
https://doi.org/10.56578/hf010101 

Healthcraft Frontiers 
https://www.acadlore.com/journals/HF 

Enhancing Fall Risk Assessment in the Elderly: A Study Utilizing 

Transfer Learning in an Improved EfficientNet Network with the 

Gramian Angular Field Technique 

Congcong Li1,2* , Yueting Cai1 , Laith Jaafer Habeeb3 , Atta-ur Rahman4 , 
Ritzkal5  

1 School of Information Science and Technology, Hebei Agricultural University, 071001 Baoding, China 
2 Hebei Key Laboratory of Agricultural Big Data, Hebei Agricultural University, 071001 Baoding, China 
3 Training and Workshop Center, University of Technology-Iraq, 10001 Baghdad, Iraq 
4 College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, 31441 
Dammam, Saudi Arabia 
5 Informatics Department, Science & Engineering Faculty, Universitas Ibn Khaldun Bogor, 16162 Bogor, 
Indonesia 

* Correspondence: Congcong Li (jdlcc@hebau.edu.cn)

Received: 9-12-2023 Revised: 11-15-2023 Accepted: 11-23-2023 

Citation: Li, C. C., Cai, Y. T., Habeeb, L. J., Rahman, A., & Ritzkal. (2023). Enhancing fall risk assessment in 

the elderly: A study utilizing transfer learning in an improved EfficientNet network with the gramian angular 

field technique. Healthcraft Front., 1(1), 1-14. https://doi.org/10.56578/hf010101 

© 2023 by the author(s). Published by Acadlore Publishing Services Limited, Hong Kong. This article is available for free 
download and can be reused and cited, provided that the original published version is credited, under the CC BY 4.0 license.

Abstract: Recent years have seen a significant increase in the incidence of falls among the elderly, leading to 

accidental injuries and fatalities. This trend underscores the critical need for accurate fall risk assessment, a major 

concern for public health and safety. In addressing this challenge, a novel approach has been developed, leveraging 

a pressure sensor placed on the foot's sole to gather gait data from elderly individuals. This method provides a 

precise analysis of gait stability on a daily basis. The research introduced here utilizes the gramian angular 

summation field (GASF) technique for converting this data into two-dimensional images, which are then processed 

using an enhanced EfficientNet model. The innovation lies in the integration of a convolutional block attention 

module (CBAM) into this model, resulting in a CBAM-EfficientNet algorithm. This approach includes freezing 

the first four stages of the EfficientNet model, focusing training on the deeper layers that incorporate CBAM. This 

strategy is aimed at augmenting the network's ability to extract critical features from foot pressure data, 

consequently improving the accuracy of fall risk classification. Experimental evaluation of this optimized model 

demonstrates a classification accuracy of 98.5% and a sensitivity of 99.0%, indicating its practical efficacy and 

strong generalization capacity. These findings reveal that the methodology significantly enhances the classification 

of plantar pressure data, offering valuable support in medical diagnosis and has substantial practical implications. 

Keywords: EfficientNet; Convolutional block attention module; Gram angular field algorithm; Wearable devices; 

Fall risk; Transfer learning 

1. Introduction

Global population aging presents a significant challenge, with China experiencing particularly rapid and

profound demographic shifts. As per international standards, societies with over 7%-14% of the population aged 

65 and above are considered aging. Recent statistics place China's aging population in the upper echelons globally, 

with over 190 million individuals aged 65 and above in 2022, surpassing the 14% threshold and marking China's 

entry into an advanced aging society. This demographic shift has heightened societal focus on the health issues of 

the elderly, particularly the risk of falls (Liang et al., 2019). Accurate fall risk assessment is paramount for 

enhancing the health and safety of the elderly. Existing research in this domain underscores the need for a 

comprehensive fall prevention assessment system and effective fall prevention information management strategies 

to mitigate fall incidences. Clinical assessments traditionally rely on fall risk scales and tests (Liang et al., 2015; 
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Shumway-Cook et al., 2000). However, these methods necessitate medical professionals' involvement and are 

impractical for daily life monitoring. 

