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Abstract: The role of cognitive and affective dimensions in mathematical modeling education was investigated, 

with a particular emphasis on the influence of mathematical values on student engagement and learning outcomes. 

A mixed-methods approach was employed, incorporating surveys and interviews with students from diverse 

educational contexts. This approach enabled the quantitative assessment of cognitive competencies alongside 

qualitative exploration of attitudes and values toward mathematics. It was found that values associated with realism 

and cognitive engagement significantly shape students’ approaches to mathematical modeling, with cultural 

differences playing a critical role in the expression and prioritization of these values. The study highlights the 

necessity of cross-cultural research to elucidate how these values are cultivated across varying educational settings. 

Furthermore, it is argued that mathematical modeling instruction must be culturally responsive and attuned to the 

affective dimensions of learning to promote deeper engagement and enhance educational outcomes. The findings 

underscore the importance of integrating both cognitive and affective factors in the design of educational 

frameworks, offering insights for optimizing teaching strategies and fostering more effective learning 

environments. 

Keywords: Deterministic EPRTD mathematical model; Results for validation of the model; Stability analysis; 

Sensitivity analysis; Optimization bifurcation; Numerical scheme and analysis 

1. Introduction

Over the past few decades, numerous studies have focused on mathematical modeling as a powerful 

pedagogical tool in mathematics education (Blum & Borromeo Ferri, 2009; Borromeo Ferri, 2015). These 

studies primarily emphasize the cognitive dimensions of students, particularly examining their 

mathematical modeling competencies. However, while cognitive factors are crucial to students’ success, recent 

research has highlighted the importance of affective dimensions, such as attitudes, beliefs, and values, in 

shaping their approach to mathematics and science (Bishop et al., 2008; Zakaria & Maat, 2012). These 

affective factors can significantly influence students’ engagement with mathematics, impacting their 

willingness to engage with mathematical problems and their persistence in solving them (Bishop et al., 2006). 

Despite the well-documented impact of affective dimensions on learning, educational research has often 

neglected this aspect due to its more challenging nature of measurement and analysis (Bishop et al., 2003). 

Furthermore, there is a notable gap in studies that examine both cognitive and affective dimensions simultaneously, 

particularly in the context of mathematical modeling. Although affective factors, especially mathematical values, 

play a vital role in shaping students’ mathematical experiences, they have not been extensively studied within the 

framework of mathematical modeling tasks. 

Mathematical values such as the attitudes towards mathematics and its real-world applications are often 

implicitly conveyed during the teaching and learning process. These values may influence how students perceive 

the relevance of mathematics in their daily lives and how they approach mathematical problems. However, not all 

learning environments succeed in transmitting positive mathematical values, and in many cases, these values are 
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transferred unconsciously or unintentionally (FitzSimons et al., 2001; Gellert, 2000). Therefore, understanding the 

role of mathematical values in mathematical modeling tasks, especially through different modeling perspectives 

(e.g., realistic/applied, cognitive, model-eliciting, and socio-critical approaches), is crucial for improving 

mathematical modeling instruction). 

Moreover, there remains a gap in the literature regarding cross-cultural investigations of mathematical values 

in mathematical modeling tasks. Different cultural contexts may present unique perspectives on how values are 

integrated into mathematical modeling, and understanding these differences can lead to more culturally responsive 

and effective teaching strategies. This study aims to fill this gap by investigating the cognitive and affective 

dimensions of mathematical modeling, with a particular focus on the mathematical values embedded in various 

mathematical modeling tasks across different cultures. By examining these dimensions, the study seeks to 

contribute to the development of more holistic and effective mathematical modeling education that considers both 

cognitive skills and affective factors. The study of cultural differences in mathematics education between the U.S. 

and China reveals varying teacher beliefs that influence the teaching and learning process (An et al., 2006). 

Mathematics education is deeply shaped by the cultural contexts in which it is practiced, affecting both the content 

and the pedagogical approaches employed in classrooms (Andrews, 2016). Socially open-ended problems in 

mathematics education offer an opportunity to integrate mathematical models with societal values, enriching 

student learning (Baba & Shimada, 2019). The values embedded in Japanese mathematics education have evolved 

through historical shifts, reflecting societal and educational changes (Baba et al., 2012). Mathematical modeling 

in the classroom, when approached from a socio-critical and discursive perspective, enables students to engage 

with mathematics in socially meaningful ways (Barbosa, 2006). Mathematical modeling serves as a powerful tool 

for connecting abstract mathematical concepts to real-world problems, promoting deeper understanding among 

students (Berry & Houston, 1995). Mathematical enculturation, the process by which students are introduced to 

the culture of mathematics, plays a central role in shaping both individual and collective mathematical identities 

(Bishop, 1991). Mathematical enculturation emphasizes the importance of understanding how students' cultural 

backgrounds influence their engagement with and interpretation of mathematical concepts (Bishop, 1991). The 

quality teaching of mathematical modeling involves not only understanding the mathematical concepts but also 

fostering students' ability to apply these concepts to solve real-world problems in a meaningful way (Blum, 2015). 

Exploring values and valuing in mathematics education provides a framework for understanding how educational 

contexts and individual beliefs influence the teaching and learning of mathematics (Clarkson et al., 2019). 

Research methods in education play a crucial role in shaping how educational practices are analyzed and developed, 

offering both qualitative and quantitative tools for studying educational phenomena (Cohen et al., 2002). 

