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Abstract: This study examined climate-related risks to public health, settlements and human security in Thailand, 

with a particular focus on vulnerable groups such as children and the elderly. Distinguishing itself from traditional 

assessments, this research innovatively integrated future climate projections from 2016–2035 under a high-

emission scenario of RCP8.5 with data about current structural vulnerability, based on the Multidimensional 

Poverty Index (MPI) in 2024. This approach proactively identified “at-risk” areas where future environmental 

hazards might exacerbate existing social inequalities. The analysis on 76 provinces except Bangkok, utilized 

Bivariate Polygon Render to visualize risk-poverty intersections and Local Spatial Autocorrelation (Local Moran’s 

I) to rigorously detect statistically significant spatial clusters. Results indicated that the Northeastern and Western

regions consistently faced elevated risks. Quantitative analysis confirmed critical “High-High” hotspots in the

Northeast, specifically in Khon Kaen (LMI = 1.103, p = 0.004) and Buriram (LMI = 1.724, p = 0.008), where high

climate exposure significantly overlapped with child multidimensional poverty. Conversely, Mae Hong Son

emerged as a significantly “Low-High” spatial outlier (LMI = -0.634, p = 0.008), highlighting a region with

concentrated elderly vulnerability despite lower relative climate risks. These findings underscored the utility of

MPI over simple population counts for policy targeting. Ultimately, the study supports climate justice principles

by providing spatially explicit evidence to guide interventions that address both local needs and structural

inequalities.
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1. Introduction

Climate change is no longer a distant concern; it is an existing reality that affects people’s lives in many ways.

In Thailand, the impacts are increasingly visible through rising temperatures, floods, droughts, and air pollution 

(IPCC, 2007; Limjirakan & Limsakul, 2012). These environmental changes do not affect everyone equally. 

Vulnerable groups face greater risks due to limited resources and lower adaptive capacity (Leichenko & Silva, 

2014). Understanding these unequal impacts leads us to the concept of climate justice, which connects 

environmental change with social fairness. It asks whether climate burdens are shared fairly and whether affected 

communities have a voice in decisions that shape their future (Apraku et al., 2025; UNDP, 2009). Recent research 

has shown that public perception matters even when people are unfamiliar with the term “climate justice”. They 

often agree that poorer communities suffer disproportionately and that environmental problems are tied to 

economic structures (Ogunbode et al., 2024). 

Despite the growing body of literature on climate change in Thailand, a critical knowledge gap remains. Most 

existing studies analyzed climate risks (meteorological data) and social vulnerability (socio-economic data) in 

isolation. Furthermore, traditional vulnerability assessments in Thailand often rely heavily on income-based 

poverty measures. This study argued that monetary metrics were insufficient for climate risk analysis because they 

failed to capture the structural deprivations such as lack of education, poor health, or inadequate living standards 
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that directly limited the adaptive capacity of a household. To address this, we utilized the Multidimensional 

Poverty Index (MPI) which was developed by Alkire & Foster (2011) to offer a more granular view of deprivation. 

In the Thai context, the government, through the Office of the National Economic and Social Development Council 

(NESDC) and Thai People Map and Analytics Platform (TPMAP), has localized this index to identify specific 

needs at the sub-national level (NSTDA, 2021; OPHI, 2019; TPMAP, 2018). By using the MPI, we could identify 

populations who may have income above the poverty line but lack the essential infrastructure and health resilience 

to withstand climate shocks. 

This research specifically targeted two demographic groups including children and the elderly. These groups 

were selected not merely due to their statistical size, but due to their distinct physiological and social vulnerabilities. 

Children are uniquely susceptible to environmental hazards due to their developing physiology and dependency 

on caregivers, thus rendering them disproportionately affected by waterborne diseases and malnutrition during 

climate disasters (Pacheco, 2020). Conversely, the elderly face heightened risks owing to pre-existing health 

conditions, reduced mobility, and social isolation, which severely hinder their ability to evacuate or access services 

during extreme events (UNEP, 2025). 

Spatial analysis tools such as Geographic Information System (GIS), bivariate mapping, and Local Moran’s I 

provide the methodological framework to visualize the intersection between climate risks and social vulnerability. 

These tools help identify “hotspots” and outliers, making inequality visible and guiding policy more effectively 

(Chang et al., 2021; Xu et al., 2021). Recent studies in India and Algeria have demonstrated how combining 

climate data with poverty indicators could reveal areas requiring urgent attention (Dib & Sardou, 2025; Singh et 

al., 2025). Building on these global precedents, this study filled the identified gap in the Thai context by integrating 

projected climate risks under the RCP8.5 high-emissions scenario (2016–2035) with current data on structural 

vulnerability, measured using the MPI in 2024. The research aims to move beyond general observations to provide 

spatially explicit evidence that supports fair and inclusive policy responses rooted in climate justice. 

