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Abstract: Traditional analyses of tunnel reliability, which employ deformation values, such as surface settlement,
crown settlement, and arch shoulder settlement, as instability indicators, fail to accurately depict the failure state of
tunnel lining structures. In addressing tunnel instability induced by the failure of lining structures, the limit strain
theory is introduced, designating shear strain penetration failure of the lining structure as the criterion for tunnel
instability. A novel method for studying tunnel reliability, integrating neural network response surface methodology
and Monte Carlo simulation, is proposed. The feasibility of the limit strain theory in reliability analysis is validated
through the calculation of instability probabilities for specific tunnel projects, offering a fresh perspective on tunnel
reliability assessment. Sensitivity analysis of rock mass parameters reveals that an increase in the variability of these
parameters elevates the probability of tunnel instability and the shear strain value at the arch waists. Among these
parameters, the variability of the modulus of elasticity (E) exerts the most significant impact on the probability of
tunnel instability.

Keywords: Underground engineering; Reliability analysis; Limit strain; Response surface method; Monte Carlo
method

1 Introduction

The construction of tunnel projects entails significant costs and long service periods, making the study of their
stability a subject of widespread interest among scholars both domestically and internationally. A multitude of
uncertainties exist in the construction process of tunnel engineering, for which reliability methods offer an effective
means of quantitative analysis. Currently, the principal methods for reliability analysis of tunnel engineering
include the response surface method, stochastic finite element method, and Monte Carlo method. For instance,
Park and Park [1] proposed a back-analysis method based on the continuous response surface method for identifying
geomechanical parameters of rock masses near underground chambers, which boasts high accuracy and computational
efficiency in parameter identification. Li and Yang [2] applied the response surface method to study the failure
mechanisms of subway tunnels, identifying the impact patterns of both non-random and random variables on the
failure probability. Li and Yang [3] introduced an improved response surface method for the reliability analysis of
the working face in fractured soft rock tunnels, demonstrating that the stability of the tunnel face is more sensitive
to the internal friction angle than to cohesion. Wang and Li [4] developed a stochastic response surface method that
considers non-Gaussian random variables under incomplete probability information in tunnel excavation reliability
analysis, extending the application scope of the stochastic response surface method. Lyu et al. [5] evaluated the
failure probability of each failure mode in tunnel systems using the Monte Carlo method and response surface
method, finding that reliability primarily depends on the timing of support installation. Liu et al. [6] investigated the
application of combining multiple response surface methods with the Monte Carlo method in analyzing the reliability
of tunnel structures across different failure modes. Li et al. [7] explored the application of the non-intrusive stochastic
finite element method in the reliability analysis of deformations in underground chambers. Liu and Low [8] employed
the neural network response surface method for the reliability analysis of circular tunnels, which proved to be more
efficient and accurate compared to the second-order response surface method.

Currently, scholars commonly employ deformation response values of tunnels, such as crown settlement, arch
shoulder settlement, and surface settlement, as indicators for tunnel reliability analysis studies. It is determined
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that tunnel structures become unstable when deformation values exceed permissible limits [6, 7, 9]. During the
operational phase of tunnels, stress concentration occurs around the tunnel [10]. When the surrounding rock stress
gradually surpasses the tunnel’s load-bearing capacity, the lining may undergo partial or total failure, weakening
the tunnel’s load-bearing capacity and consequently leading to instability. Therefore, tunnel failure generally lags
behind the failure of the lining, and using surface or crown settlement values exceeding permissible limits as the
criterion for instability does not effectively represent the tunnel instability phenomena induced by lining failure.
Based on the limit strain theory, this article adopts shear strain penetration at the tunnel haunches as the criterion for
tunnel structural instability. A new method for tunnel reliability study, integrating neural network response surface
methodology and Monte Carlo simulation, is proposed and its feasibility is validated through an engineering case
study.