Intercultural communication theories are essential in understanding how cultural differences impact the 

transmission and reception of educational content, including mathematics (Cooper et al., 2007). The choice of 

research design whether qualitative, quantitative, or mixed methods greatly influences how we approach the study 

of teaching and learning processes in mathematics education (Creswell & Creswell, 2017). Mathematical literacy 

is a critical component of modern education, as it integrates mathematical thinking with real-world problem-

solving, fostering not only cognitive skills but also societal participation (D'Ambrosio, 1999). Analyzing values in 

Turkish middle school mathematics textbooks reveals how cultural and societal norms shape the content and 

presentation of mathematical knowledge (Dede, 2006). A comparison of Turkish and German mathematics 

teachers reveals differing perceptions of the value of mathematics, shaped by distinct educational philosophies and 

cultural contexts (Dede, 2012). The decision-making processes of mathematics teachers in Turkey and Germany 

are influenced by underlying values, which guide their instructional choices in group study settings (Dede, 2013). 

Gender differences in mathematics education values are examined by comparing the perspectives of Turkish and 

German mathematics teachers, highlighting the role of social and cultural factors (Dede, 2014). Investigating the 

mathematical modeling competencies of pre-service teachers by gender helps reveal how different educational 

experiences shape their skills and attitudes toward mathematical modeling (Dede et al., 2018). Theoretical and 

empirical investigations of the phases in the modeling process contribute to a deeper understanding of how students 

transition from problem interpretation to mathematical solution (Ferri, 2006). Different models of mathematical 

modeling whether viewed as genres, purposes, or perspectives offer diverse frameworks for understanding how 

mathematical concepts can be applied to real-world situations (Galbraith, 2012). Document analysis is a valuable 

method for examining educational texts and materials, providing insight into the values, norms, and educational 

practices embedded within them (Gross, 2018). Pedagogical content knowledge, when viewed through the lens of 

values, emphasizes the role of teachers' beliefs and cultural context in shaping how content is delivered in the 

classroom (Gudmundsdottir, 1990). Hofstede's cultural dimensions theory provides a framework for understanding 

how cultural values influence behaviors, communication, and educational practices across different societies 

(Hofstede, 2009). 

2. Model Formulation

The model incorporates five primary components: student enrollment, student performance, resource allocation, 

242



teacher quality, and dropout rates. These components are influenced by external factors, such as funding and socio-

economic conditions, and internal factors, such as the distribution of resources and quality of education provided. 

By formulating these relationships as differential equations, the model enables the simulation of various scenarios 

and the evaluation of policy interventions to optimize the performance of the education system. 

The system of equations reflects the following dynamics: 

𝑑𝐸

𝑑𝑡
= 𝜆 − 𝛿𝐸 − 𝐷𝐸

𝑑𝑃

𝑑𝑡
= 𝛼1

𝐸

𝑅
+ 𝛼2𝑇 − 𝛽1𝑃

𝑑𝑅

𝑑𝑡
= 𝜂 − 𝛾𝐸 − 𝜌𝑅

𝑑𝑇

𝑑𝑡
= 𝜅 − 𝜎𝑇 + 𝜉

𝑇

𝑅
𝑑𝐷

𝑑𝑡
= 𝛿1 − 𝛿2

𝐸

𝑃
+ 𝛿3

(1) 

With the following initial conditions: 

𝐸(0) = 𝐸0 ≥ 0, 𝑃(0) = 𝑃0 ≥ 0, 𝑅(0) = 𝑅0 ≥ 0, 𝑇(0) = 𝑇0 ≥ 0, 𝐷(0) = 𝐷0 ≥ 0

3. Analysis of the Proposed Model

Considering these properties ensures that the educational model is feasible, realistic, and meaningful for 

understanding system dynamics. 

Theorem 1: If the initial conditions of the model equations are non-negative, then the future solutions are also 

non-negative.  

Proof: Consider the differential equation for 𝐸(𝑡): 

𝑑𝐸

𝑑𝑡
= 𝜆 − (𝛿 + 𝐷)𝐸 (2) 

Now, multiply both sides of the differential equation by the integrating factor 𝑒(𝛿+𝐷)𝑡:

𝑒(𝛿+𝐷)𝑡
𝑑𝐸

𝑑𝑡
+ 𝑒(𝛿+𝐷)𝑡(𝛿 + 𝐷)𝐸 = 𝑒(𝛿+𝐷)𝑡𝜆 (3) 

This integrates to give the following solution: 

dE

dt
(e(δ+D)tE) = e(δ+D)t

dE

dt
+ e(δ+D)t(δ + D)E = e(δ+D)tλ (4) 

𝐸(𝑡) =
𝜆

𝛿 + 𝐷
+ 𝐶𝑒−(𝛿+𝐷)𝑡 (5) 

where, 𝐶 = 𝐸0 −
𝜆

𝛿+𝐷
.

As 𝑡 → ∞, the exponential term vanishes, which leads to: 

𝐸(𝑡) ≥ 0 for all 𝑡 ≥ 0 

The solution for 𝐸(𝑡) is non-negative, and similarly, for 𝑃(𝑡), 𝑅(𝑡), 𝑇(𝑡), and 𝐷(𝑡), the solutions remain 

non-negative for all 𝑡 ≥ 0. 

Theorem 2: All the solutions of the model equations are uniformly bounded and contained in a feasible region 

for all 𝑡 ≥ 0. 

Proof: Let 𝛤 = {(𝐸(𝑡), 𝑃(𝑡), 𝑅(𝑡), 𝑇(𝑡), 𝐷(𝑡), ) ∈ ℝ+
5 ∣ 0 ≤ 𝑁(𝑡) ≤

𝛬

𝑘
} be the positive invariant set and 𝑁 =

𝐸 + 𝑃 + 𝑅 + 𝑇 + 𝐷  be the total population of the animals, where 𝐸 , 𝑃 , 𝑅 , 𝑇 , and 𝐷  represent different 

compartments. Then, 
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𝑑𝑁

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
+

𝑑𝑃

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
+

𝑑𝑇

𝑑𝑡
+

𝑑𝐷

𝑑𝑡
= 𝛬 − 𝑘𝑁 (6) 

 
𝑑𝑁

𝑑𝑡
= 𝛬 − 𝑘𝑁 (7) 

 

To prove that 𝑁(𝑡) is bounded, the ordinary differential equation (ODE) needs to be solved. 