 

2. Methodology 

 

This study employed an integrated spatial analysis approach to assess the intersection of future climate risks 

and current social vulnerabilities among children and the elderly in Thailand. The methodology was designed to 

operationalize the concept of climate justice by overlaying projections of physical hazard with socio-economic 

deprivation data. 

To ensure methodological robustness and address the temporal disparity between datasets, this study adopted a 

“Scenario-based Stress Test” approach. Specifically, we utilized the Climate Risk Index (CRI) derived from 

projected trends for the near-future period (2016–2035) and overlaid it with the most recent vulnerable population 

data in 2024 from TPMAP. 

It is important to clarify that this analysis does not aim to forecast future demographic shifts, which are subject 

to high uncertainties regarding migration and birth rates. Instead, it poses a critical policy question: “If the current 

vulnerable populations were to face the projected climate hazards of the next decade, which geographic areas 

would lack the structural capacity to cope?” This condition isolates the climate variable and allows policymakers 

to identify “lock-in” risk areas where future hazards will exacerbate existing structural inequalities. 

 

2.1 Materials and Sources of Data  

 

This study utilized secondary data from official national databases, to ensure consistency with the National 

Adaptation Plan framework in Thailand (Department of Climate Change & Environment, 2023). The data sources 

are summarized in Table 1, which includes the spatial data for the Provincial boundaries of Thailand (Figure 1). 

 

Table 1. Sources of data 

 
No. Data Used in the Study Type of Data Year of Data Source of Data 

1 Vulnerable child population Statistical data 2024 
Thai People Map and Analytics 

Platform (TPMAP) 

2 Vulnerable elderly population Statistical data 2024 TPMAP 

3 
Vulnerable children under the criteria of 

the Ministry of Education (MPI) 
Statistical data 2024 TPMAP 

4 Vulnerable elderly population (MPI) Statistical data 2024 TPMAP 

5 Climate Risk Index (CRI) Statistical data 2024 
Office of Natural Resources and 

Environmental Policy and Planning 

6 Provincial boundaries of Thailand Spatial data 2020 Open Development Thailand 
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Figure 1. Provincial boundaries of Thailand 

Source: Open development Thailand (2020). 

 

2.1.1 Climate Risk Index  

Data on the CRI were sourced from the Climate Change Risk Maps Database System (CCRMDS), a 

collaborative development by the Office of Natural Resources and Environmental Policy and Planning (ONEP) 

and Ramkhamhaeng University (RU-CORE). This composite index was constructed based on downscaled 

projections from three Global Climate Models: EC-Earth, HadGEM2-ES, and MPI-ESM-MR. To provide a 

conservative basis for the planning of disaster risk reduction, the analysis specifically utilized the RCP8.5 scenario, 

representing a high emission “worst-case” trajectory. The CRI aggregated three primary hazard dimensions, i.e., 

Heat, Flood, and Drought, and were calculated using 24 extreme climate indices that captured variations in 

intensity, duration, and frequency (e.g., maximum daily temperature, consecutive dry days, and heavy precipitation 

days). To ensure a balanced assessment in which no single hazard disproportionately influenced the composite 

score, the hazard indices were aggregated using equal weighting following a normalization process (ONEP & RU-

CORE, 2021). 
 

2.1.2 Vulnerable population and Multidimensional Poverty Index 

Data regarding vulnerable populations were obtained from the TPMAP in 2024. Diverging from traditional 

income-centric poverty metrics, TPMAP employed the MPI, which was adapted from the methodology of Alkire 

& Foster (2011). In the Thai context, the MPI encompasses five core dimensions: health, education, income, living 

standards, and access to public services. The index is further tailored to capture specific demographic 

vulnerabilities; for children, assessment extends beyond general household poverty to include child-specific 

deprivation indicators such as nutrition and school attendance, while elderly vulnerability incorporates factors 

including dependency ratios, healthcare accessibility, and household isolation. To ensure a comprehensive 

evaluation, this study applied both raw population counts to assess the magnitude of vulnerable groups and MPI 

intensity scores to determine the severity of deprivation. 
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2.2 Steps of Analysis  

 

Data analysis proceeded with the following steps: 

 

2.2.1 Data preparation and normalization 

Data from the CCRMDS and TPMAP were integrated using provincial codes as the common key. Since the 

datasets utilized different measurement scales (e.g., population counts vs. climate probability scores), 

normalization was essential. We applied Min-Max Normalization to rescale all variables to a range of [0, 1]. Unlike 

