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Abstract: Building upon the foundations of classical fractional derivatives, the general fractional derivative emerges
as a significant advancement in the development of constitutive models, especially for materials with complex
properties. This derivative distinguishes itself through a kernel function of variable form, enabling it to encapsulate
diverse characteristics of the creep process more effectively than its classical counterpart. This study introduces a
general-variable order fractional creep constitutive model, ingeniously linking the order of the fractional derivative
to Talbot gradation, which describes the aggregate gradation of cemented backfill materials, alongside dosage and
confining pressure parameters. The model’s innovative design synergizes the kernel function’s diversity from the
general fractional derivative with the phase adaptability inherent in the variable-order derivative. This integration
permits a comprehensive description of each stage of the creep curve for cementitious filling materials in varying
compositions, leveraging the Gamma function’s properties within the positive real number domain. The model’s
rationality and validity are substantiated through a comparative analysis between experimental creep curves and
theoretical predictions, affirming its relevance and accuracy in practical applications. This approach represents
a notable contribution to the understanding of cemented backfill materials’ behavior, offering a robust tool for
engineering analysis and design.

Keywords: Cemented backfill materials; Variable order fractional derivatives; Creep constitutive model; Parameter
sensitivity analysis

1 Introduction

Cemented backfill materials, predominantly utilized in mining, are recognized as eco-friendly solutions. These
materials are composed of waste rock aggregates such as gangue, tailings, slag, and construction waste [1–4],
various cementitious agents including cement, high water materials, cementitious powders, and alkali-activated
cementitious materials [5–8], and are mixed and cured with water. Their widespread adoption not only fosters
solid waste recycling, thereby mitigating environmental pollution resulting from accumulation [9–11], but also plays
a crucial role in supporting overlying strata once introduced into the goaf, significantly enhancing the safety and
stability of the goaf structure [12–15].

The ability of cemented backfill materials to effectively transmit the overburden load and control roof movement
deformation and surface uneven settlement is predominantly determined by their mechanical properties [16, 17].
When these materials are employed in mining areas, they are subjected to a prolonged triaxial compression state,
due to the roof and lateral coal pillars. Therefore, an in-depth study of their creep mechanical properties is vital for
ensuring the safety and stability of underground and surface structures within mining areas. The fractional order
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creep constitutive model has been demonstrated as a potent tool in analyzing the creep mechanical properties of these
materials. Traditional studies on the constitutive model of cemented backfill materials often employ integral order
derivatives to construct models with numerous components and complex structures. However, the integration of
fractional derivatives into the viscous element not only simplifies model complexity and reduces computational load
but also establishes a constitutive relationship capable of describing various mechanical properties of the material.
Building upon Riemann-Liouville fractional calculus, Wu et al. [18] introduced a creep model utilizing fractional-
order derivatives for the viscoelastic damage of salt rock, effectively capturing the nonlinear accelerated creep stage.
Similarly, Xiang et al. [19] established a model where the fractional order correlates directly with stress levels,
employing the Almeida fractional derivative in the fractional creep model for soft soil to depict varying deformation
patterns under different stress conditions. Gao and Yin [20] proposed a variable fractional order rheological model
to characterize the full-stage creep behavior of rocks, confirming that the creep strain rate could be deduced from the
slope of the order function.

The advent of the general fractional derivative in recent years has broadened the scope of classical fractional
derivatives, introducing variability to the solutions of corresponding equations. This expansion is exemplified
by the k-Hilfer-Prabhakar fractional derivative, through which Feng et al. [21] developed a generalized fractional
viscoelastic-plastic constitutive model. This model is noteworthy for its ability to encapsulate classical models
within its framework. Further advancements include the application of the general fractional-order derivative
operator, integrating the Miller-Ross kernel in the Liouville-Sonine context. This approach has been successfully
employed in the Maxwell and Kelvin-Voigt models, yielding viscoelastic constitutive models characterized by their
inherent properties of inheritance and memorability [22].