Wearable sensors, especially plantar pressure sensors, offer an innovative solution, unencumbered by 

environmental constraints and boasting substantial concealment, making them ideal for continuous motion 

monitoring of the elderly. Notable contributions in this field include the system leveraging plantar pressure sensors 

of Yu et al. (2020) for inversion detection, and the wearable plantar pressure measurement and analysis system 

(WPPFMA) of Zhao et al. (2020), and Peng et al. (2021) use of plantar pressure signals in gait health analysis. 

Such studies highlight the significant potential of plantar pressure data in gait analysis, though its application in 

fall risk assessment remains underexplored. Montanini et al. (2017) proposed an approach using three pressure 

sensors on the sole, setting a threshold at one-third of the maximum pressure value during activity. The sensors' 

analog signals are translated into binary data, effectively delineating the gait cycle phase. Gao & Zhao (2021) 

analyzed plantar pressure data from 48 subjects to study gait line symmetry and temporal consistency, achieving 

an 87.5% accuracy on their test dataset. 

In the realm of fall risk assessment using plantar pressure data, Liang et al. (2019) demonstrated the potential 

of raw plantar force data, applying the convolutional long short-term memory (ConvLSTM) model with a notable 

classification accuracy of 94%. Similarly, Shalin et al. (2021) explored gait freezing identification through features 

extracted from plantar pressure data, utilizing long short-term memory (LSTM) networks. Their model exhibited 

an average sensitivity of 82.1% and specificity of 89.5%. Further advancing the field, Chan et al. (2023) developed 

an intelligent shoe system integrating pressure and inertial sensors. They crafted a hybrid model combining 

convolutional neural network (CNN) and recurrent neural network (RNN) techniques, achieving a remarkable F1-

score of 99.8%. These studies collectively highlight plantar pressure sensors' concealment and comfort, affirming 

their suitability for everyday fall risk monitoring. 

Despite these advancements, challenges persist with the substantial data size generated by plantar pressure 

sensors, imposing significant demands on data transmission and processing. Direct use of raw sensor data as input 

signals for fall risk detection models often leads to high computational costs and complex model architectures, 

hindering mobile deployment. Moreover, the nascent stage of research in this domain means that robust feature 

extraction from plantar pressure signals and the enhancement of model accuracy in fall risk detection are ongoing 

concerns. 

Addressing these issues requires the development of robust fall risk detection methods based on plantar pressure 

signals that also prioritize data compactness. This necessitates specific data processing and feature extraction 

techniques tailored for plantar pressure sensor data. In response, a model has been developed utilizing deep 

learning techniques. This model introduces a CBAM-EfficientNet technique, based on the EfficientNet model and 

augmented with the CBAM. It processes plantar pressure data transformed into the GASF format. The inclusion 

of the CBAM module notably enhances the network's feature extraction capabilities from plantar pressure data. 

Practical transfer learning is then employed to expedite network training and improve classification performance. 

Experimental evaluations have demonstrated the model's effectiveness in reliably extracting characteristics from 

plantar pressure signals. 

2. Materials and Methods

2.1 Data Collection and Data Label 

For this study, plantar pressure sensors were placed in the shoes of 24 elderly individuals residing in or near 

nursing homes to capture human plantar pressure signals. These individuals, all aged 65 or above, were selected 

excluding those with significant mobility impairments or conditions impacting gait. The aim was to assess fall risk 

through a comprehensive walking test, focusing on gait patterns and potential indicators of fall risk during various 

walking tasks. 