 
𝑑𝑁

𝑑𝑡
= 𝛬 − 𝑘𝑁 ⟹

𝑑𝑁

𝑑𝑡
≥ −𝑘𝑁 with initial condition 𝑁(0) = 𝑁0 

 

First, the corresponding ODE is solved by using the basic method of integration: 

 
𝑑𝑁

𝑑𝑡
≥ −𝑘𝑁 ⟹ ln|𝑁| ≥ −𝑘𝑡 + 𝐶 (8) 

 

 
 

Figure 1. Analysis of 𝑁(𝑡) 

 

where, 𝐶  is any constant of integration. At 𝑡 = 0 , then 𝑁(𝑡)  becomes as 𝑁(𝑡) = 𝑁0𝑒
−𝑘𝑡 , which lead to 

𝑁(𝑡) ≥ 𝑁0𝑒
−𝑘𝑡, showing that 𝑁(𝑡) is a decreasing function. Therefore, 𝑁(𝑡) is bounded below. Now to show 

that 𝑁(𝑡) is also bounded above, the inequality
𝑑𝑁

𝑑𝑡
≥ −𝑘𝑁 is considered. Multiplying 𝑒𝑘𝑡  on both sides and 

integrating from 0 to 𝑡, obtaining 𝑒𝑘𝑡 𝑑𝑁

𝑑𝑡
+ 𝑘𝑒𝑘𝑡𝑁 ≥ 0, which shows that 𝑁(𝑡) ≤ 𝑁0𝑒

𝑘𝑡  is bounded above. 

Combining both bounds, it can be concluded that 𝑁0𝑒
−𝑘𝑡 ≤ 𝑁(𝑡) ≤ 𝑁0𝑒

𝑘𝑡. Therefore, 𝑁(𝑡) is bounded for all 

𝑡 ≥ 0. Figure 1 shows an analysis of 𝑁(𝑡). 

 

3.1 Basic Reproduction Number and Equilibrium (DFE) Point 

 

This section establishes the existence of the equilibrium (DFE) point and calculates the basic reproduction 

number, 𝑅0, for the proposed model. The DFE represents a state where the population is free from infection, with 

no individuals in the exposed or infected compartments. The basic reproduction number, 𝑅0, was calculated using 

the next-generation matrix approach or an equivalent method, depending on the structure of the model. This 

parameter quantifies the average number of secondary infections caused by a single infected individual in a fully 

susceptible population. The value of 𝑅0 determines the threshold for spread of education. If 𝑅0 < 1, the system 

may eventually stabilize or decline (e.g., students may drop out faster than new students are admitted, or 

performance may decay). If 𝑅0 > 1, the education system can experience growth, potentially leading to a "boom" 

in enrollment, resources, or performance. 

To evaluate the basic reproduction number 𝑅0  for the given proposed mode, the next-generation matrix 
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technique was used. Let 𝐹𝑖 represent the newly enrolled students in the class 𝑖 and 𝑉𝑖 represent the transfer of 

animals in each class 𝑖, where 𝑖 ∈ {𝐸, 𝑃, 𝐼, 𝐷, 𝑅}. To find the basic reproductive number of the proposed model, 

the formulation below can be followed: 

where, 𝑋 = (𝐸, 𝑃, 𝐼, 𝐷, 𝑅) 

 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋) − 𝑉(𝑋) 

 

𝐹 =

(

  
 

𝜆 − 𝛿𝐸 − 𝐷𝐸
𝛼1

𝑅
𝐸 + 𝛼2𝑇

0
0
0 )

  
 

, 𝑉 =

(

 
 
 

𝛾𝐸 + 𝐷𝐸
𝛽1𝑃
𝜌𝑅
𝜎𝑇
𝛿2𝑃

𝐸 )

 
 
 

 

 

𝐹′ =
∂𝐹𝑖

∂𝑥𝑖

|𝐸0
=

(

  
 

−𝛿 − 𝐷 0 0 0 0
𝛼1

𝑅
𝛼2 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0)

  
 

, 𝑉′ =
∂𝑉𝑖

∂𝑥𝑖

|𝐸0
=

(

 
 
 

𝛾 + 𝐷 0 0 0 0
0 𝛽1 0 0 0
0 0 𝜌 0 0
0 0 0 𝜎 0

0 0 0 0
𝑃

𝛿2)

 
 
 

 

 

(𝑉′)−1 =

(

 
 
 
 
 
 
 
 

1

𝛾 + 𝐷
0 0 0 0

0
1

𝛽1

0 0 0

0 0
1

𝜌
0 0

0 0 0
1

𝜎
0

0 0 0 0
𝑃

𝛿2)

 
 
 
 
 
 
 
 

 

 

𝐹′ ⋅ (𝑉′)−1 =

(

  
 

−𝛿 − 𝐷 0 0 0 0
𝛼1

𝑅
𝛼2 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0)

  
 

⋅

(

 
 
 
 
 
 
 
 

1

𝛾 + 𝐷
0 0 0 0

0
1

𝛽1

0 0 0

0 0
1

𝜌
0 0

0 0 0
1

𝜎
0

0 0 0 0
𝑃

𝛿2)

 
 
 
 
 
 
 
 

 

 

