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Abstract: This study examined climate-related risks to public health, settlements and human security in Thailand, with a particular focus on vulnerable groups such as children and the elderly. Distinguishing itself from traditional assessments,  this  research  innovatively  integrated  future  climate  projections  from  2016–2035  under  a  high-emission  scenario  of  RCP8.5  with  data  about  current  structural  vulnerability,  based  on  the  Multidimensional Poverty  Index  (MPI)  in  2024.  This  approach  proactively  identified  “at-risk”  areas  where  future  environmental hazards  might  exacerbate  existing  social  inequalities.  The  analysis  on  76  provinces  except  Bangkok,  utilized Bivariate Polygon Render to visualize risk-poverty intersections and Local Spatial Autocorrelation (Local Moran’s I) to rigorously detect statistically significant spatial clusters. Results indicated that the Northeastern and Western regions  consistently  faced  elevated  risks.  Quantitative  analysis  confirmed  critical  “High-High”  hotspots  in  the Northeast, specifically in Khon Kaen (LMI = 1.103,  p = 0.004) and Buriram (LMI = 1.724,  p = 0.008), where high climate  exposure  significantly  overlapped  with  child  multidimensional  poverty.  Conversely,  Mae  Hong  Son emerged  as  a  significantly  “Low-High”  spatial  outlier  (LMI  =  -0.634,  p  =  0.008),  highlighting  a  region  with concentrated elderly vulnerability despite lower relative climate risks. These findings underscored the utility of MPI over simple population counts for policy targeting. Ultimately, the study supports climate justice principles by  providing  spatially  explicit  evidence  to  guide  interventions  that  address  both  local  needs  and  structural inequalities. 
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Climate change is no longer a distant concern; it is an existing reality that affects people’s lives in many ways. 

In Thailand, the impacts are increasingly visible through rising temperatures, floods, droughts, and air pollution (IPCC, 2007;  Limjirakan  &  Limsakul, 2012).  These  environmental  changes  do  not  affect  everyone  equally. 

Vulnerable groups face greater risks due to limited resources and lower adaptive capacity (Leichenko & Silva, 

2014).  Understanding  these  unequal  impacts  leads  us  to  the  concept  of  climate  justice,  which  connects environmental change with social fairness. It asks whether climate burdens are shared fairly and whether affected communities have a voice in decisions that shape their future (Apraku et al., 2025; UNDP,  2009). Recent research has shown that public perception matters even when people are unfamiliar with the term “climate justice”. They often  agree  that  poorer  communities  suffer  disproportionately  and  that  environmental  problems  are  tied  to economic structures (Ogunbode et al., 2024).  

Despite the growing body of literature on climate change in Thailand, a critical knowledge gap remains. Most existing  studies  analyzed  climate  risks  (meteorological  data)  and  social  vulnerability  (socio-economic  data)  in isolation.  Furthermore,  traditional  vulnerability  assessments  in  Thailand  often  rely  heavily  on  income-based poverty measures. This study argued that monetary metrics were insufficient for climate risk analysis because they failed to capture the structural deprivations such as lack of education, poor health, or inadequate living standards https://doi.org/10.56578/cis140112 
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that  directly  limited  the  adaptive  capacity  of  a  household.  To  address  this,  we  utilized  the  Multidimensional Poverty Index (MPI) which was developed by Alkire & Foster (2011) to offer a more granular view of deprivation. 

In the Thai context, the government, through the Office of the National Economic and Social Development Council (NESDC) and Thai People Map and Analytics Platform (TPMAP), has localized this index to identify specific needs at the sub-national level (NSTDA, 2021;  OPHI, 2019; TPMAP, 2018). By using the MPI, we could identify populations who may have income above the poverty line but lack the essential infrastructure and health resilience to withstand climate shocks. 

This research specifically targeted two demographic groups including children and the elderly. These groups were selected not merely due to their statistical size, but due to their distinct physiological and social vulnerabilities. 

Children are uniquely susceptible to environmental hazards due to their developing physiology and dependency on  caregivers,  thus  rendering them  disproportionately  affected  by  waterborne  diseases  and  malnutrition  during climate  disasters  (Pacheco, 2020).  Conversely,  the  elderly  face  heightened  risks  owing  to  pre-existing  health conditions, reduced mobility, and social isolation, which severely hinder their ability to evacuate or access services during extreme events (UNEP, 2025). 

Spatial analysis tools such as Geographic Information System (GIS), bivariate mapping, and Local Moran’s I provide the methodological framework to visualize the intersection between climate risks and social vulnerability. 

These tools help identify “hotspots” and outliers, making inequality visible and guiding policy more effectively (Chang  et  al., 2021;   Xu  et  al., 2021).  Recent  studies  in  India  and  Algeria  have  demonstrated  how  combining climate data with poverty indicators could reveal areas requiring urgent attention (Dib & Sardou, 2025; Singh et al.,  2025).  Building on these global precedents, this study filled the identified gap in the Thai context by integrating projected  climate  risks  under the  RCP8.5  high-emissions  scenario  (2016–2035)  with  current  data  on  structural vulnerability, measured using the MPI in 2024. The research aims to move beyond general observations to provide spatially explicit evidence that supports fair and inclusive policy responses rooted in climate justice. 