Z-score standardization, which assumes a normal distribution and centers data around zero, Min-Max 

normalization preserves the original distribution shape and strictly bounds the data between 0 and 1. This is critical 

for this study because the CRI is already an index on a 0–1 scale. Using consistent scaling ensures valid 

comparability when overlaying risk and vulnerability layers in the Bivariate Mapping process. Min-Max 

Normalization is as follows: 

 

𝑋normalized =
𝑋 − 𝑋min

𝑋max − 𝑋min

 

 

2.2.2 Spatial cluster analysis  

To detect statistically significant patterns, we employed two complementary spatial statistical techniques: 

(1) Bivariate Polygon Render 

This technique visualized the spatial relationship between two distinct variables (Climate Risk vs. Vulnerability) 

on a single choropleth map. A 2 × 2 matrix legend (4 quadrants) was employed to classify provinces into two tiers 

(Low and High) for each variable. This classification yielded four distinct intersection categories: High Risk–High 

Vulnerability, High Risk–Low Vulnerability, Low Risk–High Vulnerability, and Low Risk–Low Vulnerability, 

hence facilitating a clear identification of priority areas for policy intervention. 

(2) Local Spatial Autocorrelation (Local Moran’s I) 
While visual mapping provides an overview, it does not confirm statistical significance. We applied Local 

Moran’s I (LISA) to identify “Hotspots” (clusters of high values) and “Spatial Outliers”. We utilized a Queen 

Contiguity weight matrix (first order), which defined neighbors as any spatial units sharing a common boundary 

or vertex. This matrix was appropriate for provincial geography of Thailand, where administrative boundaries 

were irregular polygons. A p-value of < 0.05 was selected as the threshold for statistical significance. While False 

Discovery Rate (FDR) corrections were sometimes used in large datasets, for a national analysis of 76 provinces, 

the standard 95% confidence interval (p < 0.05) provided a robust balance between Type I and Type II errors, to 

ensure that emerging policy-relevant clusters were not overly suppressed. 

The Local Moran’s I analysis yielded four primary classifications or Quadrants (LMQ), which defined the 

nature of spatial clustering: 

Quadrant 1 (LMQ = 1): High-High (HH) represents a hotspot where a province has a high value (High 

Vulnerability/Poverty) and is surrounded by provinces with similarly high values. 

Quadrant 2 (LMQ = 2): Low-High (LH) represents a spatial outlier where a province has a low value (Low 

Vulnerability/Poverty) but is surrounded by neighboring provinces with high values. This indicates a potential 

buffer zone or area requiring perimeter prevention measures. 

Quadrant 3: Low-Low (LL) represents a coldspot where a province has a low value and is surrounded by 

provinces with similarly low values. 

Quadrant 4: High-Low (HL) represents a spatial outlier where a province has a high value but is surrounded 

by neighboring provinces with low values.  

This method not only identified “hotspot” of high vulnerability but also revealed areas of local instability that 

might not align with broader spatial trends. Its dual function as a tool for cluster detection and for diagnosing 

influential observations rendered it particularly valuable for spatially targeted policy interventions (Anselin, 1995). 
 

2.3 Limitations of the Study 
 

To ensure rigorous interpretation of the results, this study recognized three key limitations. Firstly, the analysis 

was limited to the provincial level. This was the smallest unit of accessible data. Analysis at this level might 

obscure the nuances or concentrations of actual problems at sub-area levels, such as sub-districts or communities. 

Secondly, the research combined future risk data (forecasts from 2016–2035) with current population data in 

2024. The results therefore indicated the future risks faced by current vulnerable populations but not a projection 

of the future population. Lastly, the risk index used in the analysis was a relative index, scaled from 0 to 1, to 

compare risk levels between provinces only. It was not an absolute value that could truly indicate the magnitude 

of risk. 

Based on the research methodology described above, the next chapter presents the results of the study, which 

will reveal the landscape of risk and vulnerability in Thailand. 
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3. Results  
 

3.1 Overview of the Risks of Climate Change in Thailand 

 
Climate change has multidimensional impacts, particularly on public health. This risk assessment was based on 

three components: the Hazard Index, the Non-Climatic Index, and the Risk Index, which is the average of the first 

two indices. All of these underwent a standardization process for comparative ranking. 

For the period 2016–2035 under the high greenhouse gas emissions scenario (RCP 8.5), the results of analysis 

showed that the Northeast region had relatively high public health risk indices on average for both the Hazard and 

Non-Climatic Indices. The Eastern and Lower Central regions consistently had moderate to high overall risk, due 

to their moderate hazard levels and high non-climatic indices. The Northern and Southern regions, on the other 

hand, had low to moderate overall risk. 