The maximum eigenvalue of 𝐹′ ⋅ (𝑉′)−1 is called the basic reproductive number, which is given by: 

where, 𝑋 = (𝐸, 𝑃, 𝐼, 𝐷, 𝑅) 

 
𝑑𝑋

𝑑𝑡
= 𝐹(𝑋) − 𝑉(𝑋) 

 

𝑅0 = (
𝑅(𝛾 + 𝐷)

𝛼1

+
𝛽1

𝛼2

) 

 

As shown in Figure 2, it is clear that the sensitivity index of 𝑅0 with respect to 𝑅, 𝛽1, 𝛾 and D is directly 

proportional to 𝑅0. On the other hand, the sensitivity index of 𝑅0 with respect to 𝛼1 and 𝛼2 shows an inverse 

proportionality to 𝑅0, and it is also clear that the parameter is more sensitive compared with others. 
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Figure 2. Analysis of 𝑅0 

 

3.2 Free Equilibrium Points 

 

To determine the equilibrium point, the right-hand side of the system of equations in the proposed model was 

set to zero. The equilibrium point is given by: 

 

(𝐸, 𝑃, 𝑅, 𝑇, 𝐷) = (
𝜆

𝛿 + 𝐷
,
𝛼1 (

𝐸
𝑅
) + 𝛼2𝑇

𝛽1

,
𝜂 − 𝛾𝐸

𝜌
,

𝜅

𝜎 +
𝜉
𝑅

,
𝛿1 + 𝛿3

𝛿2 (
𝐸
𝑃
)
) (9) 

 

3.3 Local Stability 

 

Theorem 3: The equilibrium points is locally asymptotically stable if 𝑅0 < 1. 

Proof: To show that the equilibrium point is asymptotically stable, the Jacobin matrix 𝐽 for the system at the 

equilibrium point can be calculated: 

 

𝐽 =

(

 
 

−𝛿 − 𝐷 𝑅𝛼1 −𝛾 0 −𝑃𝛿2

0 −𝛽1 0 0 0

𝑃2𝛿2𝐸 −𝑅2𝛼1𝐸 −𝜌 −𝑅2𝜉𝑇 0
0 0 𝛼2 0 −𝜎 + 𝑅𝜉
0 0 0 0 −𝐸 )

 
 

 (10) 

 

The characteristic equation is solved to look for the eigenvalues: 

 

det(𝐽 − 𝜆𝐼) = 0 (11) 

 

where, 𝜆  is the eigenvalue, and 𝐼  is the identity matrix. Subtracting 𝜆  from the diagonal elements of the 

Jacobian matrix leads to: 
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𝐽 − 𝜆𝐼 =

(

 
 

−𝛿 − 𝐷 − 𝜆 𝑅𝛼1 −𝛾 0 −𝑃𝛿2

0 −𝛽1 − 𝜆 0 0 0

𝑃2𝛿2𝐸 −𝑅2𝛼1𝐸 −𝜌 − 𝜆 −𝑅2𝜉𝑇 0
0 0 𝛼2 −𝜎 + 𝑅𝜉 − 𝜆 0
0 0 0 −𝐸 −𝜆 )

 
 

 (12) 

 

By solving the determinant equation, the eigenvalues are: 

 

𝜆1 = 𝑅𝛼1, 𝜆2 = 𝑅𝜉 − 𝜎, 𝜆3 = −𝛽1, 𝜆4 = −𝜌 

 

Since all the eigenvalues are negative (except for 𝜆1 = 𝑅𝛼1), for stability, 𝑅𝛼1 < 1 is required. This condition 

is satisfied when 𝑅0 < 1. 

 

3.4 Global Stability Analysis 

 

Theorem 4: The proposed model is globally asymptotically stable at the equilibrium point if 𝑅0 ≤ 1; otherwise, 

it is unstable. 

Proof: To show that the model is globally asymptotically stable when 𝑅0 ≤ 1, the following Lyapunov function 

is used: 

 

𝐻(𝐸, 𝑃, 𝑅, 𝑇, 𝐷) =
1

2
((𝐸 − 𝐸0)

2 + (𝑃 − 𝑃0)
2 + (𝑅 − 𝑅0)

2 + (𝑇 − 𝑇0)
2 + (𝐷 − 𝐷0)

2) (13) 

 

To compute the time derivative of 𝐻, each term can be differentiated: 

 
𝑑

𝑑𝑡
((𝐸 − 𝐸0)

2 + (𝑃 − 𝑃0)
2 + (𝑅 − 𝑅0)

2 + (𝑇 − 𝑇0)
2 + (𝐷 − 𝐷0)

2) 

 

This simplifies to: 

 
𝑑

𝑑𝑡
(𝐸 + 𝑃 + 𝑅 + 𝑇 + 𝐷) = 𝛿𝐸 + 𝛿𝑃 − (𝛼2𝑅 + 𝛼1𝑇 + 𝛽3) 

 

Defining 𝑝 = (𝛿𝐸 + 𝛿𝑃) and 𝑞 = (𝛿𝑅 + 𝛼2𝐸 + 𝛼1𝑇 + 𝛽1𝑃) leads to: 

 
𝑑𝐻

𝑑𝑡
= 𝑝 − 𝑞 (14) 

 

If 𝑝 > 𝑞, then 
𝑑𝐻

𝑑𝑡
< 0, indicating that 𝐻 is decreasing over time, and the system is globally asymptotically 

stable at the equilibrium point if 𝑅0 ≤ 1. Otherwise, if 𝑅0 > 1, the system is unstable. 

 

3.5 Global Asymptotic Stability of the Equilibrium Points 

 

Theorem 5: The proposed model is globally asymptotically stable at the endemic equilibrium point if 𝑅0 > 1. 

