting to real-time environmental variations. 



2.3 Participatory and Low-Cost Sensing Innovations 



An emerging trend in air quality research is the integration of community-based monitoring with low-cost sensor technologies  to  address  the  limitations  of  traditional  regulatory  networks.  Veres  et  al.  (2025)  conducted  a 547

comprehensive study in Târgu Mureș in Romania by combining socio-demographic data with sensor-based air quality measurements. Their research revealed notable discrepancies between citizen perceptions of pollution and actual  sensor  data,  thus  underlining  the  importance  of  participatory  approaches  in  improving  environmental awareness and policy formulation. 

Caselles Nuñez et al. (2025) contributed to this field by designing and implementing a dual indoor–outdoor air quality  measurement  device  capable  of  detecting  hazardous  gases  and  particulate  matters.  The  system demonstrated over 98% accuracy in measurement compared to reference monitoring stations in Colombia, thus providing  a  scalable  and  affordable  solution  for  widespread  deployment  in  urban  settings,  particularly  in  low-resource environments. 

These  advances  illustrated  the  potential  of  combining  participatory  monitoring  and  low-cost  sensing technologies  to  enhance  data  availability,  promote  public  engagement,  and  empower  communities  devoted  to environmental governance. 



2.4 Grey Clustering and Multivariable Diagnostics 



As  urban  environmental  systems  become  increasingly  complex,  there  has  been growing interest  in  applying multi-criteria decision-making frameworks, such as grey clustering to manage uncertainty and data scarcity in air quality assessment. Karmoude et al. (2025) and Zhang et al. (2025b) analysed the spatiotemporal variations of air quality  in  the  Sichuan-Chongqing  region  in  China  between  2016  and  2020.  Their  study  demonstrated  how geographic  and  socio-economic  factors  influenced  pollutant  patterns  and  emphasized  the  need  for  spatially adaptive diagnostic tools. 

Xu & Luo (2025) provided additional insights into the benefits of spatial planning by evaluating the relationship between urban clusters and efforts of environmental protection in China. They found that cities employing tighter regulatory coordination and integrated development strategies achieved significantly better air quality outcomes, particularly in reducing NOₓ and PM concentrations, hence highlighting the effectiveness of regional governance models. 



2.5 Linkages to Sustainable Development Goals 



Recent advances in air quality monitoring have increasingly aligned with the principles of the United Nations Sustainable  Development  Goals  (SDGs),  particularly  SDG  3  (Good  Health  and  Well-Being)  and  SDG  11 

(Sustainable Cities and Communities). 

Aman  et  al.  (2025)  developed  a  machine  learning  framework  to  quantify  the  effects  of  emissions  and meteorological factors on PM2.5 in Greater Bangkok, thus contributing to SDG 3 through improved early-warning systems and health risk assessments. Similarly, Kirana et al. (2025) designed a spatiotemporal web Geographic Information  System  (GIS)  decision-support  platform  that  enables  local  governments  in  Indonesia  to  respond rapidly to pollution events and optimize urban planning, directly advancing SDG 11. 

Complementary approaches such as grey clustering and multivariable diagnostics (Xu & Luo, 2025; Zhang et al., 2025b)—provide  adaptive  and  data-efficient  frameworks  for  sustainable  urban  management.  In  addition, community-based sensing initiatives (Veres et al., 2025) and low-cost monitoring systems (Caselles Nuñez et al., 

2025) strengthen environmental awareness and participatory governance. 

In  summary,  previous  studies  using  statistical,  AI-driven,  and  participatory  approaches  have  advanced  air quality assessment, yet most depended on extensive datasets and were limited in handling uncertainty and data gaps typical of cities in the Global South. Grey system models addressed part of these challenges but were applied primarily to single-pollutant or non-urban contexts. This study built upon these foundations by adapting the grey clustering approach with CTWF to a multi-pollutant and data-scarce urban setting, with an aim to provide a flexible and  transferable  diagnostic  tool  that  bridges  methodological  innovation  and  the  needs  of  sustainable  urban planning. 