2. Methodology 



This study employed an integrated spatial analysis approach to assess the intersection of future climate risks and current social vulnerabilities among children and the elderly in Thailand. The methodology  was designed to operationalize the concept of climate justice by overlaying  projections  of physical hazard with socio-economic deprivation data. 

To ensure methodological robustness and address the temporal disparity between datasets, this study adopted a 

“Scenario-based  Stress  Test”  approach.  Specifically,  we  utilized  the  Climate  Risk  Index  (CRI)  derived  from projected trends for the near-future period (2016–2035) and overlaid it with the most recent vulnerable population data in 2024 from TPMAP. 

It is important to clarify that this analysis does not aim to forecast future demographic shifts, which are subject to high uncertainties regarding migration and birth rates. Instead, it poses a critical policy question: “If the current vulnerable  populations  were  to  face  the  projected  climate  hazards  of  the  next  decade,  which  geographic  areas would lack the structural capacity to cope?” This condition isolates the climate variable and allows policymakers to identify “lock-in” risk areas where future hazards will exacerbate existing structural inequalities. 



2.1 Materials and Sources of Data   



This study utilized secondary data  from official  national  databases, to ensure  consistency with the  National Adaptation Plan framework in Thailand (Department of Climate Change & Environment, 2023). The data sources 

are summarized in Table 1, which includes the spatial data for the Provincial boundaries of Thailand (Figure 1). 



Table 1. Sources of data 



No. 

Data Used in the Study 

Type of Data 

Year of Data 

Source of Data 

1

Thai People Map and Analytics 



Vulnerable child population 

Statistical data 

2024 

Platform (TPMAP) 

2 

Vulnerable elderly population 

Statistical data 

2024 

TPMAP 

3

Vulnerable children under the criteria of 



Statistical data 

2024 

TPMAP 

the Ministry of Education (MPI) 

4 

Vulnerable elderly population (MPI) 

Statistical data 

2024 

TPMAP 

5

Office of Natural Resources and 



Climate Risk Index (CRI) 

Statistical data 

2024 

Environmental Policy and Planning 

6 

Provincial boundaries of Thailand 

Spatial data 

2020 

Open Development Thailand 
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Figure 1.  Provincial boundaries of Thailand 

Source: Open development Thailand (2020). 

 

2.1.1 Climate Risk Index   

Data  on  the  CRI  were  sourced  from  the  Climate  Change  Risk  Maps  Database  System  (CCRMDS),  a collaborative development by the Office of Natural Resources and Environmental Policy and Planning (ONEP) and  Ramkhamhaeng  University  (RU-CORE).  This  composite  index  was  constructed  based  on  downscaled projections  from  three  Global  Climate  Models:  EC-Earth,  HadGEM2-ES,  and  MPI-ESM-MR.  To  provide  a conservative basis for the planning of disaster risk reduction, the analysis specifically utilized the RCP8.5 scenario, representing a high emission “worst-case” trajectory. The CRI aggregated three primary hazard dimensions, i.e., Heat,  Flood,  and  Drought,  and  were  calculated  using  24  extreme  climate  indices  that  captured  variations  in intensity, duration, and frequency (e.g., maximum daily temperature, consecutive dry days, and heavy precipitation days). To ensure a balanced assessment  in which no single hazard disproportionately  influenced the composite score, the hazard indices were aggregated using equal weighting following a normalization process (ONEP & RU-CORE, 2021). 



2.1.2 Vulnerable population and Multidimensional Poverty Index Data regarding vulnerable populations were obtained from the  TPMAP in 2024. Diverging from traditional income-centric poverty metrics, TPMAP employed the MPI, which was adapted from the methodology of Alkire 

& Foster (2011). In the Thai context, the MPI encompasses five core dimensions: health, education, income, living standards,  and  access  to  public  services.  The  index  is  further  tailored  to  capture  specific  demographic vulnerabilities;  for  children,  assessment  extends  beyond  general  household  poverty  to  include  child-specific deprivation  indicators  such  as  nutrition  and  school  attendance,  while  elderly  vulnerability  incorporates  factors including  dependency  ratios,  healthcare  accessibility,  and  household  isolation.  To  ensure  a  comprehensive evaluation, this study applied both raw population counts to assess the magnitude of vulnerable groups and MPI intensity scores to determine the severity of deprivation. 
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2.2 Steps of Analysis   

 

Data analysis proceeded with the following steps: 



2.2.1 Data preparation and normalization 

Data from the CCRMDS and TPMAP were integrated using provincial codes as the common key. Since the datasets  utilized  different  measurement  scales  (e.g.,  population  counts  vs.  climate  probability  scores), normalization was essential. We applied Min-Max Normalization to rescale all variables to a range of [0, 1]. Unlike Z-score  standardization,  which  assumes  a  normal  distribution  and  centers  data  around  zero,  Min-Max normalization preserves the original distribution shape and strictly bounds the data between 0 and 1. This is critical for  this  study  because  the  CRI  is  already  an  index  on  a  0–1  scale.  Using  consistent  scaling  ensures  valid comparability  when  overlaying  risk  and  vulnerability  layers  in  the  Bivariate  Mapping  process.  Min-Max Normalization is as follows: 



𝑋 − 𝑋

𝑋

min

normalized =



𝑋max − 𝑋min

  

2.2.2 Spatial cluster analysis   

To detect statistically significant patterns, we employed two complementary spatial statistical techniques: (1) Bivariate Polygon Render 

This technique visualized the spatial relationship between two distinct variables (Climate Risk vs. Vulnerability) on a single choropleth map. A 2 × 2 matrix legend (4 quadrants) was employed to classify provinces into two tiers (Low and High) for each variable. This classification yielded four distinct intersection categories: High Risk–High Vulnerability, High Risk–Low Vulnerability, Low Risk–High Vulnerability, and Low Risk–Low Vulnerability, hence facilitating a clear identification of priority areas for policy intervention. 