In addition to public health, human settlements and security were important dimensions. From 2016–2035, the 

Northeast region remained a region with high overall risk, particularly in the central and lower regions, where non-

climate hazards and indices were high. The North and the South were at low to moderate overall risk, as illustrated 

in Figure 2a and 2b. 

 

 
(a) 

 
(b) 

 

Figure 2. Climate risk maps: (a) Public health dimension, 2016–2035; (b) Human settlements and security 

dimension, 2016–2035 
Source: Department of Climate Change & Environment (2025). 
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3.2 Situation of Vulnerable Children and Elderly People in Thailand 

 

The distribution of vulnerable children in Thailand showed that the Northeastern region had the highest number 

of vulnerable children, while those in the Eastern region were concentrated in a few provinces. However, the 

Northern and Western regions had low numbers of vulnerable children. When analyzed with the MPI, the results 

differed. The MPI map focused not on total numbers but on structural vulnerability. While the Northeastern region 

had a large number of vulnerable children, this did not necessarily mean that all areas were experiencing 

multidimensional poverty. Therefore, using both data sources was important for a comprehensive understanding 

of the problem (Figure 3a). 

Regarding the vulnerable elderly, the Northern and Northeastern regions had the highest numbers of vulnerable 

elderly, reflecting the widespread structural burden of the aging population. In contrast, the Central and Southern 

regions had a mixed population, with areas in moderate to high levels, but not as prominent as the first two regions. 

When the MPI data was analyzed together, the picture clearly differed from the total population. The MPI map 

indicated that while some regions had a high number of vulnerable elderly, not all areas fell below the MPI 

threshold. Comparing the two data sources revealed both the magnitude of the problem (the number of elderly 

people requiring assistance) and the qualitative severity (structural problems), which helped policymaking be more 

accurate and align with spatial reality (Figure 3b). 

 

  
(a) (b) 

 

Figure 3. Maps of vulnerable (a) children and (b) elderly people in Thailand (2024) 
Source: TPMAP (2018). 

 

3.3 Analysis of Vulnerable Child and Elderly Populations below MPI in Relation to Composite Climate 

Risk 

 

To facilitate the interpretation of spatial relationships in Figures 4 and 5, a bivariate color scheme was employed 

to classify provinces into four distinct categories based on the intersection of Climate Risk (X-axis) and Vulnerable 

Population (Y-axis): 

(1) High-High (Black/Dark Red): Provinces exhibiting both high climate risk and high vulnerability, 

representing the most critical areas requiring urgent intervention. 

(2) Low-High (Dark Blue): Provinces with low climate risk but high vulnerability, indicating areas where social 

fragility is the primary concern despite lower environmental exposure. 

(3) High-Low (Pink/Light Red): Provinces with high climate risk but low vulnerability, suggesting areas with 

better adaptive capacity despite high exposure. 

(4) Low-Low (White/Pale): Provinces with relatively low levels of both risk and vulnerability. 

 

3.3.1 Public health 

Vulnerable Child Population 

Based on the analysis of the relationship between the combined risk index and vulnerable children in the public 

health dimension for the near future (2016–2035) under the RCP8.5 scenario, the bivariate mapping revealed 
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distinct spatial clustering. The northeastern region was dominated by “High-High” clusters (Black/Dark Red areas). 

This pattern indicated a spatial convergence where the highest quartiles of projected climate hazards (specifically 

heat and drought indices) overlapped directly with the highest concentrations of child multidimensional poverty. 

Conversely, the Western region exhibited “Low-High” patterns (Dark Blue), indicating that while climate risk 

scores in these provinces were relatively low compared to the Northeast, the structural vulnerability of the child 

population remained critically high (Figure 4a). 

Vulnerable Elderly Population 

For the elderly, “High-High” clusters were observed in the Central region and specific Northeastern provinces. 

This reflected areas where high elderly dependency ratios coincided with intensifying climate hazards, particularly 

urban heat islands and flood risks. Notably, the Northern region displayed significant “Low-High” areas (Dark 

Blue), suggesting a concentration of vulnerable elderly populations in areas where the composite climate risk score 

appeared moderate relative to other regions (Figure 4b). 

 

  
(a) (b) 

 

Figure 4. Maps of vulnerable (a) child and (b) elderly population below Multidimensional Poverty Index (MPI) 

in the public health dimension 

 

3.3.2 Settlements and human security 
Vulnerable Child Population 

When analyzing settlements and human security risks, the Northeastern region again emerged as a critical zone, 

exhibiting a mix of “High-High” (Black) and “High-Low” (Dark Red) patterns. This spatial overlap suggested that 

settlement stability for children in these agrarian provinces was severely threatened by climate extremes, 

particularly floods and droughts that disrupted essential services. The Central region displayed “High-High” 

clusters in the metropolitan area, reflecting the exposure of dense and low-income urban settlements to flood risks. 