3. Methodology 

3.1 Grey Systems Theory and Its Relevance to Urban Environmental Planning 

 

Urban  sustainability  planning  in  data-scarce  cities  faces  major  challenges  due  to  limited  monitoring infrastructure, regulatory inconsistencies, and high spatial variability in pollution levels. Traditional quantitative models typically require large and consistent datasets, assuming deterministic or probabilistic relationships rarely met in fragmented urban environments. To address these limitations, grey systems theory offers a robust alternative. 

Originally introduced by Febrina et al., (2025), grey systems theory is specifically designed to model uncertainty and incomplete information. It has proven to be effective in socio-environmental decision-making process where data are limited (Liu & Lin, 2011). Unlike fuzzy logic or probabilistic models, grey models operate on known and 548
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unknown  (or  “grey”)  variables,  rendering  them  particularly  suitable  for  urban  systems  marked  by  partial observability and monitoring gaps. 

According  to  grey  systems  theory,  grey  clustering  enables  classification  of  objects  such  as  air  quality observations into predefined grey classes using whitenization functions. This approach is ideal for cities like Lima, where pollutants such as PM2.5 and PM10 interact in non-linear and uncertain ways across the spatial and temporal scales. 

CTWF is a technique that enhances the interpretability of grey clustering by assigning triangular membership curves to each pollutant category. CTWF has been successfully applied in domains such as water quality (Delgado et al., 2018), evaluation of social impact  (Delgado & Romero, 2018),  and assessment of human resources  (Li, 

2013),  but has yet to be extensively used in air quality frameworks. This study adapted CTWF to the data of PM2.5 

and PM10, in order to offer a flexible model for classifying urban air quality when data uncertainty and pollutant overlap are prevalent. 




3.2 Mathematical Formulation of AQI 

 

Owing to the incorporation of uncertainty proposed by grey systems theory, the air quality assessment index for particulate matter (PM2.5 and PM10) in this study outperformed traditional models, including the Delphi method (Hwang  &  Kim, 2023; Maghsoudi  et  al., 2024)  and  the Analytic  Hierarchy  Process  (AHP)  (Charchaoui  &  El Moudden, 2024; Wang et al., 2024).  The CTWF approach, a central component of grey clustering analysis, can also  be  integrated  with  other  techniques,  including  the  Shannon  entropy  method  (Delgado  &  Romero, 2018), 

correlation analysis (Yang & Lin, 2024),  and system-based Internet of Things (IoT) (Luo et al., 2024; Morales et al., 2022).  

The grey clustering method implemented via incidence matrices or weight functions enables the evaluation of multiple correlated criteria  (Liu et al., 2017; Lv & Liu, 2024;  Tao et al., 2020). This work adopted the CTWF 

approach, which is particularly suitable for classifying levels of air quality based on the measurement of PM2.5 and PM10, as shown in Figure 1. 





 

Figure 1.  Grey clustering-based AQI 



The CTWF approach follows a six-step structured sequence adapted from previous literature (Delgado et al., 

2018; Zeng, 2022; Zhao et al., 2015). It is summarized below. 

Let: 

Objects ( m): number of monitoring sites (e.g., urban stations) Criteria ( n): number of pollutants (PM2.5 and PM10) 

Grey classes (s): number of air quality classes (e.g., Good, Moderate, Unhealthy) xij: raw value of pollutant 𝑗 at site 𝑖 

Step 1: Definition of grey class   

Air quality thresholds were derived from Peruvian environmental quality standards (EQS). Each class midpoint (𝜆) was computed as the mean of the upper and lower bounds of the legal range. For example, PM10 class midpoints were 27.0, 104.5, 204.5, and 304.5 µg/m3 (MINAM, 2017). 

Step 2: Data normalization 

To ensure dimensionless processing by (1): 
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where,  𝑥̅𝑗  is the mean of class midpoints for pollutant. 