2 Reliability Analysis Based on Limit Strain Theory
2.1 Limit Strain Theory

Figure 1 illustrates the stress-strain relationship curve for ideal plastic materials. As stress increases, the material
initially enters the elastic stage within its load-bearing limit, where strain grows linearly, and the majority of energy
absorbed by the material is transformed into elastic energy stored internally [11, 12]. With further increase in stress,
the material exits the elastic stage and enters the initial phase of the plastic stage, at which point the material’s stress
reaches its peak strength. This state retains certain elastic characteristics, known as the elastic limit state, and the
strain at this point, γy , is referred to as the elastic limit strain. As plasticity gradually progresses and the material’s
strain accumulates to γy , the accumulated elastic energy is instantaneously released, leading to material failure. This
strain, γy , is termed the plastic limit strain [13].

For a given material, when the strain value of any of its elements reaches the plastic limit strain, it signifies that
the element has met the conditions for failure, resulting in local damage and the formation of cracks. However, due
to the restraining effect of adjacent elements, the failure of a single element does not lead to macroscopic damage of
the material. It is only when the strain values of all elements within a certain area reach the limit strain, thus forming
a zone of plastic limit strain penetration, that the material is truly considered to have failed [13, 14]. The limit strain
values for concrete materials of various strength grades are detailed in Table 1.

Figure 1. The ideal plastic stress-strain curve

Table 1. The elastic-plastic limit strains of normal concrete [13]

Axial Strain ε1(%) Shear Strain
√
J ′
2(%)

Concrete Strength Grade ε1y ε1f
√
J ′

2y

√
J ′

2f

C20 0.79 1.38 0.55 1.06
C25 0.90 1.61 0.62 1.24
C30 1.03 1.88 0.71 1.46
C35 1.12 2.07 0.77 1.61
C40 1.24 2.39 0.86 1.86
C45 1.34 2.56 0.93 2.00
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2.2 Reliability Analysis Combining Neural Network Response Surface and Monte Carlo Simulation Methods

The rationale behind the response surface method involves constructing an easily manageable response surface
to substitute the actual complex true function, thereby enhancing computational efficiency. Presently, the response
surface method primarily comprises polynomial response surface methodology and neural network response surface
methodology. The polynomial response surface methodology calculates the true function values for a certain number
of regularly selected input variable samples, then fits a mathematical polynomial, using the polynomial function to
progressively approximate and substitute the true function as the response surface [15]. Neural network response
surface methodology calculates the true function values for a large number of input variable samples, utilizing a back
propagation (BP) neural network to construct the relationship between variables and the true function values, with
the neural network serving as the response surface in place of the true function. When the true function is complex
and involves numerous input variables, the neural network response surface offers higher fitting precision and more
accurately simulates the true function compared to the polynomial response surface.

The Monte Carlo method obtains a large number of samples, N, through random sampling and calculates the true
function for each sample, tallying the number of unstable samples, M. The ratio M/N represents the probability of
instability, P. Compared with traditional Monte Carlo reliability methods, substituting the true function calculation
with a neural network response surface allows for the computation of a large volume of samples in a short time,
significantly improving Monte Carlo operation efficiency. The research approach involves: numerically simulating a
large number of samples to obtain the actual values of the characteristic parameters of the function, then constructing
hidden layer neurons, using the computed samples to train the established neural network, obtaining the neural network
mapping relationship between input and output parameters. This neural network response surface substitutes the real
function’s response surface, and finally, reliability analysis is conducted using the Monte Carlo method [15], with
the specific process as follows:

(a) The number of random variables for tunnel surrounding rock and their statistical characteristics are determined,
obtaining the parameter samples required for constructing the response surface.

(b) A numerical model of the tunnel is established. For each sample parameter, calculations are conducted
individually within the numerical model to obtain the corresponding true response values of characteristic parameters.
The training samples for constructing the response surface consist of the random variable values of each sample and
the true response values of the characteristic parameters.

(c) Based on the training samples, a neural network response surface between random variables and characteristic
parameters is constructed.

(d) According to the statistical characteristics of random variables, N random samplings of the random variable
values are performed.

(e) Each set of sampled values is substituted into the constructed neural network response surface to calculate
the response values of characteristic parameters.