Additionally, the “Low-High” (Dark Blue) pattern along the border in the Western region suggested pockets of 

high child vulnerability and probably lower resilience of settlement infrastructure, despite a lower calculated 

composite climate risk score (Figure 5a). 

Vulnerable Elderly Population 

The distribution of vulnerable elderly populations revealed distinctly regional challenges. The North was 

characterized by “High-Low” (Dark Red) areas, indicating that while the absolute vulnerability count might be 

lower relative to the Northeast, the physical risk to settlements (e.g., from flash floods or landslides in mountainous 

terrain) remained critically high. The Northeast displayed “High-High” (Black) and “Low-High” (Dark Blue) 

clusters, reinforcing the status in the region as a hotspot where structurally vulnerable elderly populations were 

exposed to settlement insecurity. In the Central region, “High-High” areas highlighted the vulnerability of the 

urban elderly to metropolitan climate hazards, where high population density exacerbated evacuation challenges. 

The Southern region, while mostly “Low-Low” (White), indicated “Low-High” (Dark Blue) pockets, thus 
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signaling coastal areas where elderly vulnerability remained high (Figure 5b). 
 

  
(a) (b) 

 

Figure 5. Maps of vulnerable (a) child and (b) elderly population below Multidimensional Poverty Index (MPI) 

in settlements and human security dimension  

 

3.4 Spatial Autocorrelation 

 

To validate the spatial patterns observed in the Bivariate Polygon Render, Local Moran’s I was employed as a 

complementary statistical tool. This allowed the identification of statistically significant clusters and spatial 

outliers, thereby confirming the robustness of the visual groupings. 

The spatial clustering analysis of the vulnerable child population in 2024 revealed distinct regional patterns. 

The Local Moran’s I analysis confirmed statistically significant clusters (p < 0.05). Specifically, High-High 

Hotspots were detected in the Central Northeastern region. Khon Kaen and Buriram were identified as significant 

hotspots. This statistical significance confirmed that these provinces not only had high individual vulnerability and 

risk scores but were surrounded by neighbors with similarly high values, to create a regional cluster of compounded 

risk. This quantitative evidence reinforced the finding that the Northeast was a critical zone of concentrated 

multidimensional poverty affecting children (Table 2 and Figure 6a).  
 

Table 2. Local Moran’s I statistical testing 

 
Name of the Province LMI LMP LMQ 

Vulnerable Child Population 

Khon Kaen 1.103 0.004 1 

Burirum 1.724 0.008 1 

Mahasarakham 1.552 0.028 1 

Vulnerable Elderly Population 

Mae Hong Son -0.634 0.008 2 

Chiang Mai -0.843 0.015 2 

Lampang -0.009 0.015 2 

Ratchaburi -0.909 0.015 2 

Lamphun 1.593 0.018 1 

Pathum Thani 0.112 0.031 1 

Kanchanaburi -0.093 0.043 2 

Chaiyaphum 0.930 0.047 1 

Nakhon Ratchasima -0.080 0.050 2 
Note: LMI (Local Moran’s I), LMP (Local Moran’s p-value), LMQ (Local Moran’s Quadrant), Local Moran’s p-value < 0.05 is significant 

at CI 95%. Source: The data was prepared by the authors using the local Moran’s I. 
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(a) (b) 

 

Figure 6. Maps of hotspot analysis of vulnerable (a) child and (b) elderly population in 2024 
Note: The data was prepared by the authors using Hotspot Analysis technique. 

 

For the vulnerable elderly population in 2024, the statistics revealed spatial inequalities in underlying structural 

vulnerability. While most provinces were classified as “not significantly different”, reflecting heterogeneity across 

regions. Statistically significant “High-High” clusters were observed in the central metropolitan area, indicating 

centers of high elderly vulnerability surrounded by similarly vulnerable areas. Furthermore, uniquely spatial 

relationships were identified in the form of outliers. Mae Hong Son emerged as a significantly “Low-High” spatial 

outlier. This indicated a localized pocket of high elderly vulnerability situated within a broader region of lower 

relative climate risk, highlighting a specific demographic challenge distinct from the climatic trend. Such outliers 

provided crucial information for designing perimeter prevention measures and monitoring hidden vulnerabilities 

that might be overlooked in broader regional scans (Table 2 and Figure 6b). 