Step 3: Membership function using CTWF 

Each pollutant class 𝑘 is assigned a triangular function by (2)–(4): 549

0,             𝑥 ∉   [0, λ2]

𝑓1

1,             𝑥 ∈ [0, 𝜆1)

𝑗 (𝑥𝑖𝑗 ) = {



(2) 

λ2 − 𝑥 ,      𝑥 ∈ [λ

λ

1, λ2]

2 − λ1

 

0,      𝑥 ∉ [𝜆𝑘−1, 𝜆𝑘+1]

𝑥 − λ𝑘−1

𝑓𝑘

,   𝑥 ∈ [λ𝑘−1, λ𝑘)

𝑗 (𝑥𝑖𝑗 ) =

λ𝑘 − λ𝑘−1



(3) 



λ𝑘+1 − 𝑥  ,   𝑥 ∈ [λ

{λ

𝑘 , λ𝑘+1]

𝑘+1 − λ𝑘

 

0,        𝑥 ∉ [λs−1, +∞)

𝑥 − 𝜆

𝑓𝑠

𝑠−1 ,    𝑥 ∈ [λ

𝑗 (𝑥𝑖𝑗 ) = {



(4) 

𝜆

s−1, λ𝑠)

𝑠 − 𝜆𝑠−1

1,            𝑥 ∈ [λs, +∞)

 

Step 4: Grey weight for each criterion 

To avoid bias from unequal pollutant influence, weights  𝜂𝑘  are calculated by (5): 𝑗
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Step 5: Clustering coefficient 

The clustering coefficient  𝜎𝑘  for observation 

𝑗

𝑖 in class 𝑘 is calculated by (6): 
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Step 6: Classification rule 

The air quality class assigned to each site 𝑖 corresponds to the class 𝑘* with the highest clustering coefficient determined by (7): 



𝜎𝑘∗

𝑘

𝑗
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(7) 

1≤𝑘≪𝑠

 


3.3 Transferability and Broader Application 

 

Although this model was calibrated using Peruvian environmental thresholds, its architecture is entirely modular. 

The CTWF grey clustering process can be adapted to any region by modifying the grey classes according to local or  international  air  quality  regulations  (e.g.,  World  Health  Organization,  EPA,  Ministry  of  Ecology  and Environment  in  China). The  index  is  particularly  valuable  in  cities  with  sparse  sensor  networks,  inconsistent monitoring, or fragmented regulatory frameworks, as these conditions prevail in many developing countries. Its low  data  requirement  and  high  interpretability  enable  it  to  be  a  promising  diagnostic  tool  for  sustainable environmental governance. 

Unlike  previous  applications  of  grey  clustering  in  environmental  analysis,  this  study  adapted  the  CTWF 

formulation for multi-pollutant urban air quality assessment. The method integrates simultaneous PM2.5 and PM10 

concentrations,  recalibrates  class  thresholds  based  on  both  national  (Peruvian)  and  international  (EPA)  AQI standards, and introduces weighting adjustments to account for data uncertainty and incomplete monitoring. These adaptations  extend  the  conventional  CTWF  grey  clustering  approach,  turning  it  into  a  robust  and  transferable diagnostic tool for urban environmental planning under data-scarce conditions. 



4. Case Study in Peru’s Lima 




4.1 Urban Context and Justifications 

Lima, the capital of Peru and a complex urban ecosystem, is home to over 10 million residents. It has undergone rapid and often unplanned urban expansion, leading to land-use conflicts, fragmented transport systems, and severe environmental degradation. In the city, the dense fleet of over 1.6 million vehicles, many old and poorly regulated, contributes significantly to air pollution by PM2.5 and PM10. These conditions are compounded by the geographic 550
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position of Lima in a coastal desert basin, where atmospheric  inversions trap pollutants during the  dry season (MINAM,  2017). 

These challenges turn Lima into a critical test case for air quality models. It is one of the most polluted capitals in Latin America (World Health Organization,  2021),  and features high socio-environmental inequality: industrial corridors are often adjacent to informal housing, and low-income districts bear the brunt of pollutant exposure. 

Moreover, the limited public environmental infrastructure and monitoring coverage in Lima highlight its need for data-efficient and adaptive diagnostic tools like the grey clustering method in this study. 



4.2 Monitoring Network and Data Processing 



Nine air quality monitoring stations were selected to represent the diverse urban conditions in Lima, as they distributed  across  districts  with  varied  land-use,  density,  and  socioeconomic  profiles.  Figure  2  illustrates  the geographic distribution of the nine monitoring stations across Lima. The map shows the spatial diversity of the selected sites, ranging from peripheral districts such as Carabayllo and Villa María del Triunfo to central areas like San Borja and Campo de Marte. This spatial configuration captures contrasting urban environments from industrial and high-traffic zones to residential and green areas, hence allowing a representative assessment of air quality variability across the city. 