(2) Local Spatial Autocorrelation (Local Moran’s I) 

While  visual  mapping  provides  an  overview,  it  does  not  confirm  statistical  significance.  We  applied  Local Moran’s I (LISA) to identify “Hotspots” (clusters of high values) and  “Spatial Outliers”. We utilized a Queen Contiguity weight matrix (first order), which defined neighbors as any spatial units sharing a common boundary or  vertex.  This  matrix  was  appropriate  for  provincial  geography  of  Thailand,  where  administrative  boundaries were irregular polygons. A  p-value of < 0.05 was selected as the threshold for statistical significance. While False Discovery Rate (FDR) corrections were sometimes used in large datasets, for a national analysis of 76 provinces, the standard 95% confidence interval ( p < 0.05) provided a robust balance between Type I and Type II errors, to ensure that emerging policy-relevant clusters were not overly suppressed. 

The  Local  Moran’s  I  analysis  yielded  four  primary  classifications  or  Quadrants  (LMQ),  which  defined  the nature of spatial clustering: 

Quadrant  1  (LMQ  =  1):  High-High  (HH)  represents  a  hotspot  where  a  province  has  a  high  value  (High Vulnerability/Poverty) and is surrounded by provinces with similarly high values. 

Quadrant 2 (LMQ = 2): Low-High (LH) represents a spatial outlier where a province has a low value (Low Vulnerability/Poverty)  but  is surrounded by  neighboring provinces  with  high  values.  This  indicates  a  potential buffer zone or area requiring perimeter prevention measures. 

Quadrant  3:  Low-Low  (LL)  represents  a  coldspot  where  a  province  has  a  low  value  and  is  surrounded  by provinces with similarly low values. 

Quadrant 4: High-Low (HL) represents a spatial outlier where a province has a high value but is surrounded by neighboring provinces with low values. 

This method not only identified “hotspot” of high vulnerability but also revealed areas of local instability that might  not  align  with  broader spatial  trends.  Its  dual  function  as  a  tool  for  cluster  detection  and  for  diagnosing influential observations rendered it particularly valuable for spatially targeted policy interventions (Anselin, 1995). 



2.3 Limitations of the Study 



To ensure rigorous interpretation of the results, this study recognized three key limitations. Firstly, the analysis was  limited  to  the  provincial  level.  This  was  the  smallest  unit  of  accessible  data.  Analysis  at  this  level  might obscure the nuances or concentrations of actual problems at sub-area levels, such as sub-districts or communities. 

Secondly, the research combined future risk data (forecasts from 2016–2035) with current population data in 2024. The results therefore indicated the future risks faced by current vulnerable populations but not a projection of the future population. Lastly, the risk index used in the analysis  was a relative index, scaled from 0 to 1, to compare risk levels between provinces only. It was not an absolute value that could truly indicate the magnitude of risk. 

Based on the research methodology described above, the next chapter presents the results of the study, which will reveal the landscape of risk and vulnerability in Thailand. 
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3. Results   



3.1 Overview of the Risks of Climate Change in Thailand 



Climate change has multidimensional impacts, particularly on public health. This risk assessment was based on three components: the Hazard Index, the Non-Climatic Index, and the Risk Index, which is the average of the first two indices. All of these underwent a standardization process for comparative ranking. 

For the period 2016–2035 under the high greenhouse gas emissions scenario (RCP 8.5), the results of analysis showed that the Northeast region had relatively high public health risk indices on average for both the Hazard and Non-Climatic Indices. The Eastern and Lower Central regions consistently had moderate to high overall risk, due to their moderate hazard levels and high non-climatic indices. The Northern and Southern regions, on the other hand, had low to moderate overall risk. 

In addition to public health, human settlements and security were important dimensions. From 2016–2035, the Northeast region remained a region with high overall risk, particularly in the central and lower regions, where non-climate hazards and indices were high. The North and the South were at low to moderate overall risk, as illustrated in Figure 2a and 2b. 





(a) 



(b) 



Figure 2.  Climate risk maps: (a) Public health dimension, 2016–2035; (b) Human settlements and security dimension, 2016–2035 

Source: Department of Climate Change & Environment (2025). 
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3.2 Situation of Vulnerable Children and Elderly People in Thailand The distribution of vulnerable children in Thailand showed that the Northeastern region had the highest number of  vulnerable  children,  while  those  in  the  Eastern  region  were  concentrated  in  a  few  provinces.  However,  the Northern and Western regions had low numbers of vulnerable children. When analyzed with the MPI, the results differed. The MPI map focused not on total numbers but on structural vulnerability. While the Northeastern region had  a  large  number  of  vulnerable  children,  this  did  not  necessarily  mean  that  all  areas  were  experiencing multidimensional poverty. Therefore, using both data sources was important for a comprehensive understanding of the problem (Figure 3a). 