In this study, the focus is placed on the Talbot gradation, which delineates the particle size distribution in
cementitious filling materials, alongside the dosage of cemented backfill materials and the confining pressure. These
factors are identified as critical indicators in the fractional derivative of the creep constitutive model. Leveraging
the distinct capabilities of the general-variable fractional derivative and the properties of the Gamma function,
a fractional creep model is formulated. This model adeptly describes the creep process of cementitious filling
materials under graded loading conditions. The structure of this study is outlined as follows: In Section 2, the Sonine
general fractional derivative featuring a nonsingular kernel and the Laplace transform of this fractional calculus are
introduced. Section 3 proposes a three-element creep constitutive model, accompanied by an analytical solution. The
sensitivity analysis of model parameters, crucial for understanding the impact of variations in fractional derivatives,
is presented in Section 4. The study culminates in Section 5, where the conclusions are succinctly outlined.

2 Sonine General Fractional Derivative with Nonsingular Kernel

The exploration of generalized fractional derivatives has led to the consideration of the Sonine general fractional
derivative, which is characterized by a nonsingular kernel. This derivative stands out due to the adaptable nature of
its kernel function. The subsequent subsections delineate the definition and properties of this fractional calculus.

Definition 2.1 ( [23]). Let 1 ≥ α ≥ 0 and λ ∈ R.
The Sonine general fractional derivative is defined within the interval [a, b]. The left-sided derivative of this

form is given by Eq. (1).
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Similarly, the right-sided derivative in the same interval is defined as per Eq. (2).
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The Laplace transforms for both the integral and derivative forms of the Sonine general fractional calculus with
a nonsingular kernel are presented.
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Let f(t) ∈ Lk(a, b)(1 ≤ κ ≤ ∞), 1 ≥ α ≥ 0, λ ∈ R and
∣∣λ
s

∣∣ < 1. Then
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where, the Laplace transform of function f (t) is given by L{f(t)} = f̃(s) =
∫∞
0

e−stf(t)dt.

3 General-Variable Fractional Constitutive Model
3.1 Talbot Gradation Dependent Fractional Constitutive Model

In the context of cemented backfill materials, the Talbot gradation, denoted as n, serves as a critical metric
for describing the aggregate particle size distribution. It has been observed that the creep characteristics of these
materials exhibit variation with different Talbot gradation values. Consequently, a variable order fractional creep
constitutive model, which is responsive to the Talbot gradation n, is proposed. This model is formulated based
on the Sonine general fractional derivative with a nonsingular kernel, as discussed in Section 2. It leverages the
generalization property of the kernel function to effectively capture the gradation-dependent creep behavior.

The general-variable order of the Talbot gradation dependent fractional derivative β(n) is defined according to
Eq. (5).

β(n) = A1Γ (A2n) (5)

This derivative utilizes the Gamma function, symbolized by Γ(x) =
∫∞
0

e−t · tx−1dt, to describe the variations
in the derivative of the fractional dashpot with Talbot gradation n within the creep constitutive model. For a given
set of cemented backfill materials, the determination of parameters A1 and A2 consequently fixes the order β(n) in
the corresponding fractional creep constitutive model.

Figure 1 illustrates the Talbot gradation dependent general-variable order fractional creep constitutive model,
composed of three elements: two springs (denoted as E1 and E2) and a fractional dashpot (ξ).

The constitutive equation for the Talbot gradation dependent general-variable order fractional creep constitutive
model is derived from the series-parallel relationship of each element within the system. This derivation process is
outlined below. 