(f) Based on the permissible values of characteristic parameters, the number of samples among the N random
samplings whose response values exceed permissible values, i.e., the number of unstable samples M, is tallied, with
the instability probability being P=M/N.

3 Engineering Application
3.1 Numerical Calculation Model

The Shilong Tunnel in Chongqing City traverses a ridge mountain range, primarily through Grade IV surrounding
rock. The tunnel has a width of 12 m and a height of 10 m, with a burial depth of 150 m [16]. FLAC3D software
is employed for the reliability analysis of the tunnel structure, simplifying the tunnel excavation issue into a two-
dimensional plane strain model, as illustrated in Figure 2. The model dimensions are 140 m in length, 80 m in
height, and 2 m in width, with a set burial depth of 40 m. The weight of the overlying 110 m rock mass is applied
as an equivalent load on the model’s top. C20 concrete is used for the lining, with a thickness of 0.3 m. Specific
parameters are provided in Table 2.

Table 2. Basic mechanical parameters of rock mass and lining

Medium Unit Weight Modulus of Elasticity Cohesion Angle of Internal Poisson’s
γ
(
kN−3 · m−3

)
E(GPa) c(MPa) Friction φ (◦) Ratio v

Rock mass 21.5 3.65 0.45 33 0.325
Lining 24 25.5 2.6 61.1 0.2
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Figure 2. Numerical calculation model

3.2 Tunnel Instability Criteria Based on Limit Strain Theory

Following the limit strain theory introduced in Section 2.1, a criterion for limit strain failure was proposed,
stating, “The failure of certain units in geotechnical engineering indicates local failure of the structure; when limit
strain units are interconnected, total failure is achieved”. This criterion was applied to the failure of concrete cubic
specimens, validating its feasibility for practical application [13].

This study extends the application of this limit strain failure criterion to the failure of tunnel-lining structures. It
is considered that a tunnel becomes unstable when the overall shear strain value across the thickness of a certain area
of the lining exceeds the limit strain value. The lining in the arch waist area of the tunnel is most prone to damage.
Hence, the criterion of limit strain penetration in the tunnel lining’s arch waist area is adopted as the indicator of
tunnel instability.

The lining material used for the tunnel is C20 concrete, for which the corresponding limit strain value is identified
as 1.06‰ in Table 1. According to the established numerical analysis model, strain monitoring points are uniformly
placed at the lining’s arch waist position. If the shear strain values at any point across the thickness exceed the limit
strain of 1.06‰, it is determined that the lining has failed, leading to the tunnel becoming unstable.

3.3 Comparison Between Limit Strain Penetration Instability Criterion and Crown Settlement Instability
Criterion

Figure 3 presents a comparison between the shear strain of the tunnel lining and the vertical (Z-direction)
displacement for a subset of the calculation samples. In the shear strain contour map, the red areas indicate parts
where the shear strain value exceeds the ultimate shear strain of 1.06‰ for C20 concrete, signifying the shear strain
failure zone; the blue areas represent sections where the shear strain does not exceed 1.06‰, indicating the non-
failure zones. The vertical displacement contour map reveals that the crown settlement of the four samples gradually
increases from 0.67 cm to 1.52 cm. Concurrently, the shear strain failure zone begins to develop downwards from
the arch waist, eventually extending through the entire area between the arch waist and the arch foot, indicating total
shear strain penetration failure. Table 3 lists the corresponding lining failure areas and crown settlement values for
each sample.

Figure 3. Comparison of lining shear strain and settlemen
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Table 3. Lining failure areas and arch settlement values for different samples

Sample Height Range of Lining Failure Area Arch Settlement Value (cm)
Sample 1 Not damaged 0.67
Sample 2 2 ∼ 4 m 1.05
Sample 3 1.5 ∼ 5.1 m 1.24
Sample 4 0.9 ∼ 5.8 m 1.52