Regarding the vulnerable elderly, the Northern and Northeastern regions had the highest numbers of vulnerable elderly, reflecting the widespread structural burden of the aging population. In contrast, the Central and Southern regions had a mixed population, with areas in moderate to high levels, but not as prominent as the first two regions. 

When the MPI data was analyzed together, the picture clearly differed from the total population. The MPI map indicated  that  while  some  regions  had  a  high  number  of  vulnerable  elderly,  not  all  areas  fell  below  the  MPI threshold. Comparing the two data sources  revealed both the magnitude of the problem (the  number of elderly people requiring assistance) and the qualitative severity (structural problems), which helped policymaking be more accurate and align with spatial reality (Figure 3b). 







(a) 

(b) 



Figure 3.  Maps of vulnerable (a) children and (b) elderly people in Thailand (2024) Source: TPMAP (2018). 



3.3 Analysis of Vulnerable Child and Elderly Populations below MPI in Relation to Composite Climate Risk 



To facilitate the interpretation of spatial relationships in Figures 4 and 5,  a bivariate color scheme was employed to classify provinces into four distinct categories based on the intersection of Climate Risk (X-axis) and Vulnerable Population (Y-axis): 

(1)  High-High  (Black/Dark  Red):  Provinces  exhibiting  both  high  climate  risk  and  high  vulnerability, representing the most critical areas requiring urgent intervention. 

(2) Low-High (Dark Blue): Provinces with low climate risk but high vulnerability, indicating areas where social fragility is the primary concern despite lower environmental exposure. 

(3) High-Low (Pink/Light Red): Provinces with high climate risk but low vulnerability, suggesting areas with better adaptive capacity despite high exposure. 

(4) Low-Low (White/Pale): Provinces with relatively low levels of both risk and vulnerability. 



3.3.1 Public health 

Vulnerable Child Population 

Based on the analysis of the relationship between the combined risk index and vulnerable children in the public health  dimension  for  the  near  future  (2016–2035)  under  the  RCP8.5  scenario,  the  bivariate  mapping  revealed 198
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distinct spatial clustering. The northeastern region was dominated by “High-High” clusters (Black/Dark Red areas). 

This pattern indicated a spatial convergence where the highest quartiles of projected climate hazards (specifically heat and drought indices) overlapped directly with the highest concentrations of child multidimensional poverty. 

Conversely,  the  Western  region  exhibited  “Low-High” patterns  (Dark  Blue),  indicating that  while  climate  risk scores in these provinces were relatively low compared to the Northeast, the structural vulnerability of the child population remained critically high (Figure 4a). 

Vulnerable Elderly Population 

For the elderly, “High-High” clusters were observed in the Central region and specific Northeastern provinces. 

This reflected areas where high elderly dependency ratios coincided with intensifying climate hazards, particularly urban heat islands and flood risks. Notably, the Northern region  displayed significant “Low-High” areas (Dark Blue), suggesting a concentration of vulnerable elderly populations in areas where the composite climate risk score appeared moderate relative to other regions (Figure 4b). 







(a) 

(b) 



Figure 4.  Maps of vulnerable (a) child and (b) elderly population below Multidimensional Poverty Index (MPI) in the public health dimension 



3.3.2 Settlements and human security 

Vulnerable Child Population 

When analyzing settlements and human security risks, the Northeastern region again emerged as a critical zone, exhibiting a mix of “High-High” (Black) and “High-Low” (Dark Red) patterns. This spatial overlap suggested that settlement  stability  for  children  in  these  agrarian  provinces  was  severely  threatened  by  climate  extremes, particularly  floods  and  droughts  that  disrupted  essential  services.  The  Central  region  displayed  “High-High” 

clusters in the metropolitan area, reflecting the exposure of dense and low-income urban settlements to flood risks. 

Additionally, the “Low-High” (Dark Blue) pattern along the border in the Western region suggested pockets of high  child  vulnerability  and  probably  lower  resilience  of  settlement  infrastructure,  despite  a  lower  calculated composite climate risk score (Figure 5a). 

Vulnerable Elderly Population 

The  distribution  of  vulnerable  elderly  populations  revealed  distinctly  regional  challenges.  The  North  was characterized by “High-Low” (Dark Red) areas, indicating that while the absolute vulnerability count might be lower relative to the Northeast, the physical risk to settlements (e.g., from flash floods or landslides in mountainous terrain)  remained  critically  high.  The  Northeast  displayed  “High-High”  (Black)  and  “Low-High”  (Dark  Blue) clusters, reinforcing the status in the region as a hotspot where structurally vulnerable elderly populations  were exposed  to  settlement  insecurity.  In  the  Central  region,  “High-High”  areas  highlighted  the  vulnerability  of  the urban elderly to metropolitan climate hazards, where high population density exacerbated evacuation challenges. 

The  Southern  region,  while  mostly  “Low-Low”  (White),  indicated  “Low-High”  (Dark  Blue)  pockets,  thus 199
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signaling coastal areas where elderly vulnerability remained high (Figure 5b). 