ε(t) = ε1(t) + ε2(t)

ε1(t) =
σ(t)
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sD
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(6)

When the axial load satisfies σ(t) = σ0H(t), and utilizing the Laplace transform of the Sonine general fractional
derivative with a nonsingular kernel, the equation is transformed into its Laplace domain representation, as shown
in Eq. (7).
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Further manipulation of Eq. (7) leads to its equivalent form in Eq. (8).
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A noteworthy observation here is encapsulated in Eq. (9).
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Substituting Eq. (9) into Eq. (8) yields Eq. (10).
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45



Figure 1. The Talbot gradation dependent general-variable order fractional creep constitutive model

When m=0, it results in Eq. (11).
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When m ≥ 1, Eq. (12) becomes applicable.
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The strain, denoted as ε2(t), is derived from the inverse Laplace transform of Eqs. (11) and (12). This derivation
is encapsulated in Eq. (13),
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where, Mv(t) =
∑+∞

n=0
tn

Γ(vn+1) is the Mittag-Leffler function, Mv,z(t) =
∑+∞

n=0
tn

Γ(vn+z) is the Wiman function.
The Laplace transforms of both the Mittag-Leffler and Wiman functions are provided.
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Consequently, integrating Eqs. (6) and (14) yields a comprehensive constitutive relation for the Talbot gradation
dependent general-variable order fractional creep constitutive model.
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This relation, depicted in Eq. (14), is particularly notable for its correlation between the fractional order β(n)
and the Talbot gradation of the cemented backfill materials. In consideration of the solution’s accuracy in practical
calculations, m ≥ 1 is adopted, ensuring the model’s precision and reliability in real-world applications.

3.2 Dosage Dependent Fractional Constitutive Model

In the formulation of cemented backfill materials, the quantity of cemented material significantly impacts the
compressive properties of the samples. Building on the general-variable fractional constitutive model established in
Section 3.1, this segment of the study adapts the variable order derivative β(n), initially related to Talbot gradation,
to reflect the dosage of cemented backfill materials. This adaptation leads to the expression of the variable fractional
order β(m), as depicted in Eq. (15).

β(m) = A1Γ (A2m) (15)
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where, m represents the dosage of the cemented backfill materials.
The behavior of the Gamma function in the positive real number field, characterized by an initial decrease

followed by an increase, enables the determination of the fractional derivative value for varying dosages of cemented
backfill materials. This determination is facilitated by selecting appropriate parameters A1 and A2.

Subsequently, the analytical solution of the dosage-dependent fractional constitutive model is derived, as shown
in Eq. (16).
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·
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(−λ)i

i!
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)
, i ≥ 1 (16)

where, m symbolizes the dosages of cemented backfill materials. This analytical solution is instrumental in
understanding the material behavior under different dosage conditions, thereby enhancing the model’s applicability
in practical scenarios.

3.3 Confining Pressure Dependent Fractional Constitutive Model

Upon its transportation to the underground goaf, cemented backfill materials are subjected to pressures not
only from the overlying strata but also from the surrounding rock mass. Recognizing the significance of confining
pressure on the creep characteristics of these materials, this segment of the study develops a variable order fractional
derivative model that reflects the confining pressure’s influence.

The general-variable fractional derivative β (σ3), now adapted to incorporate confining pressure, is defined in
Eq. (17).

β (σ3) = A1Γ (A2σ3) (17)

Furthermore, the analytical solution of the confining pressure dependent fractional constitutive model is derived,
as shown in Eq. (18).

ε(t) =
σ0H(t)
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+
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·
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)
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where, σ3 symbolizes the confining pressure. This solution is integral to understanding the behavior of cemented
backfill materials under different confining pressure scenarios, thereby enhancing the model’s applicability and
relevance in practical engineering contexts.

4 Model Verification with Different Creep Conditions

To verify the efficacy of the general-variable fractional creep constitutive model developed in this study, creep
test data of cemented backfill materials under varying conditions of confining pressure, dosage, and particle size
were utilized. These data, sourced from Wu et al. [24], encompassed different levels of confining pressure, with each
level maintained for a duration of 7,200 seconds. The process of model verification involved the utilization of the
particle swarm optimization theory [25] for fitting the creep test data under three distinct conditions.

4.1 Talbot Gradation of Cemented Backfill Materials

Specifically, the application of this optimization algorithm enabled the inverse modeling of Eq. (14) to determine
the model parameters for cemented backfill materials with different Talbot gradations. The outcomes of this parameter
fitting are presented in Table 1, showcasing results for varying Talbot gradations.