According to the standard, a control value of 1.5 cm for crown settlement is stipulated for tunnel support
structures [17]. In Sample 1, where the tunnel lining did not undergo shear strain penetration failure, the crown
settlement was 0.67 cm, not reaching the deformation control value of 1.5 cm. For Sample 2, shear strain penetration
failure occurred in the arch waist area at a height of 2-4 m, indicating the onset of tunnel instability, with a crown
settlement of 1.05 cm, which did not reach the 1.5 cm deformation control value. In Sample 3, the range of lining
damage expanded further, with shear strain penetration failure occurring in the arch waist area at a height of 1.5-5.1
m, indicating a more severe state of tunnel instability, where the crown settlement was 1.24 cm, still below the 1.5 cm
deformation control value. For Sample 4, extensive shear strain penetration failure occurred in the arch waist area
at a height of 0.9-5.8 m, resulting in a significant loss of the original load-bearing capacity of the lining and severe
tunnel instability, with the crown settlement reaching 1.52 cm, exceeding the 1.5 cm tunnel deformation control
value. Based on the “1.5 cm deformation control value” stipulated by the standard, only Sample 4 of the tunnel was
determined to be unstable, while the other three tunnel samples were considered stable [17]. However, according
to the limit strain criterion, the tunnel linings of Samples 2, 3, and 4 all underwent shear strain penetration failure,
indicating that Tunnels 2, 3, and 4 were all unstable. Clearly, using the crown settlement control value defined by
the standard as the criterion is potentially hazardous, as it incorrectly judges the unstable Tunnel Samples 2 and 3
as stable, a misjudgment that could lead to engineering settlement disasters [17]. Therefore, it is considered that
the limit strain penetration instability criterion is superior to the instability criterion based on the crown settlement
control value stipulated by the standard [17]. The limit strain penetration instability criterion not only can predict the
safety state of the tunnel in advance but also identifies potential tunnel damage areas, thereby providing a reference
for the support design of tunnel engineering.

3.4 Tunnel Reliability Analysis Based on Limit Strain Theory

In this study, the modulus of elasticity (E), cohesion (c), and the angle of internal friction (φ) of the rock mass
were selected as the subjects of study. They were treated as random variables for constructing the response surface
and calculating the probability of instability. Specific parameters are listed in Table 4.

Following the response surface construction method described in Section 2.2, a neural network response surface
for the shear strain values at the monitoring points of the tunnel lining’s arch waist was developed, with the construction
carried out in Matlab. To validate the fitting accuracy of the response surface, 30 verification points were randomly
selected, and a scatter plot was drawn with FLAC3D calculation results as the x-axis and response surface calculation
results as the y-axis, as illustrated in Figure 4. The coefficient of determination, R2, which measures the response
surface’s fitting accuracy, approaches 1 as the accuracy increases. For the shear strain response surface of the arch
waist lining, the fitting coefficient R2 is 0.99, indicating high accuracy and allowing it to substitute the calculations
by the FLAC3D numerical software.

Upon completion of the response surface construction, the Monte Carlo method was employed to analyze the
tunnel’s reliability, calculating the probability of instability for different numbers of samplings. The number of
samplings was plotted on the x-axis, and the calculated probability of instability on the y-axis, with the resulting
curve depicted in Figure 5.

When the number of samplings was less than 20,000, the calculated probability of tunnel instability showed
significant fluctuations. As the number of samplings increased from 20,000 to 50,000, the fluctuations decreased and
gradually stabilized. When the number of samplings exceeded 50,000, the calculated values essentially remained
unchanged, indicating convergence. To ensure accuracy of the results, the number of samplings was set to 100,000,
ultimately determining the probability of tunnel instability to be 10.90%.

Table 4. Random variable parameters

Random Variable E(GPa) c(MPa) φ (◦)
Mean value 3.65 0.45 33

Standard deviation 0.73 0.09 6.6
Coefficient of variation 0.2 0.2 0.2

Distribution type Normal Normal Normal
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Figure 4. Response surface fitting results in Matlab

Figure 5. Calculation results using the Monte Carlo method

3.5 Parameter Sensitivity Analysis

In actual tunnel engineering, the spatial variability of rock and soil parameters, such as modulus of elasticity,
cohesion, and angle of internal friction, is relatively significant [18]. To study the sensitivity of the shear strain
values at the tunnel arch waist to these three parameters, 15 working conditions as listed in Table 5 were designed.
The instability probability for each was calculated, and the distribution of shear strain values was analyzed.
3.5.1 Analysis of instability probability

Figure 6 illustrates the trend of instability probability as a function of the coefficients of variation for parameters
E, c, and φ. With the increase in the coefficient of variation for these three parameters, the calculated probability of
instability shows a rising trend.