(a) 

(b) 



Figure 5.  Maps of vulnerable (a) child and (b) elderly population below Multidimensional Poverty Index (MPI) in settlements and human security dimension   



3.4 Spatial Autocorrelation 



To validate the spatial patterns observed in the Bivariate Polygon Render, Local Moran’s I was employed as a complementary  statistical  tool.  This  allowed  the  identification  of  statistically  significant  clusters  and  spatial outliers, thereby confirming the robustness of the visual groupings. 

The spatial clustering analysis of the vulnerable child population in 2024 revealed distinct regional patterns. 

The  Local  Moran’s  I  analysis  confirmed  statistically  significant  clusters  ( p  <  0.05).  Specifically,  High-High Hotspots were detected in the Central Northeastern region. Khon Kaen and Buriram were identified as significant hotspots. This statistical significance confirmed that these provinces not only had high individual vulnerability and risk scores but were surrounded by neighbors with similarly high values, to create a regional cluster of compounded risk.  This  quantitative  evidence  reinforced  the  finding  that  the  Northeast  was  a  critical  zone  of  concentrated 

multidimensional poverty affecting children (Table 2 and Figure 6a). 



Table 2.  Local Moran’s I statistical testing 



Name of the Province 

LMI 

LMP  LMQ 

Vulnerable Child Population 

Khon Kaen 

1.103 

0.004 

1 

Burirum 

1.724 

0.008 

1 

Mahasarakham 

1.552 

0.028 

1 

Vulnerable Elderly Population 

Mae Hong Son 

-0.634 

0.008 

2 

Chiang Mai 

-0.843 

0.015 

2 

Lampang 

-0.009 

0.015 

2 

Ratchaburi 

-0.909 

0.015 

2 

Lamphun 

1.593 

0.018 

1 

Pathum Thani 

0.112 

0.031 

1 

Kanchanaburi 

-0.093 

0.043 

2 

Chaiyaphum 

0.930 

0.047 

1 

Nakhon Ratchasima 

-0.080 

0.050 

2 

Note: LMI (Local Moran’s I), LMP (Local Moran’s  p-value), LMQ (Local Moran’s Quadrant), Local Moran’s  p-value < 0.05 is significant at CI 95%. Source: The data was prepared by the authors using the local Moran’s I. 
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(a) 

(b) 



Figure 6.  Maps of hotspot analysis of vulnerable (a) child and (b) elderly population in 2024 

Note: The data was prepared by the authors using Hotspot Analysis technique. 



For the vulnerable elderly population in 2024, the statistics revealed spatial inequalities in underlying structural vulnerability. While most provinces were classified as “not significantly different”, reflecting heterogeneity across regions. Statistically significant “High-High” clusters were observed in the central metropolitan area, indicating centers  of  high  elderly  vulnerability  surrounded  by  similarly  vulnerable  areas.  Furthermore,  uniquely  spatial relationships were identified in the form of outliers. Mae Hong Son emerged as a significantly “Low-High” spatial outlier. This indicated a localized pocket of high elderly vulnerability situated within a broader region of lower relative climate risk, highlighting a specific demographic challenge distinct from the climatic trend. Such outliers provided crucial information for designing perimeter prevention measures and monitoring hidden vulnerabilities 

that might be overlooked in broader regional scans (Table 2 and Figure 6b). 



4. Discussion and Recommendations 



This study examined the spatial distribution of climate-related public health risks among vulnerable populations in Thailand, with a focus on children and the elderly. By integrating MPI with spatial clustering techniques, the findings  revealed  significant  geographic  disparities  in  vulnerability  and  exposure.  The  discussion  below synthesized  these  findings  with  existing  literature  and  organized  around  four  key  themes:  (1)  climate  risk  and spatial  inequality,  (2)  demographic  vulnerability  and  multidimensional  poverty,  (3)  spatial  analysis  for  policy targeting, and (4) implications for climate justice and human security. 



4.1 Climate Risk and Spatial Inequality 



The results confirmed that climate-related risks were not evenly distributed across Thailand. Provinces in the Northeast  and  along  the  Western  border  consistently  showed  higher  concentrations  of  vulnerable  populations exposed  to  elevated  climate  risks.  This  pattern  reflected  the  broader  scientific  consensus  that  climate  change exacerbated existing inequalities through spatially differentiated exposure and sensitivity (IPCC, 2007). Observed trends in temperature extremes and changing precipitation patterns in Thailand further supported the notion that certain regions were disproportionately affected by climate hazards (Limjirakan & Limsakul, 2012; Vesteri, 2017). 

These findings align with global research on climate justice, which emphasizes the need to address structural disparities  in  exposure  and  adaptive  capacity  (Apraku  et  al., 2025).  Vulnerability  is  not  merely  a  function  of environmental hazards but emerges from the intersection of physical threats and social conditions such as poverty, age, and access to services (IOM, 2024; Leichenko & Silva, 2014). In this context, spatial inequality becomes a critical lens for understanding who is most prone to risk and where interventions should be prioritized. 

Specifically, the identification of  “High-High” clusters in the Northeast, such as Khon Kaen and Buriram as shown in Figure 6a, could be attributed to the region’s socio-economic structure. The Northeast is the agricultural 201

heartland  in  Thailand,  yet  it  suffers  from  chronic  water  scarcity  and  lower  household  incomes,  which  directly erodes  the  adaptive  capacity  of  families  with  children.  When  overlaid  with  RCP8.5  projections,  this  existing fragility is exacerbated by intensifying heat and trends of drought. 