 

Figure 2.  Monitoring points in Lima, Peru (Ministerio del Ambiente-SENAMHI, 2024)   



4.3 Definition of Study Objects ( m) 

 

Data  were  obtained  from  SENAMHI  (Servicio  Nacional  de  Meteorología  e  Hidrología  del  Perú)  and corresponded to daily average concentrations of PM2.5 and PM10 for February 2024, a month characterized by high stagnation and dry conditions (Ministerio del Ambiente-SENAMHI, 2024).  The data were quality-checked, and only stations with over 95% completeness were retained. The locations of the monitoring stations are presented in Table 1,  and the data collected is presented in Table 2. 
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Table 1. Study objects in the case study   



Num ( m) 

Station 

Location 


Code 

1 


Carabayllo 

Peripheral, low-density sprawl 

CRB 

2 

San Martín de Porres 

Central-north, residential 

SMP 

3 

San Juan Lurigancho 

High-density, high-traffic 

SJL 

4 

Ceres 

Eastern growing urban frontiers 

CRS 

5 

Pariachi 

Eastern growing urban frontiers 

PAR 

6 

Santa Anita 

Logistics-industrial zone 

STA 

7 

Villa Maria del Triunfo 

Southern low-income periphery 

VMT 

8 

San Borja 

Middle-upper class residential area 

SBJ 

9 

Campo de Marte 

Central urban park 

CMD 



Table 2. Data from the case study (μg/m3) 



Object  CRB  SMP  SJL  CRS  STA  PAR  SBJ  CMD  VMT 

PM2.5 

28.8 

9.6 

18.4  28.9 

15.3 

27.4  15.1 

11.9 

15.2 

PM10 

41.0 

20.3 

39.1  58.0 

25.5 

54.2  50.6 

24.5 

33.7 



4.4 Definition of Criteria ( n) 



Two criteria were established in this study based on the two particulate materials (PM) affecting air quality and being monitored in Peru’s Lima, as presented in Table 3.  

 

Table 3. Criteria for the case study 



Number ( n)  Criterion 


Description 

1 


PM10 

Particulate material whose diameter is less than 10 microns 

2 

PM2.5 

Particulate material whose diameter is less than 2.5 microns 

 

4.5 Definition of Grey Classes ( s) 

 

The grey classes were defined according to the law from the government of Peru, specifically the environmental quality standards for PM10 and PM2.5 (Ministerio del Ambiente-SENAMHI, 2024), which are presented in Tables 

4 and 5.  

 

Table 4. Grey classes for PM10 

 

Number ( s)  Range (μg/m3) 


Description 

1 


0 - 54 

Good 

2 

55 - 154 

Moderate 

3 

155 - 254 

Unhealthy for sensitive groups 

4 

255 - 354 

Unhealthy 

 

Table 5. Grey classes for PM2.5 

 

Number ( s)  Range (μg/m3) 


Description 

1 


0 - 12 

Good 

2 

12.1 – 35.4 

Moderate 

3 

35.5 – 55.4 

Unhealthy for sensitive groups 

4 

55.5 – 150.4 

Unhealthy 

 

4.6 Calculations Using the Steps of the AQI 

 

Step 1: From Tables 4 and 5, the centre points of the grey classes were determined. The results are presented in Table 6.  



Table 6. Centre points of the grey classes 

 

Number ( s)  PM10  PM2.5  Code 


Description 

1 


27.0 

6.0 

λ1 

Good 

2 

104.5 

23.8 

λ2 

Moderate 

3 

204.5 

45.4 

λ3 

Unhealthy for sensitive groups 

4 

304.5  103.0 

λ4 

Unhealthy 
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Step 2: The monitoring values from Table 2 and the standard values from Table 6 were non-dimensioned using the arithmetic mean. Both were non-dimensioned regarding the standard values. The results are presented in Tables 

7, 8, and 9.  