Among them, when the coefficient of variation ranges from 0.1 to 0.3, the change in the probability of instability
for the modulus of elasticity E is the most significant, ranging from 2.31% to 20.08%. The change in the probability
of instability for the angle of internal frictionφ follows, ranging from 8.81% to 15.28%. The change in the probability
of instability for cohesion c is the least, ranging from 10.85% to 11.49%. Based on these calculation results, it is
concluded that the variation in the modulus of elasticity E has the greatest impact on the overall tunnel instability
probability, followed by the angle of internal friction φ, with cohesion c having the least impact.
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Table 5. Lining failure areas and arch settlement values for different samples

Working
Condition No.

Variable Mean Value and
Distribution Type

Coefficient of
Variation Median Value of

Shear Strain (‰)
95th Percentile Value
of Shear Strain (‰)

Probability of
Instability (%)

E c φ

E 1

E
3. 65GPa normal

distribution

0.1

0.2 0.2

0.692 0.962 2.31
E 2 0.15 0.696 1.094 5.86
E 3 0.2 0.698 1.301 10.92
E 4 0.25 0.699 1.564 15.87
E 5 0.3 0.700 1.832 20.08
c 1

c 0.45MPa normal
distribution 0.2

0.1

0.2

0.691 1.292 10.85
c 2 0.15 0.694 1.305 11.06
c 3 0.2 0.698 1.313 11.12
c 4 0.25 0.703 1.324 11.24
c 5 0.3 0.706 1.341 11.49
φ 1

φ
33◦ normal
distribution 0.2 0.2

0.1 0.691 1.223 8.81
φ 2 0.15 0.694 1.248 9.61
φ 3 0.2 0.697 1.301 10.90
φ 4 0.25 0.703 1.392 12.87
φ 5 0.3 0.710 1.537 15.28

Figure 6. Trend of instability probability change

3.5.2 Analysis of Shear Strain Value Distribution
Figure 7 to Figure 9 depict histograms of the frequency distribution of shear strain values in the arch waist lining,

based on 100,000 Monte Carlo simulations under different working conditions.
Figure 7 shows the changes in the distribution of shear strain values in the arch waist lining of the tunnel when the

coefficient of variation of the rock mass’s modulus of elasticity E changes. Under working condition E 1 (COV=0.1),
the distribution range of shear strain values is from 0.4‰ to 1.5‰, with median and 95th percentile values of
0.692‰ and 0.962‰, respectively. Under working condition E 3 (COV=0.2), the distribution range expands to
0.4‰ to 2.3‰, with median and 95th percentile values of 0.698‰ and 1.301‰, respectively. For working condition
E 5 (COV=0.3), the range further extends to 0.4‰ to 2.8‰, with median and 95th percentile values of 0.700‰ and
1.832‰, respectively. As the coefficient of variation of the modulus of elasticity E increases, the changes in the
size of the shear strain values in the tunnel’s arch waist lining become more pronounced, with the distribution range
shifting from the initial 0.4‰ to 1.5‰ to 0.4‰ to 2.8‰. This significant overall change indicates that the modulus
of elasticity E has a very pronounced impact on the size of the shear strain values in the tunnel’s arch waist lining.