Proof: To show that the model is globally asymptotically stable, the following Lyapunov function is considered: 

 

𝐺(𝑥1, 𝑥2, … , 𝑥𝑛) =
1

2
∑(𝑥𝑖 − 𝑥𝑖

∗)2

𝑛

𝑖=1

 (15) 

 

where, 𝑥𝑖 = (𝐸, 𝑃, 𝑅, 𝑇, 𝐷) and 𝑥𝑖
∗ = (𝐸∗, 𝑃∗, 𝑅∗, 𝑇∗, 𝐷∗). 

First, the time derivative of 𝐺 is computed: 

 

𝑑𝐺

𝑑𝑡
= ∑(𝑥𝑖 − 𝑥𝑖

∗)

𝑛

𝑖=1

𝑑𝑥𝑖

𝑑𝑡
 (16) 

 

Let 𝑁(𝑡) = 𝐸 + 𝑃 + 𝑅 + 𝑇 + 𝐷, and suppose. 
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𝑑𝐺

𝑑𝑡
= [𝑁(𝑡) − (𝐸∗ + 𝑃∗ + 𝑅∗ + 𝑇∗ + 𝐷∗)]

𝑑𝐺

𝑑𝑡
 (17) 

 

This expression needs clarification, as it is not clearly representing the system’s time derivatives. The equation 

should instead involve the dynamics of the system. 

Rewriting the time derivative expression for 𝐺 as: 

 

𝑑𝐺

𝑑𝑡
= ∑(𝑥𝑖 − 𝑥𝑖

∗)

𝑛

𝑖=1

𝑑𝑥𝑖

𝑑𝑡
 (18) 

 

Next, the dynamics of each variable in the system can be substituted. For simplicity, assume that the model is 

described by the following differential equations: 

 
𝑑𝐸

𝑑𝑡
= 𝑓1(𝐸, 𝑃, 𝑅, 𝑇, 𝐷), 

𝑑𝑃

𝑑𝑡
= 𝑓2(𝐸, 𝑃, 𝑅, 𝑇, 𝐷), 

𝑑𝑅

𝑑𝑡
= 𝑓3(𝐸, 𝑃, 𝑅, 𝑇, 𝐷), 

 
𝑑𝑇

𝑑𝑡
= 𝑓4(𝐸, 𝑃, 𝑅, 𝑇, 𝐷), 

𝑑𝐷

𝑑𝑡
= 𝑓5(𝐸, 𝑃, 𝑅, 𝑇, 𝐷) 

 

Now consider the following simplification for the Lyapunov function’s time derivative: 

 
𝑑𝐺

𝑑𝑡
= [𝑁(𝑡) − (𝐸∗ + 𝑃∗ + 𝑅∗ + 𝑇∗ + 𝐷∗)] [−𝛿𝑁(𝑡) −

𝑘1𝑃
∗ −∧

𝑘
] 

 

Substitute further for 𝑁(𝑡): 

 
𝑑𝐺

𝑑𝑡
= [𝑁(𝑡) −

𝑘1𝑃
∗ −∧

𝛿
] [−𝛿𝑁(𝑡) −

𝛿1𝑃
∗ −∧

𝛿
] (19) 

 

Finally, the following can be derived: 

 

𝑑𝐺

𝑑𝑡
= −𝛿 [𝑁(𝑡) +

∧

𝛿
]
2

 (20) 

 

Hence, the following can be obtained: 

 

𝑑𝐺

𝑑𝑡
≤ −𝛿 [𝑁(𝑡) +

∧

𝛿
]
2

< 0 (21) 

 

Since 
𝑑𝐺

𝑑𝑡
< 0 , all conditions of the Lyapunov function are satisfied. Therefore, the model is globally 

asymptotically stable at equilibrium point if 𝑅0 > 1. 

 

3.6 Bifurcation 

 

Bifurcation explains a qualitative analysis of the nature of a system due to changes in specific parameters. In 

particular, a bifurcation occurs when a critical parameter, for which 𝑅0 = 0, reaches a threshold, triggering a 

sudden or substantial shift in the system’s dynamics, stability, or equilibrium points. This phenomenon is vital in 

the analysis of nonlinear systems, as it can give rise to new patterns, the coexistence of multiple stable states, or 

even chaotic dynamics. 

 

𝑅0 = max (
𝑅(𝛾 + 𝐷)

𝛼1

,
𝛽1

𝛼2

) ⟹ max(
𝑅(𝛾 + 𝐷)

𝛼1

+
𝛽1

𝛼2

) = 1 ⟹ 𝛼2 (1 −
𝑅(𝛾 + 𝐷)

𝛼1

) = 𝛽1 

 

𝜆2 + 𝜆 (
𝛽2

𝛼1 + 𝑘
− (𝛾 + 𝛼2 + 𝑘) + 𝛽3 + 𝛿) − [

𝛽2(𝛽3 + 𝛿) + 𝛼3𝛽3 − (𝛽3 + 𝛿)(𝛼1 + 𝑘)(𝛾 + 𝛼2 + 𝑘)

𝛼1 + 𝑘
] 
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𝜆2 + 𝜆 [
∧ 𝛽2

𝛼1 + 𝑘
− (𝛾 + 𝛼2 + 𝑘) + 𝛽3 + 𝛿] − [

(𝛽3 + 𝛿)(𝛼1 + 𝑘)(𝛾 + 𝛼2 + 𝑘) −∧ 𝛼3𝛽3

∧ (𝛽3 + 𝛿)
∧ (𝛽3 + 𝛿)]

+
∧ 𝛼3𝛽3 − (𝛽3 + 𝛿)(𝛼1 + 𝑘)(𝛾 + 𝛼2 + 𝑘)

𝛼1 + 𝑘
 

 

Given the equation: 

 

𝜆2 + 𝜆 [
∧ 𝛽2

𝛼1 + 𝑘
− (𝛾 + 𝛼2 + 𝑘) + 𝛽3 + 𝛿] = 0 (22) 

 

Since the constant term in the equation is zero, this implies that one of the roots of the equation is zero. 