Table 7. Arithmetic means for standard values 

Criterion 

λ1 

λ2 

λ3 

λ4 


Arithmetic Mean 

PM2.5 

6.0 

23.8 

45.4 

103.0 

44.5 

PM10 

27.0  104.5  204.5  304.5 

160.1 

Table 8. Non-dimensioned values for standard values 

Criterion 

λ1 

λ2 

λ3 


λ4 

PM2.5 

0.13  0.53  1.02  2.31 

PM10 

0.17  0.65  1.28  1.90 

Table 9. Non-dimensioned values for monitoring values 

Object  CRB  SMP  SJL  CRS  STA  PAR  SBJ  CMD  VMT 

PM2.5 

0.65 

0.22 

0.41  0.65 

0.34  0.62 

0.34  0.27 

0.34 

PM10 

0.26 

0.13 

0.24  0.36 

0.16  0.34 

0.32  0.15 

0.21 

Step 3: CTWF were determined according to Figure 1 and (2)–(4). As an example, the results for the first object (CRB) are presented in Section 5 and (8)–(11). 

Then, the values from Table 9 for CRB were replaced into (7)–(10) and the CTWF values of CRB were obtained. 

The results are presented in Table 10. 
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𝑗 (𝑥𝑖𝑗) =

λ3 − λ2

(10) 
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{λ

3, λ4]

4 − λ3
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𝑥 − 𝜆

𝑓4

3 , 

𝑥 ∈ [λ

𝑗 (𝑥𝑖𝑗) =   {

(11) 

𝜆

3, λ4)

4 − 𝜆3

1, 

𝑥 ∈ [λ4, +∞)

Table 10. CTWF values of CRB 


Criterion  PM2.5  PM10 

λ1 


0.000  0.819 

λ2 

0.765  0.181 

λ3 

0.235  0.000 

λ4 

0.000  0.000 

Sum 

1.000  1.000 

Step 4: The weight of the criteria was calculated using (5) with the values from Table 8. The results are presented in Table 11. 

Step 5: The cluster coefficient was calculated using (5) with the values from Tables 10 and 11. As an example, the results of first object (CRB) are presented in Table 12. 
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Table 11. Values of the weight of the criteria Criterion 

λ1 

λ2 

λ3 


λ4 

PM2.5 

0.56  0.55  0.56  0.45 

PM10 

0.44  0.45  0.44  0.55 



Table 12. Cluster coefficient for first criterion (CRB) 




Criterion  PM

𝒌


2.5 


PM10 

𝝈𝒋  

λ1 

0.000  0.819  0.364 

λ2 

0.765  0.181  0.502 

λ3 

0.235  0.000  0.131 

λ4 

0.000  0.000  0.000 



Step 6: The max value of the cluster coefficient was calculated using (6) with the values from Table 12.  As an example, the result of first object (CRB) was  𝜎𝑘∗= 0.502. The results for all the objects were obtained according 𝑗

to the procedures applied to first object. The results for all objects are presented in Table 13.  



Table 13. Values of the weight of the criteria 



Object 

λ1 

λ2 

λ3 


λ4 

CRB 


0.364  0.502  0.131  0.000 

SMP 

0.887  0.112  0.000  0.000 

SJL 

0.541  0.456  0.000  0.000 

CRS 

0.266  0.599  0.133  0.000 

STA 

0.710  0.287  0.000  0.000 

PAR 

0.288  0.614  0.095  0.000 

SBJ 

0.580  0.419  0.000  0.000 

CMD 

0.815  0.184  0.000  0.000 

VMT 

0.675  0.323  0.000  0.000 




5. Results and Discussion 

5.1 Performance of the Index in Air Quality Classification 

 

The levels of air quality for nine districts in Lima were classified based on PM2.5 and PM10 concentrations during February 2024, with the CTWF-based grey clustering approach. These classifications, shown in Figures 3 and 4, 

reflect both the categorical level and the relative membership strength within each grey class (Delgado et al.,  2018). 

Figure 3 presents locations categorized under λ1 (Good Air Quality): SMP (San Martín de Porres), CMD (Campo de Marte), STA (Santa Anita), VMT (Villa María del Triunfo), SBJ (San Borja), and SJL (San Juan de Lurigancho). 

As shown in Figure 3,  districts with better air quality are generally concentrated in central and southern Lima, where vegetation cover is higher and industrial activity is lower. The predominance of “Good” classifications in these zones reflects lower emission densities and favourable dispersion conditions, consistent with the city’s spatial environmental gradient. Their membership strengths follow the order: SMP (0.887) > CMD (0.815) > STA (0.710) > VMT (0.675) > SBJ (0.580) > SJL (0.541) This means that SMP monitoring point has better air quality than SJL monitoring point, but all monitoring points are of good air quality. 