In contrast, the “Low-High” outlier pattern observed in the Northern region, particularly in Mae Hong Son as shown in Figure 6b, highlighted a different driver of vulnerability. Here, the risk was driven less by the aggregate climate score and more by the sheer concentration of elderly populations in remote and mountainous terrain. This geographic isolation limits access to essential healthcare services, thus creating a structural deficit that makes the aging population acutely sensitive even to moderate climate variations. 

Beyond the regional differences revealed by maps and statistics, the socio-economic structure overlapping with climate  risks  should  be  considered.  Northeastern  Thailand  has  an  economy  heavily  reliant  on  agriculture, particularly rain-fed field crops. Facing prolonged droughts, household resilience is lower than in other regions. 

Furthermore,  low  average  household  income  and  limited  water  management  infrastructure  exacerbate  the vulnerability in the region (Leichenko & Silva,  2014; Limjirakan & Limsakul, 2012). 



4.2 Demographic Vulnerability and Multidimensional Poverty Moreover,  children  and  the  elderly  are  particularly  susceptible  to  climate-related  health  impacts  due  to physiological  sensitivity  and  limited  adaptive  capacity  (Pacheco, 2020;  Ripple  et  al., 2022;  UNEP, 2025).  The integration of demographic data with the MPI in this study revealed that provinces with high poverty scores often coincided with high climate risk zones. This supports the argument that vulnerability is multidimensional and must be understood through both socioeconomic and environmental indicators (Alkire & Foster, 2011; Sen, 1999).  

The MPI framework used in this study builds on the work of Alkire & Foster (2011) and reflects the national efforts of Thailand to localize poverty measurement through TPMAP (2018). By incorporating indicators such as education, health, and living standards, the MPI offers a comprehensive view of deprivation than income alone. 

This  approach  is  consistent  with  Sen’s  capability  framework,  which  emphasizes  the  importance  of  expanding individuals’ freedoms and opportunities (Sen, 1999).  

International studies have similarly demonstrated the value of aggregated vulnerability indicators in identifying priority  areas  for  climate  adaptation.  For  example,  Chang et  al.  (2021)  applied  composite  indices  to  flood risk assessments,  while  Singh  et  al.  (2025)  examined  the  spatial  overlap  between  climatic  exposure  and multidimensional poverty in India. These studies reinforce the importance of integrating demographic and poverty data into climate risk analysis. 

In the North, although the number of children below the MPI threshold is not as high as in the Northeast, the North has the highest proportion of elderly in the country. The large elderly population in mountainous areas limits access to health services due to distance, transportation, and the distribution of medical personnel. While not a 

“hotspot” in terms of numbers, structurally it reflects a more severe level of vulnerability (Pacheco, 2020; UNEP, 

2025).  Integrating  the  MPI  with  geographic  data  helps  illustrate  that  vulnerability  is  not  simply  reflected  in population, but also through infrastructure constraints and access to essential services for quality of life. 



4.3 Spatial Analysis for Policy Targeting 



Besides, the use of spatial analysis tools, specifically Bivariate Polygon Render and Local Moran’s I, enabled the  identification  of  statistically  significant  clusters  and  spatial  outliers.  These  methods  validated  the  visual patterns observed in the data and revealed hidden structures that might not be apparent through descriptive statistics alone. Local Moran’s I was especially effective in detecting areas of high–high clustering and low–high outliers, thus providing a robust basis for spatial targeting of interventions (UNDP, 2022).  

Similar methodologies have been applied in other contexts to inform policy.  Wang et al. (2024) and Xu et al. 

(2021) used spatial techniques to assess PM2.5 exposure in relation to land use in China, while Dib  & Sardou 

(2025) conducted territorial analysis of drought-prone agricultural zones in Algeria. These examples highlight the versatility of spatial tools in translating complex data into actionable insights. 

In Thailand, the concentration of vulnerable elderly populations in peri-urban provinces and the clustering of child vulnerability in the Northeast suggest that climate adaptation strategies  should be tailored to demographic and  geographic  realities.  Specifically,  utilizing  MPI-adjusted  spatial  data  allows  a  more  precise  allocation  of resources than raw population counts. For instance, while raw data might direct funds solely to populous cities, MPI-adjusted hotspots like Buriram reveal critical needs in rural areas where structural poverty impedes climate resilience. Spatial indicators allow policymakers to move beyond national averages and address localized needs, particularly in regions where vulnerability is often underrepresented. 



4.4 Implications for Climate Justice and Human Security 



The observed spatial patterns support the principles of climate justice, which call for equitable distribution of 202

climate burdens and benefits. As Ogunbode et al. (2024) argued, public support for climate action was strengthened when policies were perceived as fair and responsive to local needs. In Thailand, this means prioritizing regions with overlapping environmental and social vulnerabilities and ensuring that adaptation efforts are inclusive and participatory. The study also contributes to the discourse on human security, which recognizes climate change as a threat multiplier that exacerbates existing social tensions and resource constraints (Vesteri, 2017). 

Migration patterns, aging populations, and urban expansion further complicate the landscape of vulnerability. 