Consequently, the presence of a zero root indicates the potential for bifurcation. 

To determine the direction, the right eigenvectors associated with the zero eigenvalue can be used. These are 

identified by setting the constant term in the characteristic equation to zero. This implies that zero must be one of 

the roots of the equation. Consequently, the presence of a zero root indicates the possibility of bifurcation. The 

right eigenvectors corresponding to the zero eigenvalue are solutions to the equation: 

 

(

 
 

−𝛿 − 𝐷 𝑅𝛼1 −𝛾 0 −𝑃𝛿2

0 −𝛽1 0 0 0

𝑃2𝛿2𝐸 −𝑅2𝛼1𝐸 −𝜌 −𝑅2𝜉𝑇 0
0 0 𝛼2 0 −𝜎 + 𝑅𝜉
0 0 0 0 −𝐸 )

 
 

[
 
 
 
 
 
𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6]
 
 
 
 
 

=

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

 (23) 

 

This results in the following system of equations: 

 
(−𝛿 − 𝐷)𝑤1 − 𝛽1𝑤2 = 0 (24) 

 
(−𝛿 − 𝐷)𝑤1 + (𝑅𝛼1)𝑤2 − 𝛾𝑤3 − 𝑃𝛿2𝑤5 = 0 (25) 

 

𝑃2𝛿2𝐸𝑤1 − 𝑅2𝛼1𝐸𝑤2 − 𝜌𝑤3 − 𝑅2𝜉𝑇𝑤4 = 0 (26) 

 

𝛼2𝑤3 − (𝜎 − 𝑅𝜉)𝑤5 = 0 (27) 

 

−𝐸𝑤5 = 0 (28) 

 

From the last equation, 𝑤5 = 0 can be obtained. Substituting this into Eq. (25) leads to 𝑤3 = 0. 

Now, substitute 𝑤3 = 0 and 𝑤5 = 0 into the second equation, and add it to the first equation to get 𝑤2 = 0. 

 

𝑤1 = 𝑤2 = 𝑤3 = 𝑤4 = 𝑤5 = 0 

 

This means the only solution to this system is the trivial solution, where all the variables 𝑤1, 𝑤2, 𝑤3, 𝑤4, and 𝑤5 

are zero. 

 

[
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4

𝑣5]
 
 
 
 
𝑇

(

 
 

−𝛿 − 𝐷 𝑅𝛼1 −𝛾 0 −𝑃𝛿2

0 −𝛽1 0 0 0

𝑃2𝛿2𝐸 −𝑅2𝛼1𝐸 −𝜌 −𝑅2𝜉𝑇 0
0 0 𝛼2 0 −𝜎 + 𝑅𝜉
0 0 0 0 −𝐸 )

 
 

=

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

 (29) 

 

The matrix system corresponds to the following set of equations: 

 
(−𝛿 − 𝐷)𝑣1 + 𝑅𝛼1𝑣2 − 𝛾𝑣3 − 𝑃𝛿2𝑣5 = 0 (30) 

 

−𝛽1𝑣2 = 0 (31) 

 

𝑃2𝛿2𝐸𝑣1 − 𝑅2𝛼1𝐸𝑣2 − 𝜌𝑣3 − 𝑅2𝜉𝑇𝑣4 = 0 (32) 

 

𝛼2𝑣3 − (𝜎 − 𝑅𝜉)𝑣5 = 0 (33) 
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−𝐸𝑣5 = 0 (34) 

After solving all the equations, the left eigenvectors can be determined as follows: 

𝑣1 = 0, 𝑣2 = 0, 𝑣3 = 0, 𝑣4 = 0, 𝑣5 = 0

Consequently, both matrices 𝑊 and 𝑉 are also zero: 

𝑊 = 0 and 𝑉 = 0 

Since there are no non-zero eigenvectors, there is no direction of bifurcation present in this case. Therefore, this 

represents a trivial case. 

4. Sensitivity Analysis of the Model

The sensitivity analysis of the basic reproductive number 𝑅0 against the model parameters is very important

for the presented study. It enables us to identify the most influential parameters that play a role in disease 

transmission and control. In this section, the sensitivity of various key parameters of the brucellosis model was 

carried out, as shown in Figure 3. 

The sensitivity of the basic reproductive number 𝑅0 with respect to a parameter 𝜂 is given by:

𝜒𝜂
𝑅0 =

∂𝑅0

∂𝜂
×

𝜂

𝑅0

where, 𝜂 can be any of the parameters in the following set: 

𝜂 ∈ {𝜆, 𝛿, 𝛼1, 𝛼2, 𝛽1, 𝛾, 𝜌, 𝜅, 𝜎, 𝜉, 𝛿1, 𝛿2, 𝛿3} 

∂𝑅0

∂𝜆
×

𝜆

𝑅0

=
1

∂𝜆
(
𝑅(𝛾 + 𝐷)

𝛼1

+
𝛽1

𝛼2

) ×
𝜆

𝑅(𝛾 + 𝐷)
𝛼1

+
𝛽1

𝛼2

≈ 1 

∂𝑅0

∂𝛿
×

𝛿

𝑅0

=
1

∂𝛿
(
𝑅(𝛾 + 𝐷)