Figure  4  shows  zones  classified  under  λ2  (Moderate Air  Quality):  PAR  (Pariachi),  CRS  (Ceres),  and  CRB 

(Carabayllo), in the order: 



PAR (0.614) > CRS (0.599) > CRB (0.502) 



In  addition,  Figure  4  highlights  that  moderate  air  quality  conditions  are  more  prevalent  in  the  eastern  and northern  peripheries  of  Lima,  where  rapid  urban  expansion,  industrial  corridors,  and  limited  green  coverage contribute to higher PM2.5 and PM10 concentrations. These spatial patterns confirm the influence of land use and emission sources on the distribution of particulate pollution across the metropolitan area. 

This means that PAR monitoring point has better air quality than CRB monitoring point, but all monitoring points are in moderate air quality level. 

These  results  offered  more  nuances  than  conventional AQIs  by  revealing how  strongly  a  location  fit  into  a 554
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category.  For  example,  while  SMP  and  SJL  are  both  “Good”,  SMP’s  λ1  coefficient  is  substantially  higher, suggesting cleaner air under comparable classification (Liu & Lin, 2011). 





 

Figure 3.  Monitoring points with good air quality 





 

Figure 4.  Monitoring points with a moderate level of air quality 5.2 Comparative Benchmarking: EPA AQI and Peruvian EQS 

 

The output of the grey clustering model was benchmarked against two frameworks for reference: 5.2.1 The U.S. EPA AQI 

The U.S. EPA AQI uses a single-dominant pollutant approach to determine the categories of daily air quality (EPA, 2024). In several Lima districts, such as San Borja (SBJ) and Villa María del Triunfo (VMT), the EPA AQI classified  air  quality  as  “Moderate”  on  days  when  the  levels  of  either  PM2.5  or  PM10  exceeded  recommended thresholds. In contrast, the grey clustering model integrated both pollutants, resulting in a “Good” classification when the combined risk was low. This illustrates the multi-pollutant sensitivity of the model and its ability to offer a more nuanced assessment under borderline conditions. 



5.2.2 Peruvian environmental quality standards (EQS) 

The Peruvian EQS served as legal anchors to define the limits of grey class used in the model (MINAM,  2017). 

Some  stations,  such  as  Parque  de  las  Leyendas  (PAR),  were  classified  as  “Moderate”  though  occasionally exceeding PM10 threshold. This reflects the flexibility of the model to accommodate variability and borderline cases,  so  as  to  provide  a  more  continuous  and  adaptive  classification  compared  to  rigid  binary  exceedance approaches. 
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5.3 Insights into Urban Planning   

 

The spatial distribution of air quality classification across Lima revealed clear patterns consistent with the well-documented environmental inequalities in the city (Mampitiya et al.,  2024).  Districts such as San Martín de Porres (SMP)  and  Comas  (CMD),  which  benefit  from  greater  vegetation  cover  and  reduced  vehicular  congestion, consistently showed superior  λ1 values, to indicate conditions of better air quality. In contrast, districts on the eastern and northern peripheries, including Parque de las Leyendas (PAR) and Carabayllo (CRS), reflected the effects of ongoing urban sprawl, industrial encroachment, and insufficient air quality governance. 

These  findings  suggested  important  opportunities  for  targeted  environmental  interventions. Areas  exhibiting high λ2 values could be prioritized for emission control strategies, such as restricting heavy freight traffic during peak hours, enhancing urban green infrastructure, or promoting public transport alternatives. A key advantage of the grey clustering index is its ability to provide continuous intra-category differentiation, allowing policymakers to identify and prioritize higher-risk zones even within the same regulatory category. 




5.4 Sensitivity and Robustness Analysis 

To  evaluate  the  robustness  of  the  proposed  grey  clustering  based  AQI,  this  study  conducted  a  qualitative sensitivity assessment of the influence of class thresholds and weighting coefficients on classification outcomes. 

The results of the model were inherently dependent on the definition of grey class boundaries and the relative weights assigned to PM2.5 and PM10. Small variations in these parameters such as adjusting the midpoint values of the Peruvian environmental quality standards or modifying pollutant weights within ±10%, could shift individual monitoring stations between adjacent categories (e.g., from Good to Moderate). However, the comparative ranking of sites and the overall spatial pattern of air quality across Lima remain stable, indicating that the model is robust to moderate parameter perturbations. 