 
4. Discussion and Recommendations 

 

This study examined the spatial distribution of climate-related public health risks among vulnerable populations 

in Thailand, with a focus on children and the elderly. By integrating MPI with spatial clustering techniques, the 

findings revealed significant geographic disparities in vulnerability and exposure. The discussion below 

synthesized these findings with existing literature and organized around four key themes: (1) climate risk and 

spatial inequality, (2) demographic vulnerability and multidimensional poverty, (3) spatial analysis for policy 

targeting, and (4) implications for climate justice and human security. 

 

4.1 Climate Risk and Spatial Inequality 

 

The results confirmed that climate-related risks were not evenly distributed across Thailand. Provinces in the 

Northeast and along the Western border consistently showed higher concentrations of vulnerable populations 

exposed to elevated climate risks. This pattern reflected the broader scientific consensus that climate change 

exacerbated existing inequalities through spatially differentiated exposure and sensitivity (IPCC, 2007). Observed 

trends in temperature extremes and changing precipitation patterns in Thailand further supported the notion that 

certain regions were disproportionately affected by climate hazards (Limjirakan & Limsakul, 2012; Vesteri, 2017). 

These findings align with global research on climate justice, which emphasizes the need to address structural 

disparities in exposure and adaptive capacity (Apraku et al., 2025). Vulnerability is not merely a function of 

environmental hazards but emerges from the intersection of physical threats and social conditions such as poverty, 

age, and access to services (IOM, 2024; Leichenko & Silva, 2014). In this context, spatial inequality becomes a 

critical lens for understanding who is most prone to risk and where interventions should be prioritized. 

Specifically, the identification of “High-High” clusters in the Northeast, such as Khon Kaen and Buriram as 

shown in Figure 6a, could be attributed to the region’s socio-economic structure. The Northeast is the agricultural 
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heartland in Thailand, yet it suffers from chronic water scarcity and lower household incomes, which directly 

erodes the adaptive capacity of families with children. When overlaid with RCP8.5 projections, this existing 

fragility is exacerbated by intensifying heat and trends of drought. 

In contrast, the “Low-High” outlier pattern observed in the Northern region, particularly in Mae Hong Son as 

shown in Figure 6b, highlighted a different driver of vulnerability. Here, the risk was driven less by the aggregate 

climate score and more by the sheer concentration of elderly populations in remote and mountainous terrain. This 

geographic isolation limits access to essential healthcare services, thus creating a structural deficit that makes the 

aging population acutely sensitive even to moderate climate variations. 

Beyond the regional differences revealed by maps and statistics, the socio-economic structure overlapping with 

climate risks should be considered. Northeastern Thailand has an economy heavily reliant on agriculture, 

particularly rain-fed field crops. Facing prolonged droughts, household resilience is lower than in other regions. 

Furthermore, low average household income and limited water management infrastructure exacerbate the 

vulnerability in the region (Leichenko & Silva, 2014; Limjirakan & Limsakul, 2012). 

 

4.2 Demographic Vulnerability and Multidimensional Poverty 

 

Moreover, children and the elderly are particularly susceptible to climate-related health impacts due to 

physiological sensitivity and limited adaptive capacity (Pacheco, 2020; Ripple et al., 2022; UNEP, 2025). The 

integration of demographic data with the MPI in this study revealed that provinces with high poverty scores often 

coincided with high climate risk zones. This supports the argument that vulnerability is multidimensional and must 

be understood through both socioeconomic and environmental indicators (Alkire & Foster, 2011; Sen, 1999). 

The MPI framework used in this study builds on the work of Alkire & Foster (2011) and reflects the national 

efforts of Thailand to localize poverty measurement through TPMAP (2018). By incorporating indicators such as 

education, health, and living standards, the MPI offers a comprehensive view of deprivation than income alone. 

This approach is consistent with Sen’s capability framework, which emphasizes the importance of expanding 

individuals’ freedoms and opportunities (Sen, 1999). 

International studies have similarly demonstrated the value of aggregated vulnerability indicators in identifying 

priority areas for climate adaptation. For example, Chang et al. (2021) applied composite indices to flood risk 

assessments, while Singh et al. (2025) examined the spatial overlap between climatic exposure and 

multidimensional poverty in India. These studies reinforce the importance of integrating demographic and poverty 

data into climate risk analysis. 

In the North, although the number of children below the MPI threshold is not as high as in the Northeast, the 

North has the highest proportion of elderly in the country. The large elderly population in mountainous areas limits 

access to health services due to distance, transportation, and the distribution of medical personnel. While not a 

“hotspot” in terms of numbers, structurally it reflects a more severe level of vulnerability (Pacheco, 2020; UNEP, 

2025). Integrating the MPI with geographic data helps illustrate that vulnerability is not simply reflected in 

population, but also through infrastructure constraints and access to essential services for quality of life. 