Subsequent to the parameter inversion, Figure 2 illustrates a comparison between the fitting curves and the
experimental data for different Talbot gradations.

This comparison in Figure 2 reveals that the proposed Talbot gradation dependent general-variable order fractional
creep constitutive model aligns closely with the experimental data across all graded loading levels, particularly during
the stable creep stage. The fractional order β(n) is determined by parameters A1 and A2, and the Talbot gradation
n. Through variations in these parameters, the model adeptly describes both the steady-state and accelerated creep
stages of the materials.

4.2 Dosages of Cemented Backfill Materials

According to Eq. (15), the inversion results for different dosages of cemented backfill materials (specifically, 30
g and 50 g) are shown in Table 2.

Following the parameter inversion in Table 2, Figure 3 offers a comparative analysis between the fitting curves
and the experimental creep data for the specified dosages.
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Table 1. Parameter fitting results of different Talbot gradations

n σ/MPa E1/MPa E2/MPa ξ/MPa · tβ(n) A1 A2 λ

0.2 1.0186 302.9334 587.2305 23.0871 0.2816 3.2356 1.0298
2.0372 240.9110 617.3541 50.7389 0.0328 5.5890 6.3642
1.0186 378.9657 690.0038 33.4310 0.2903 2.6932 2.5829

0.4 2.0372 106.1042 782.9204 34.2321 0.3738 4.1375 3.8460
3.0557 210.3779 759.1121 56.2093 0.5593 3.3326 4.8364
1.0186 218.4625 691.5732 28.7540 0.2249 1.3027 5.0310

0.6 2.0372 338.1249 774.2184 41.4521 0.4172 3.2147 4.9266
3.0557 372.0438 802.1829 48.3369 0.4902 3.9462 3.7820
4.0744 396.7476 854.6280 60.3267 0.3384 4.6034 5.3264
1.0186 311.3543 593,0239 30.2496 0.3924 3.8876 3.2902

0.8 2.0372 281.4059 729.9800 34.9572 0.3019 5.0011 5.2939
3.0557 243.5014 830.2848 50.2486 0.2802 5.9824 7.3892

Figure 2. Comparison between fitting curves and experimental data

Figure 3. Comparison between fitting curves and experimental data

Notably, the model exhibits heightened accuracy in fitting the creep curve during the acceleration stage, especially
when the curve presents a complete three-stage progression. This observation is evident from both Table 2 and
Figure 3, underscoring the model’s effectiveness in capturing the nuanced creep behavior of cemented backfill
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materials under varied dosages.

4.3 Influence of Confining Pressures

This section examines the accuracy of the analytical solution (Eq. (18)) in describing the creep behavior of
cemented backfill materials under various confining pressures and graded loading conditions. The inversion of
parameters within the constitutive equation was facilitated by the particle swarm optimization algorithm, with the
results tabulated in Table 3. This table enumerates the fitting outcomes for different levels of confining pressure.

The simulation curves, derived from the parameters listed in Table 3 and applied to Eq. (18), were compared
against the actual test curves. Figure 4 presents this comparison, illustrating the model’s performance under confining
pressures of 0.5 MPa and 1.0 MPa.

An assessment of the fitting results from the three distinct types of general-variable fractional constitutive models
reveals that the model proposed in this study aligns well with the creep test data of cemented backfill materials
under step loading conditions. Notably, the model achieves high accuracy in both the steady-state and accelerated
creep stages. This accuracy is maintained across variable fractional orders, whether these are associated with Talbot
gradation, dosage, or confining pressure.