𝛼1

+
𝛽1

𝛼2

) ×
𝛿

𝑅(𝛾 + 𝐷)
𝛼1

+
𝛽1

𝛼2

≈ 0.132 

∂𝑅0

∂𝛼1

×
𝛼1

𝑅0

=
1

∂𝛼1

(
𝑅(𝛾 + 𝐷)

𝛼1

+
𝛽1

𝛼2

) ×
𝛼1

𝑅(𝛾 + 𝐷)
𝛼1

+
𝛽1

𝛼2

≈ 0.423 

∂𝑅0

∂𝛼2

×
𝛼2

𝑅0

=
1

∂𝛼2

(
𝑅(𝛾 + 𝐷)

𝛼1

+
𝛽1

𝛼2

) ×
𝛿

𝑅(𝛾 + 𝐷)
𝛼1

+
𝛽1

𝛼2

≈ −0.0035 

∂𝑅0

∂𝛽1

×
𝛽1

𝑅0

=
1

∂𝛽1

(
𝑅(𝛾 + 𝐷)

𝛼1

+
𝛽1

𝛼2

) ×
𝛽1

𝑅(𝛾 + 𝐷)
𝛼1

+
𝛽1

𝛼2

≈ 0.577 

∂𝑅0

∂𝛾
×

𝛾

𝑅0

=
1

∂𝛾
(
𝑅(𝛾 + 𝐷)

𝛼1

+
𝛽1

𝛼2

) ×
𝛾

𝑅(𝛾 + 𝐷)
𝛼1

+
𝛽1

𝛼2

≈ 0.577 

∂𝑅0

∂𝜌
×

𝜌

𝑅0

=
1

∂𝜌
(
𝑅(𝛾 + 𝐷)

𝛼1

+
𝛽1

𝛼2

) ×
𝜌

𝑅(𝛾 + 𝐷)
𝛼1

+
𝛽1

𝛼2

≈ −0.0896 

∂𝑅0

∂𝛿1

×
𝛿1

𝑅0

=
1

∂𝛿1

(
𝑅(𝛾 + 𝐷)

𝛼1

+
𝛽1

𝛼2

) ×
𝛿1

𝑅(𝛾 + 𝐷)
𝛼1

+
𝛽1

𝛼2

≈ −0.0896 
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Figure 3. Sensitivity analysis 

4.1 Numerical Scheme 

This section provides a numerical scheme for the proposed model to describe the dynamics of disease spread. 

Consider the system of ODEs, which can be written as: 

𝑓1(𝐸, 𝑃, 𝑅, 𝑇, 𝐷) = 𝜆 − 𝛿𝐸 − 𝐷𝐸 (35) 

𝑓2(𝐸, 𝑃, 𝑅, 𝑇, 𝐷) = 𝛼1

𝐸

𝑅
+ 𝛼2𝑇 − 𝛽1𝑃 (36) 

𝑓3(𝐸, 𝑃, 𝑅, 𝑇, 𝐷) = 𝜂 − 𝛾𝐸 − 𝜌𝑅 (37) 

𝑓4(𝐸, 𝑃, 𝑅, 𝑇, 𝐷) = 𝜅 − 𝜎𝑇 + 𝜉
𝑇

𝑅
(38) 

𝑓5(𝐸, 𝑃, 𝑅, 𝑇, 𝐷) = 𝛿1 − 𝛿2

𝐸

𝑃
+ 𝛿3 (39) 

Let us consider 𝑆 at 𝑡1 = 𝑡0 + 𝛥𝑡:

𝑘1
𝑆 = 𝑓1(𝐸𝑡 , 𝑃𝑡 , 𝑅𝑡 , 𝑇𝑡 , 𝐷𝑡) ⋅ 𝛥𝑡 (40) 

𝑘2
𝑆 = 𝑓1 (𝐸𝑡 +

𝑘1
𝐸

2
, 𝑃𝑡 +

𝑘1
𝐼

2
, 𝑃𝑡 +

𝑘1
𝑃

2
, 𝑅𝑡 +

𝑘1
𝑉

2
, 𝐷𝑡 +

𝑘1
𝑅

2
) ⋅ 𝛥 (41) 

𝑘3
𝑆 = 𝑓1 (𝐸𝑡 +

𝑘2
𝐸

2
, 𝑃𝑡 +

𝑘2
𝐼

2
, 𝑃𝑡 +

𝑘2
𝑃

2
, 𝑇𝑡 +

𝑘2
𝑉

2
, 𝐷𝑡 +

𝑘2
𝑅

2
) ⋅ 𝛥𝑡 (42) 

𝑘4
𝑆 = 𝑓1(𝑆𝑡 + 𝑘3

𝑆, 𝐸𝑡 + 𝑘3
𝐸 , 𝐼𝑡 + 𝑘3

𝐼 , 𝑃𝑡 + 𝑘3
𝑃 , 𝑉𝑡 + 𝑘3

𝑉 , 𝑅𝑡 + 𝑘3
𝑅) ⋅ 𝛥𝑡 (43) 

The the Runge-Kutta 4th-order (RK4) method for updating 𝐸 is as follows: 

𝑘1
𝐸 = 𝑓2(𝐸𝑡 , 𝑃𝑡 , 𝑅𝑡 , 𝑇𝑡 , 𝐷𝑡) ⋅ 𝛥𝑡 (44) 

𝑘2
𝐸 = 𝑓2 (𝐸𝑡 +

𝑘1
𝑆

2
, 𝑃𝑡 +

𝑘1
𝐼

2
, 𝑃𝑡 +

𝑘1
𝑃

2
, 𝑅𝑡 +

𝑘1
𝑉

2
,𝐷𝑡 +

𝑘1
𝑅

2
) ⋅ 𝛥𝑡 (45) 