Addressing  these  challenges  requires  integrated  planning  that  combines  spatial  analysis  with  community engagement and institutional coordination. Global initiatives such as the climate justice framework of the United Nations  Development  Programme  (UNDP)  and  warnings  from  the  United  Nations  Environment  Programme (UNEP) on heatwave risks for older people underscore the urgency of protecting vulnerable groups. In this context, spatially  explicit  data  could  enhance  the  effectiveness  of  social  protection  and  resilience  planning,  in  order  to ensure that no one is left behind (IOM, 2024; UNDP, 2009;  UNDP, 2022; UNEP, 2025).  

Meanwhile, this study highlighted the structural inequities associated with climate adaptation in Thailand. Under a  distributive  justice  framework,  disaster  response  and  adaptation  budgets  were  often  disproportionately concentrated in large urban centers and key economic regions such as Bangkok and its vicinity. In contrast, the spatial analysis revealed that provinces with high poverty levels and high climate risk, particularly in the Northeast and Northern (statistically significant hotspots like Khon Kaen, Buriram, and Lamphun), tended to receive fewer investments  and  less  structural  support.  This  imbalance  produced  a  spatial  gap  between  “resource-rich”  and 

“resource-poor”  regions,  thereby  reinforcing  pre-existing  social  and  economic  inequalities.  Recognizing  these spatially differentiated outcomes, which align with international findings, reinforces the argument of distributive justice  and  underscores  the  need  for  targeted  interventions  that  are  both  place-specific  and  socially  inclusive (Apraku et al., 2025; Leichenko & Silva, 2014;  Singh et al.,  2025). 

Under  a  procedural  justice  framework,  limitations  in  participatory  governance  remain  apparent.  Vulnerable groups,  especially  children  and  the  elderly,  are often overlooked  in  climate-related  decision-making  processes, which  undermines  the  inclusiveness  and  responsiveness  of  adaptation  policies.  Strengthening  the  role  of  local mechanisms,  such  as  Subdistrict  Administrative  Organizations  (SAOs)  and  municipalities,  would  allow  more systematic  inclusion  of  vulnerable  populations  in  policy  design  and  implementation.  This  would  ensure  that climate adaptation is not merely a technical exercise but also a social process that addresses the lived realities of at-risk communities (Ogunbode et al., 2024;  UNDP, 2009). 

Furthermore, the threat multiplier effect of climate change specifically affects the human security of vulnerable groups in different ways: 

(1)  As  vulnerable  children  in  the  Northeastern  region  rely  heavily  on  agriculture  and  expose  to  prolonged droughts,  rural  poverty  is  exacerbated.  This  climate-induced  stress  directly  threatens  children’s  human security  by  impacting  food  security  with  reduced  crop  yields  and  household  income  as  well  as  limiting access to education due to economic hardship and potential forced migration of families. 

(2)  Vulnerable elderly in the Northern region, particularly in mountainous and remote areas as exemplified by the  outlier  province  Mae  Hong  Son,  and  in  the  peri-urban  metropolitan  hotspots:  the  large  elderly population  is  acutely  susceptible  to  health  impacts.  Climate-related  hazards  when  combined  with geographical constraints limit their access to health services due to distance, difficulties of transportation, and the uneven distribution of medical personnel, hence structurally reflecting a severe level of vulnerability. 

Similarly, the outlier province, Ratchaburi, highlights hidden vulnerabilities in areas that might otherwise be overlooked. 

Addressing  these  inequities  requires  moving  beyond  national  averages  and  using  spatial  indicators  to  meet localized needs, so adaptation strategies are tailored to the demographic and geographic realities of each province. 



Table 3.  Policy recommendations 



Dimension 

Region/Examples of Provinces 

Policy Recommendations 

Establish Mobile Health Units for elderly populations in 

Northern Region – Chiang Mai, 

Health 

mountainous and remote rural areas, alongside investments in Mae Hong Son 

subdistrict-level health infrastructure. 

Develop drought-resilient water and agricultural systems, coupled Human 

Northeastern Region – Khon 

with scholarship programs for children in impoverished households Security 

Kaen, Buriram, Maha Sarakham 

to reduce forced migration. 

Greater Bangkok 

Design urban planning strategies for elderly hotspots, including safe Urban 

Metropolitan Area – Pathum 

public spaces, accessible public transport, and expanded green areas Environment 

Thani, Nonthaburi 

to mitigate PM2.5. 

Invest in Early Warning Systems and flood–storm protection 

Disaster Risk 

Southern Region – Nakhon Si 

infrastructure, including dedicated shelters for children and elderly Management 

Thammarat, Songkhla 

populations. 
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4.5 Policy Recommendations 



Building on the findings, region-specific strategies are essential for translating spatial evidence into actionable climate adaptation. These recommendations integrate health, human security, urban environment, and disaster risk 

dimensions, and are tailored to the socio-demographic and geographic realities identified in the study. Table  3 

summarizes proposed interventions, emphasizing both immediate protective measures for vulnerable populations and long-term structural investments that can enhance resilience and equity across regions. 