Table 2. Parameter fitting results of different dosages

m σ/MPa E1/MPa E2/MPa ξ/MPa · tβ(m) A1 A2 λ

30 1.0186 257.7429 547.4420 28.6774 0.3644 3.9181 1.6901
2.0372 332.8758 650.5384 30.9917 0.4443 1.9675 0.9782
3.0557 297.9427 763.2307 41.5799 0.3683 4.0225 3.9477
1.0186 312.8474 423.9527 32.7373 0.2573 1.1282 2.8428
2.0372 406.3348 550.1291 25.4130 0.1886 1.9156 3.5628

50 3.0557 427.9919 781.5589 34.8091 0.2581 2.2719 9.5182
4.0744 413.4096 844.0744 46.5999 0.6017 4.5461 3.5481
5.0930 429.2023 883.2696 50.2390 0.2145 2.0914 7.4789

Table 3. Parameter fitting results of different confining pressures

σ3/MPa σ/MPa E1/MPa E2/MPa ξ/MPa · tβ(σ3) A1 A2 2

0.5
1.0186 426.3352 221.2362 31.1442 0.0613 7.1978 6.5475
2.0372 362.9755 346.4261 26.7709 0.4417 1.1166 0.7568
3.0557 389.0529 655.7584 29.1977 0.2305 3.8174 5.6515
4.0744 343.4689 736.7183 10.3657 0.2418 7.1278 0.7614
1.0186 474.8718 318.4161 22.1606 0.3995 4.4238 3.3817
2.0372 572.7942 483.2769 19.0734 0.7242 2.8217 1.2893

1.0 3.0557 412.2144 590.3055 28.2773 0.1398 6.8423 4.5657
4.0744 307.5483 783.9642 51.3190 0.7852 0.6384 6/6554
5.0930 241.9477 984.0949 27.5482 0.0383 7.9349 3.1484

Figure 4. Comparison between fitting curves and experimental data
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Figure 5. Plots of the fractional order

5 Sensitivity Analysis of Model Parameters A1 and A2

This section delves into the sensitivity of the crucial parameters A1 and A2 within the fractional order β(n), as
inferred from the inversion results detailed in Table 1. Subgraph (a) of Figure 5 illustrates the variation curve of the
fractional order β(n) in the constitutive model for cemented backfill materials with four different Talbot gradations,
specifically when A2 = 3.5 and A1 ∈ (0, 0.5). In a similar vein, subgraph (b) of Figure 5 depicts the change curve
of β(n) when A2 ∈ (2, 5) and A1 = 0.33. Additionally, subgraph (c) of Figure 5 presents a threedimensional
representation of β(n) when A1 ∈ (0, 0.5) and A2 ∈ (2, 5).

An analysis of the plots in Figure 5 indicates that the Talbot gradation n significantly influences the derivative
order in the fractional creep constitutive model. It is observed that when A1 and A2 are fixed, the fractional order
β(n) corresponding to Talbot gradations of 0.4 and 0.6 is relatively small. This finding suggests that the value of
β(n) can be effectively fine-tuned by appropriately adjusting the parameters A1 and A2 in practical applications.
Such an adjustment is crucial for optimizing the model’s applicability and accuracy in real-world scenarios.

6 Conclusions

This study highlights that the creep curve of cemented backfill materials manifests in three distinct stages, a
complexity not fully encapsulated by basic integral order constitutive models. To address this, a novel approach has
been adopted, wherein Talbot gradation, dosage, and confining pressure are integrated as variables in the fractional
derivative. This integration establishes a relationship between these variables and the strain-time curve, enhancing
the model’s capability to accurately depict the creep process in cementitious filling materials under varied conditions.

The Sonine general fractional derivative, characterized by a nonsingular kernel function, has been utilized to
construct a generalized variable order fractional creep constitutive model. The analytical solution of this model’s
constitutive equation has been derived using the Laplace transform, its inverse, and the extended Mittag-Leffler
function. The reliability and applicability of the proposed model are corroborated through a parameter inversion
analysis, demonstrating its efficacy in fitting and analyzing the creep curves of cemented backfill materials. The
model’s adaptability to different particle sizes, dosages, and confining pressures makes it a valuable tool in practical
engineering applications, providing a nuanced understanding of the creep behavior of these materials.
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