 

4.3 Spatial Analysis for Policy Targeting 

 

Besides, the use of spatial analysis tools, specifically Bivariate Polygon Render and Local Moran’s I, enabled 

the identification of statistically significant clusters and spatial outliers. These methods validated the visual 

patterns observed in the data and revealed hidden structures that might not be apparent through descriptive statistics 

alone. Local Moran’s I was especially effective in detecting areas of high–high clustering and low–high outliers, 

thus providing a robust basis for spatial targeting of interventions (UNDP, 2022). 

Similar methodologies have been applied in other contexts to inform policy. Wang et al. (2024) and Xu et al. 

(2021) used spatial techniques to assess PM2.5 exposure in relation to land use in China, while Dib & Sardou 

(2025) conducted territorial analysis of drought-prone agricultural zones in Algeria. These examples highlight the 

versatility of spatial tools in translating complex data into actionable insights. 

In Thailand, the concentration of vulnerable elderly populations in peri-urban provinces and the clustering of 

child vulnerability in the Northeast suggest that climate adaptation strategies should be tailored to demographic 

and geographic realities. Specifically, utilizing MPI-adjusted spatial data allows a more precise allocation of 

resources than raw population counts. For instance, while raw data might direct funds solely to populous cities, 

MPI-adjusted hotspots like Buriram reveal critical needs in rural areas where structural poverty impedes climate 

resilience. Spatial indicators allow policymakers to move beyond national averages and address localized needs, 

particularly in regions where vulnerability is often underrepresented. 

 

4.4 Implications for Climate Justice and Human Security 

 

The observed spatial patterns support the principles of climate justice, which call for equitable distribution of 
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climate burdens and benefits. As Ogunbode et al. (2024) argued, public support for climate action was strengthened 

when policies were perceived as fair and responsive to local needs. In Thailand, this means prioritizing regions 

with overlapping environmental and social vulnerabilities and ensuring that adaptation efforts are inclusive and 

participatory. The study also contributes to the discourse on human security, which recognizes climate change as 

a threat multiplier that exacerbates existing social tensions and resource constraints (Vesteri, 2017).  

Migration patterns, aging populations, and urban expansion further complicate the landscape of vulnerability. 

Addressing these challenges requires integrated planning that combines spatial analysis with community 

engagement and institutional coordination. Global initiatives such as the climate justice framework of the United 

Nations Development Programme (UNDP) and warnings from the United Nations Environment Programme 

(UNEP) on heatwave risks for older people underscore the urgency of protecting vulnerable groups. In this context, 

spatially explicit data could enhance the effectiveness of social protection and resilience planning, in order to 

ensure that no one is left behind (IOM, 2024; UNDP, 2009; UNDP, 2022; UNEP, 2025). 

Meanwhile, this study highlighted the structural inequities associated with climate adaptation in Thailand. Under 

a distributive justice framework, disaster response and adaptation budgets were often disproportionately 

concentrated in large urban centers and key economic regions such as Bangkok and its vicinity. In contrast, the 

spatial analysis revealed that provinces with high poverty levels and high climate risk, particularly in the Northeast 

and Northern (statistically significant hotspots like Khon Kaen, Buriram, and Lamphun), tended to receive fewer 

investments and less structural support. This imbalance produced a spatial gap between “resource-rich” and 

“resource-poor” regions, thereby reinforcing pre-existing social and economic inequalities. Recognizing these 

spatially differentiated outcomes, which align with international findings, reinforces the argument of distributive 

justice and underscores the need for targeted interventions that are both place-specific and socially inclusive 

(Apraku et al., 2025; Leichenko & Silva, 2014; Singh et al., 2025).  

Under a procedural justice framework, limitations in participatory governance remain apparent. Vulnerable 

groups, especially children and the elderly, are often overlooked in climate-related decision-making processes, 

which undermines the inclusiveness and responsiveness of adaptation policies. Strengthening the role of local 

mechanisms, such as Subdistrict Administrative Organizations (SAOs) and municipalities, would allow more 

systematic inclusion of vulnerable populations in policy design and implementation. This would ensure that 

climate adaptation is not merely a technical exercise but also a social process that addresses the lived realities of 

at-risk communities (Ogunbode et al., 2024; UNDP, 2009). 

Furthermore, the threat multiplier effect of climate change specifically affects the human security of vulnerable 

groups in different ways: 

(1) As vulnerable children in the Northeastern region rely heavily on agriculture and expose to prolonged 

droughts, rural poverty is exacerbated. This climate-induced stress directly threatens children’s human 

security by impacting food security with reduced crop yields and household income as well as limiting 

access to education due to economic hardship and potential forced migration of families. 