Moreover, the use of CTWF inherently smooths transitions between classes, thus reducing the impact of abrupt changes  of  thresholds.  This  characteristic  enhances  the  reliability  of  the  model  under  uncertain  or  borderline conditions and supports its transferability to other regions with different regulatory standards. Future quantitative sensitivity  testing,  incorporating  additional  pollutants  and  multi-seasonal  data,  would  further  strengthen  these findings and confirm the stability of the model under varying inputs. 




5.5 Strengths and Limitations 

 

The strengths and limitations are as follows: 

Strengths: 

•  The simultaneous inclusion of PM2.5 and PM10 improves representativeness compared to single-pollutant indices. 

•  Grey clustering handles uncertain or missing data effectively, thus suitable for cities with incomplete or fragmented monitoring networks. 

•  The  model  architecture  can be  readily adapted to include additional  pollutants or to comply with local regulatory standards with minimal structural modifications. 

Limitations: 

•  Class boundaries are dependent on legal standards, which may differ from international recommendations such as those established by the World Health Organization. 

•  The current model evaluates daily or period-average values and does not reflect short-term spikes or intra-day fluctuations. 

•  Expanding  the  model  to  include  co-pollutants  such  as  ozone  (O3),  nitrogen  dioxide  (NO2),  or  sulphur dioxide (SO2) would further enhance its diagnostic capabilities and robustness. 

•  Another  important  limitation  of  this  study  is  the  temporal  scope  of  the  dataset.  The  analysis  is  based exclusively on daily PM2.5 and PM10 data collected during February 2024, which represents a single-month snapshot rather than a multi-seasonal record. Consequently, the findings should be interpreted as illustrative rather  than  conclusive,  thus  reflecting  short-term  spatial  patterns  rather  than  long-term  trends.  Future research incorporating longitudinal or multi-seasonal datasets would enable a comprehensive assessment of temporal variability and the robustness of the model. 




6. Conclusions 

 

This study proposed and validated an innovative AQI based on grey systems theory, utilizing CTWF to assess urban air quality in data-limited environments. By jointly evaluating PM2.5 and PM10 concentrations through a clustering framework, the model demonstrated robust capacity to classify pollution levels with greater flexibility and nuances than traditional AQIs. Unlike conventional approaches that rely on single-dominant pollutant rules and  rigid  thresholding,  the  proposed  index  enabled  a  continuous  and  adaptive  assessment  of  air  quality. This 556

characteristic is particularly valuable for cities where pollutant interactions are complex and regulations are limited. 

When applied to nine districts of Lima in Peru, the model successfully captured spatial disparities in air pollution levels and provided actionable insights for urban planning and environmental management. The index was able to highlight intra-category differences within the same  level  of air quality, thus offering a valuable  tool targeting interventions in vulnerable and high-risk neighbourhoods. Comparative benchmarking with the U.S. EPA AQI and Peruvian environmental standards confirmed the consistency of the model while highlighting its advantages in handling multiple pollutants and borderline cases. 

More importantly, the grey clustering framework is not only accurate but also highly transferable. Its modular design allows easy recalibration to other pollutants, monitoring networks, or regulatory standards, rendering it an effective and scalable diagnostic tool for supporting Sustainable Development Goals (SDGs), particularly SDG 3 

(Good Health and Well-Being) and SDG 11 (Sustainable Cities and Communities). 

Future research should focus on expanding the model to include additional pollutants such as nitrogen dioxide (NO2),  ozone  (O3),  sulphur  dioxide  (SO2),  and  potentially  noise  or  light  pollution.  Incorporating  temporal dynamics  to  reflect  hourly  and  seasonal  variability  would  further  enhance  the  accuracy  and  decision-making capacity of the model. To recapitulate, the proposed index represents a promising and policy relevant contribution to the environmental management toolkit for rapidly urbanizing regions which are facing monitoring gaps and regulatory fragmentation. 
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Nomenclature   