5. Conclusions 



This study  investigated the spatial dimensions of climate-related public health risks in Thailand, specifically focusing on vulnerable children and the elderly under the RCP8.5 high-emission scenario for the near future (2016–

2035). By adopting a “Scenario-based Stress Test” approach, this research uniquely integrated future climate risk projections with current data on structural vulnerability via the MPI. The objective is to identify geographic “lock-in” areas where future environmental hazards are likely to exacerbate existing social inequalities, so as to provide spatially explicit evidence to support equitable climate adaptation planning. 

The  findings  revealed  pronounced  regional  disparities  that  challenge  “one-size-fits-all”  policies.  The Northeastern region consistently emerged as a critical “High-High” cluster, particularly in provinces such as Khon Kaen  and  Buriram,  where  high  concentrations  of  child  multidimensional  poverty  intersected  with  intensifying composite climate risks. While the index was composite, regional context suggested these were primarily driven by  the  susceptibility  to  drought  and  heat  stress  in  the  area.  Conversely,  the  Northern  region  exhibited  distinct 

“Low-High” outliers, such as Mae Hong Son, where vulnerability was driven by the density of elderly populations in remote and mountainous terrain with limited healthcare access, rather than aggregate climate exposure alone. 

These results validated the utility of the MPI over simple population counts, thus offering a more granular lens for targeting structural deprivation. 

As regards the implications for policy and regional applicability, these findings had direct implications for the National Adaptation Plan and spatial planning legislation in Thailand. Policymakers should prioritize the identified hotspots  for  targeted  interventions  such  as  implementing  climate-resilient  social  safety  nets  for  children  in  the Northeast to address water and heat security as well as establishing mobile healthcare units for the elderly in the remote North. Furthermore, the methodological framework employed here, i.e., overlaying Global Climate Models with multidimensional poverty data holds significant potential for replicability across the Association of Southeast Asian  Nations.  Neighboring  countries  with  similar  socio-economic  structures  and  availability  of  data,  such  as Vietnam and Lao People’s Democratic Republic, could adopt this approach to identify hidden vulnerabilities and advance regional climate justice. 

While this study provided a robust national overview, future research should aim to refine the spatial resolution to  the  sub-district  (Tambon)  level  to  capture  localized  heterogeneities  that  provincial  data  may  obscure. 

Additionally, future works should incorporate dynamic demographic modeling to account for migration patterns and aging trends, rather than relying on static population data. Integrating these dynamic variables will further enhance the precision of climate adaptation strategies, so as to ensure that resources are allocated not just to where the hazards are, but to where the people are least able to tackle. 
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Abstract: This study examined climate-related risks to public health, settlements and human security in Thailand,
with a particular focus on vulnerable groups such as children and the elderly. Distinguishing itself from traditional
assessments, this research innovatively integrated future climate projections from 2016-2035 under a high-
emission scenario of RCP8.5 with data about current structural vulnerability, based on the Multidimensional
Poverty Index (MPI) in 2024. This approach proactively identified “at-risk™ areas where future environmental
hazards might exacerbate existing social inequalitics. The analysis on 76 provinces except Bangkok, utilized
Bivariate Polygon Render to visualize risk-poverty intersections and Local Spatial Autocorrelation (Local Moran’s
1) to rigorously detect statistically significant spatial clusters. Results indicated that the Northeastern and Western
regions consistently faced elevated risks. Quantitative analysis confirmed critical “High-High™ hotspots in the
Northeast, specifically in Khon Kaen (LMI = 1.103, p = 0.004) and Buriram (LMI = 1.724, p = 0.008), where high
climate exposure significantly overlapped with child multidimensional poverty. Conversely, Mae Hong Son
emerged as a significantly “Low-High” spatial outlier (LMI .634, p = 0.008), highlighting a region with
concentrated elderly vulnerability despite lower relative climate risks. These findings underscored the utility of
MPI over simple population counts for policy targeting. Ultimately, the study supports climate justice principles
by providing spatially explicit evidence to guide interventions that address both local needs and structural
inequalities.

Keywords: Climate justice; Climate Risk Index; Multidimensional Poverty Index; Spatial analysis; Vulnerability
1. Introduction

Climate change is no longer a distant concern; it is an existing reality that affects people’s lives in many ways.
In Thailand, the impacts are increasingly visible through rising temperatures, floods, droughts, and air pollution
(IPCC, 2007; Limjirakan & Limsakul, 2012). These environmental changes do not affect everyone equally.
Vulnerable groups face greater risks due to limited resources and lower adaptive capacity (Leichenko & Silva,
2014). Understanding these unequal impacts leads us to the concept of climate justice, which connects
environmental change with social fairness. It asks whether climate burdens are shared fairly and whether affected
communities have a voice in decisions that shape their future (Apraku et al., 2025; UNDP, 2009). Recent research
has shown that public perception matters even when people are unfamiliar with the term “climate justice”. They
often agree that poorer communities suffer disproportionately and that environmental problems are tied to
economic structures (Ogunbode et al., 2024).

Despite the growing body of literature on climate change in Thailand, a critical knowledge gap remains. Most
existing studies analyzed climate risks (meteorological data) and social vulnerability (socio-economic data) in
isolation. Furthermore, traditional vulnerability assessments in Thailand often rely heavily on income-based
poverty measures. This study argued that monetary metrics were insufficient for climate risk analysis because they
failed to capture the structural deprivations such as lack of education, poor health, or inadequate living standards
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