Figure 8 shows the changes in the distribution of shear strain values in the arch waist lining of the tunnel as the
coefficient of variation for the rock mass’s cohesion c changes. As the coefficient of variation for cohesion c increases,
the distribution of shear strain values across the three conditions does not show significant changes, with the overall
distribution range remaining between 0.4‰ and 2.3‰. The median values are respectively 0.691‰, 0.698‰, and
0.706‰, while the 95th percentile values are respectively 1.292‰, 1.313‰, and 1.341‰. This indicates that the size
of shear strain values in the tunnel’s arch waist lining is minimally affected by changes in the rock mass’s cohesion c.
Variations in the rock mass’s cohesion c do not significantly alter the size of the shear strain values in the arch waist
lining.
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(a) (b)

(c)

Figure 7. A figure with three subgraphs: (a) Histogram of frequency distribution of shear strain values for E 1
(COV=0.1); (b) Histogram of frequency distribution of shear strain values for E 3 (COV=0.2); (c) Histogram of

frequency distribution of shear strain values for E 5 (COV=0.3)

(a) (b)

(c)

Figure 8. A figure with three subgraphs: (a) Histogram of frequency distribution of shear strain values for c 1
(COV=0.1); (b) Histogram of frequency distribution of shear strain values for c 3 (COV=0.2); (c) Histogram of

frequency distribution of shear strain values for c 5 (COV=0.3)
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(a) (b)

(c)

Figure 9. A figure with three subgraphs: (a) Histogram of frequency distribution of shear strain values for φ 1
(COV=0.1); (b) Histogram of frequency distribution of shear strain values for φ 3 (COV=0.2); (c) Histogram of

frequency distribution of shear strain values for φ 5 (COV=0.3)

Figure 9 shows the changes in the distribution of shear strain values in the arch waist lining of the tunnel as the
coefficient of variation for the rock mass’s internal friction angle φ changes. Under condition φ 1 (COV=0.1), the
distribution range of shear strain values is from 0.4‰ to 2.1‰, with median and 95th percentile values of 0.691‰
and 1.223‰, respectively. Under condition φ 3 (COV=0.2), the range is from 0.4‰ to 2.2‰, with median and 95th
percentile values of 0.697‰ and 1.301‰, respectively. For condition φ 5 (COV=0.3), the range extends from 0.4‰
to 2.7‰, with median and 95th percentile values of 0.710‰ and 1.537‰, respectively. The distribution of shear
strain values becomes significantly more pronounced as the coefficient of variation for the internal friction angle φ
changes, with the overall values noticeably increasing, indicating that the size of shear strain values in the tunnel
arch waist lining is significantly affected by the internal friction angle φ.

The distribution changes of shear strain values reveal that when the coefficients of variation for the modulus of
elasticity E, cohesion c, and internal friction angle φ are altered, the impact of the modulus of elasticity E on the
distribution of shear strain values is the most significant, followed by the internal friction angle φ, with cohesion
c having the least impact. This demonstrates that the sensitivity of shear strain values to these three parameters
decreases in the order of modulus of elasticity E, internal friction angle φ, and cohesion c.

As the distribution range of shear strain values widens and the values become more dispersed, the number of
samples exceeding the permissible shear strain values (limit strain) for concrete lining increases, thereby leading to
an increase in the probability of instability. The changes in the coefficient of variation for the modulus of elasticity
E cause the most significant changes in the distribution of shear strain values, resulting in the greatest impact of the
modulus of elasticity E on the probability of instability, as shown in Figure 6.

4 Conclusion

The following conclusions have been drawn from this study:
(a) Based on limit strain theory, with the shear strain penetration of the lining structure as the criterion for

tunnel instability, a novel method for tunnel structure reliability analysis combining neural network response surface
methodology and Monte Carlo simulation is proposed.

(b) Compared to using tunnel deformation values as the control indicator for tunnel instability, employing shear
strain penetration failure of the tunnel lining as the criterion for instability more effectively determines the unstable
state of tunnels, enhancing the accuracy of tunnel reliability analysis.

(c) The probability of tunnel structure instability increases with the rise in the coefficient of variation of rock
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mass parameters. Among these, the modulus of elasticity E has the most significant impact on the probability of
tunnel structure instability.

(d) The criterion of shear strain penetration failure for tunnel lining instability more accurately represents
phenomena of tunnel structure instability induced by events such as earthquakes and blasting. This offers a new
perspective for the reliability analysis of tunnel structures.
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