(2) Vulnerable elderly in the Northern region, particularly in mountainous and remote areas as exemplified by 

the outlier province Mae Hong Son, and in the peri-urban metropolitan hotspots: the large elderly 

population is acutely susceptible to health impacts. Climate-related hazards when combined with 

geographical constraints limit their access to health services due to distance, difficulties of transportation, 

and the uneven distribution of medical personnel, hence structurally reflecting a severe level of vulnerability. 

Similarly, the outlier province, Ratchaburi, highlights hidden vulnerabilities in areas that might otherwise 

be overlooked. 

Addressing these inequities requires moving beyond national averages and using spatial indicators to meet 

localized needs, so adaptation strategies are tailored to the demographic and geographic realities of each province. 
 

Table 3. Policy recommendations 

 

Dimension Region/Examples of Provinces Policy Recommendations 

Health 
Northern Region – Chiang Mai, 

Mae Hong Son 

Establish Mobile Health Units for elderly populations in 

mountainous and remote rural areas, alongside investments in 

subdistrict-level health infrastructure. 

Human 

Security 

Northeastern Region – Khon 

Kaen, Buriram, Maha Sarakham 

Develop drought-resilient water and agricultural systems, coupled 

with scholarship programs for children in impoverished households 

to reduce forced migration. 

Urban 

Environment 

Greater Bangkok 

Metropolitan Area – Pathum 

Thani, Nonthaburi 

Design urban planning strategies for elderly hotspots, including safe 

public spaces, accessible public transport, and expanded green areas 

to mitigate PM2.5. 

Disaster Risk 

Management 

Southern Region – Nakhon Si 

Thammarat, Songkhla 

Invest in Early Warning Systems and flood–storm protection 

infrastructure, including dedicated shelters for children and elderly 

populations. 
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4.5 Policy Recommendations 
 

Building on the findings, region-specific strategies are essential for translating spatial evidence into actionable 

climate adaptation. These recommendations integrate health, human security, urban environment, and disaster risk 

dimensions, and are tailored to the socio-demographic and geographic realities identified in the study. Table 3 

summarizes proposed interventions, emphasizing both immediate protective measures for vulnerable populations 

and long-term structural investments that can enhance resilience and equity across regions. 
 

5. Conclusions 

 

This study investigated the spatial dimensions of climate-related public health risks in Thailand, specifically 

focusing on vulnerable children and the elderly under the RCP8.5 high-emission scenario for the near future (2016–

2035). By adopting a “Scenario-based Stress Test” approach, this research uniquely integrated future climate risk 

projections with current data on structural vulnerability via the MPI. The objective is to identify geographic “lock-

in” areas where future environmental hazards are likely to exacerbate existing social inequalities, so as to provide 

spatially explicit evidence to support equitable climate adaptation planning. 

The findings revealed pronounced regional disparities that challenge “one-size-fits-all” policies. The 

Northeastern region consistently emerged as a critical “High-High” cluster, particularly in provinces such as Khon 

Kaen and Buriram, where high concentrations of child multidimensional poverty intersected with intensifying 

composite climate risks. While the index was composite, regional context suggested these were primarily driven 

by the susceptibility to drought and heat stress in the area. Conversely, the Northern region exhibited distinct 

“Low-High” outliers, such as Mae Hong Son, where vulnerability was driven by the density of elderly populations 

in remote and mountainous terrain with limited healthcare access, rather than aggregate climate exposure alone. 

These results validated the utility of the MPI over simple population counts, thus offering a more granular lens for 

targeting structural deprivation. 

As regards the implications for policy and regional applicability, these findings had direct implications for the 

National Adaptation Plan and spatial planning legislation in Thailand. Policymakers should prioritize the identified 

hotspots for targeted interventions such as implementing climate-resilient social safety nets for children in the 

Northeast to address water and heat security as well as establishing mobile healthcare units for the elderly in the 

remote North. Furthermore, the methodological framework employed here, i.e., overlaying Global Climate Models 

with multidimensional poverty data holds significant potential for replicability across the Association of Southeast 

Asian Nations. Neighboring countries with similar socio-economic structures and availability of data, such as 

Vietnam and Lao People’s Democratic Republic, could adopt this approach to identify hidden vulnerabilities and 

advance regional climate justice. 

While this study provided a robust national overview, future research should aim to refine the spatial resolution 

to the sub-district (Tambon) level to capture localized heterogeneities that provincial data may obscure. 

Additionally, future works should incorporate dynamic demographic modeling to account for migration patterns 

and aging trends, rather than relying on static population data. Integrating these dynamic variables will further 

enhance the precision of climate adaptation strategies, so as to ensure that resources are allocated not just to where 

the hazards are, but to where the people are least able to tackle. 
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