𝑘3
𝐸 = 𝑓2 (𝐸𝑡 +

𝑘2
𝑆

2
, 𝑃𝑡 +

𝑘2
𝐼

2
, 𝑃𝑡 +

𝑘2
𝑃

2
, 𝑅𝑡 +

𝑘2
𝑉

2
, 𝐷𝑡 +

𝑘2
𝑅

2
) ⋅ 𝛥𝑡 (46) 

𝑘4
𝐸 = 𝑓2(𝐸𝑡 + 𝑘3

𝑆, 𝑃𝑡 + 𝑘3
𝐼 , 𝑃𝑡 + 𝑘3

𝑃 , 𝑅𝑡 + 𝑘3
𝑉 , 𝐷𝑡 + 𝑘3

𝑅) ⋅ 𝛥𝑡 (47) 

Similarly, the RK4 method can be applied to all the differential equations. The above system can then be written 

as: 
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𝐸𝑡+1 = 𝐸𝑡 +
1

6
(𝑘1

𝐸 + 2𝑘2
𝐸 + 2𝑘3

𝐸 + 𝑘4
𝐸) (48) 

𝑃𝑡+1 = 𝑃𝑡 +
1

6
(𝑘1

𝑃 + 2𝑘2
𝑃 + 2𝑘3

𝑃 + 𝑘4
𝑃) (49) 

𝐷𝑡+1 = 𝐷𝑡 +
1

6
(𝑘1

𝐷 + 2𝑘2
𝐷 + 2𝑘3

𝐷 + 𝑘4
𝐷) (50) 

𝑅𝑡+1 = 𝑅𝑡 +
1

6
(𝑘1

𝑅 + 2𝑘2
𝑅 + 2𝑘3

𝑅 + 𝑘4
𝑅) (51) 

Figure 4. Numerical data analysis 

Applying this numerical scheme to analyze the dynamics of the education system, as described by the 

differential equations, shows how different population classes (students, teachers, resources, etc.) evolve over time 

under various initial conditions and control measures. The numerical data shown in Figure 4 was obtained. In the 

figure, it can be observed that 𝐸(𝑡)  increases with time. This increase is due to new students entering the 

education system. 𝑃(𝑡)  is influenced by various factors such as the number of teachers, the availability of 

resources, and the influx of new students. In addition, it suggests that to improve the education system and avoid 

inefficiencies, it is crucial to focus on optimizing resources, increasing teacher availability, and enhancing student 

retention. These interventions can push the system toward a more balanced and ideal state. Teacher quality is 

incorporated as a parameter influencing student performance, retention rates, and the efficiency of resource 

utilization within the system. Furthermore, it shows that interventions aimed at improving teacher quality or 

increasing resource allocation can lower the dropout rate, leading to better student retention and improved 

educational outcomes. 

For the computational results, the following numerical values were used for the parameters: 

λ = 0.15, 𝛿1 = 0.04, 𝛿2 = 0.03, 𝛿3 = 0.005, 𝛼1 = 0.03, 𝛼2 = 0.2, ρ = 0.002, σ
= 0.0015, 𝑘 = 0.0003, 𝛾 = 0.0055, 𝜉 = 0.005 
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λ = 0.0015, 𝛿1 = 0.0074, 𝛿2 = 0.0003, 𝛿3 = 0.5, 𝛼1 = 0.03, 𝛼2 = 0.2, σ = 0.002, ρ
= 0.0015, 𝑘 = 0.0893, 𝛾 = 0.0055, 𝜉 = 0.005 

5. Conclusion

In this study, a numerical scheme was developed and applied to model the dynamics of an education system by 

using a system of ODEs and applying the RK4 method. The evolution of various population classes over time, 

such as students, teachers, resources, and dropout rates, was simulated and analyzed. The numerical simulations 

yielded insightful results. The increase in the number of students entering the education system was reflected in 

the growth of 𝐸(𝑡) over time. This increase in students directly influenced the system’s dynamics, including the 

need for a balanced teacher-to-student ratio and adequate resource allocation. The influence of these factors on 

student performance and retention was highlighted, showing that optimizing resource allocation and teacher 

availability is key to preventing inefficiencies within the education system. Furthermore, the analysis of teacher 

quality emphasized the significant impact of this parameter on student retention and the overall efficiency of the 

education system. The results suggest that improving teacher quality can lead to enhanced student performance 

and lower dropout rates. Interventions designed to improve teacher quality or resource allocation were found to 

effectively reduce dropout rates, which, in turn, improves overall educational outcomes and equity within the 

system. The computational results, based on specific parameter values, confirm the system’s sensitivity to various 

factors. For example, increasing the teacher quality (𝛼1) or adjusting resource allocation (𝑘) can substantially alter

the trajectory of the education system’s dynamics. These findings underline the importance of targeted 

interventions in optimizing education systems and ensuring better retention, resource utilization, and overall 

efficiency. In conclusion, the proposed model and numerical scheme provide a valuable tool for understanding 

and improving the dynamics of the education system. By simulating different scenarios and adjusting key 

parameters, policymakers and educators can make informed decisions that enhance educational outcomes, promote 

system efficiency, and address challenges related to resource allocation and teacher quality. 

This study emphasizes how cognitive and affective factors influence students’ engagement with mathematical 

modeling, and how cultural differences shape the expression of mathematical values. It also discusses the 

implications of these findings for teaching strategies in mathematical modeling education. Additionally, future 

research directions have been outlined, particularly focusing on cross-cultural comparisons and the integration of 

affective dimensions in mathematical modeling tasks. Future studies could explore how different cultural contexts 

impact the effectiveness of various instructional strategies, as well as how cognitive and affective factors can be 

measured and incorporated into educational models. 
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