Membership  function  of  pollutant  𝑗  at  site  𝑖  for  class  𝑘; 𝑓𝑘

𝑗 (𝑥𝑖𝑗 ) 

dimensionless 

 m 

Number of monitoring sites; dimensionless 

 n 

Number of pollutants (e.g., PM2.5, PM10); dimensionless 

 s 

Number of air quality grey classes; dimensionless 

𝑥𝑖𝑗 

Raw value of pollutant 𝑗 at site 𝑖; µg/m³ 

𝑥′𝑖𝑗 

Normalized value of pollutant 𝑗 at site 𝑖; dimensionless 

𝑥̅𝑗 

Arithmetic means of pollutant thresholds; µg/m³ 

𝜂𝑘𝑗 

Weight of pollutant 𝑗 in class 𝑘; dimensionless 

Clustering  coefficient  of  monitoring  site  𝑖  in  class  𝑘; 

𝜎𝑘

𝑗  

dimensionless 

Maximum clustering coefficient (final classification) at site 𝑖; 

𝜎𝑘∗

𝑗



dimensionless 

 

Greek symbols 



λk 

Central midpoint value of class 𝑘; µg/m³ 

 

Subscripts 



 i 

Index for monitoring sites 

 j 

Index for pollutants (e.g., PM2.5, PM10) 

 k 

Index for grey class (e.g., Good, Moderate) 
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Abstract: Urban air pollution remains a persistent challenge in the Global South, where rapid urbanization, limited
monitoring infrastructure, and weak regulatory frameworks hinder effective environmental governance. In Lima,
Peru—one of the most polluted capitals in Latin America—elevated PM» s and PM,o concentrations continue to
pose serious threats to public health and sustainable urban development. Traditional Air Quality Index (AQIs),
such as the U.S. EPA standard, often struggle to account for data uncertainty, pollutant interactions, and spatial
heterogeneity. To address these gaps, this study introduces a novel AQI based on grey systems theory, applying a
grey clustering framework enhanced with center-point triangular whitenization weight functions (CTWF). The
model was specifically designed to handle ambiguous data and overlapping pollution categories. It was applied to
daily PM2s and PMo data from nine monitoring stations across metropolitan Lima, with validation conducted
against both Peru’s national air quality standards and the U.S. EPA AQI. Results showed that the proposed index
outperformed conventional methods under uncertain conditions, revealing critical spatial disparities often missed
by traditional models. Beyond diagnostic accuracy, the index offers a scalable and transferable tool for urban
planners and decision-makers to support targeted interventions, inform policy development, and advance
Sustainable Development Goals—specifically SDG 3 (Good Health and Well-Being) and SDG 11 (Sustainable
Cities and Communities).

Keywords: Urban sustainability; Air quality index; Grey clustering; Environmental planning; Particulate matter;
PM.s; PMio

1. Introduction

Urban air pollution is one of the most pressing environmental and public health challenges of the 21st century.
Among pollutants, particulate matter (PM>s and PMjg) has been consistently linked to respiratory and
cardiovascular diseases, reduced life expectancy, and increased mortality rates (Kebe et al., 2025; World Health
Organization, 2021). These risks are particularly acute in cities of the Global South, where rapid urbanization and
limited regulatory capacity exacerbate exposure to hazardous air quality.

Recent research has introduced diverse approaches to improve the assessment of urban air quality, including
statistical forecasting in India (Yadav & Ganguly, 2025), artificial neural network model for prediction of air
pollution index (Basir et al., 2025), hybrid neural networks in Iraq (Altahaan & Dobslaw, 2025), and integration
of socio-demographic patterns with sensor-based measurements (Veres et al., 2025). While these methods provide
valuable insights, they depend on dense monitoring networks as well as large and continuous datasets, rarely
present in urban contexts with scarce resources. As a result, their applicability in cities with fragmented
infrastructures, such as Lima, remains limited.

Conventional Air Quality Indices (AQIs), such as those of the United States Environmental Protection Agency
(EPA, 2024) and the Ministry of Ecology and Environment in China (Qin et al., 2024), rely on rigid thresholds
and dominance rules that prioritize single pollutants. These frameworks are effective for public communication
but insufficient for urban planning as they cannot capture the interaction of pollutants, manage data gaps, and
reflect spatial heterogeneity. These gaps underscore the need for more adaptive and uncertainty-resilient diagnostic
tools.

https://doi.org/10.56578/cis130406
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