The experimental setup was straightforward, requiring no special arrangements. The commencement and 

conclusion of each walking test were signaled by the recorder. Participants were instructed to walk at a comfortable, 

regular pace on flat ground, following a straight path or executing turns. Each subject repeated the walking 

experiment 3-4 times. The human foot was divided into five distinct areas for data analysis: the first toe (T1), the 

second to fifth toes (T2-5), metatarsals (M1-5), midfoot (MF), and heel (HM, HL) as delineated in Figure 1 (Taylor 

et al., 2004). However, during data collection, a significant number of missing values were observed in the T2-5 

region, leading to the decision to exclude this data and focus only on the remaining foot areas. 

In the data labeling phase, a supervised learning approach was employed (Figure 2). The Timed Up and Go Test 

(TUGT) (Podsiadlo & Richardson, 1991) was initially used to categorize participants. Following the classification 

criteria set by Pardoel et al. (2021), 15 individuals were identified as high-risk, 5 as low-risk, and 4 were placed 

in a 'grey zone' where TUGT alone did not yield a clear classification. Subsequently, those in the grey zone 

underwent further assessment using the Tinetti Balance and Gait Scale (Beck, 1999; Raîche et al., 2000; Tinetti, 

1986). The culmination of these assessments resulted in a final labeling of the data, with 17 volunteers classified 
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as low risk and 7 as high risk for falling. 

 

 
 

Figure 1. Plantar partition 
 

 
 

Figure 2. Data labeling flow chart 

 

2.2 Processing of Plantar Pressure Data 

 

In the processing of plantar pressure data, the inherent one-dimensional nature of sensor signals poses a 

challenge for deep learning methods, which are more adept at handling multi-dimensional data. To address this, 

Wang & Oates (2015) introduced a novel approach of converting one-dimensional time series into two-

dimensional images via the Gramian Angular Field (GAF) algorithm. This method effectively preserves the time-

dependence and relevance of the original data. 

The plantar pressure sequence data were divided utilizing the sliding window method (Li et al., 2020; Liu et al., 

2022), with each window set to a duration of 1 second and an overlap rate of 50%. This approach was chosen to 

ensure the intact preservation of gait characteristics in the plantar pressure data. Subsequently, the data format was 

transformed by the GAF algorithm, which utilizes a polar coordinate system, derived from the Kerr matrix, instead 

of a Cartesian system. The GAF algorithm's implementation involved three critical steps (Tan & Le, 2019): 

Normalization: The time series X = {x1, x2,…xN}, containing N real-valued observations, underwent 

normalization to ensure that X ranged between [-1, 1].  

 

𝑥𝑖−1
𝑖 =

(𝑥𝑖 −𝑚𝑎𝑥(𝑋)) + (𝑥𝑖 −𝑚𝑖𝑛(𝑋))

𝑚𝑎𝑥(𝑋) − min(𝑋)
 (1) 
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Polar coordinate conversion: The normalized one-dimensional time series maintained its absolute temporal 

relationship using polar coordinates, where values were encoded as angle cosines and timestamps as radii. 

 

{
𝜑𝑖 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥𝑖), −1 ≤ 𝑥𝑖 ≤ 1, 𝑥𝑖𝜖𝑋

𝑟𝑖 =
𝑡𝑖
𝑁
, 𝑡𝑖𝜖𝑁

 (2) 

 

where xi is each observation in the time series X, ti is the corresponding timestamp, N represents the total length of 

the timestamp. When these normalized values are mapped into a polar coordinate system, the cosine value of each 

data point, previously normalized to the range [-1, 1], is interpreted within the angular boundaries of [0, π]. 

GASF: The temporal correlation between different time intervals was angularly identified, following the 

transformation of the rescaled time series into a polar coordinate system. The GAF is defined by calculating the 

sum of trigonometric functions between each sample point in this new coordinate system. 
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Figure 3 illustrates the complete process of converting the rescaled time series into a coded mapping in polar 

coordinates. The initial step involved normalizing the time series using Eqs. (1) and (2), followed by a conversion 

to a polar coordinate system. The final images were obtained using the GAF method, as detailed in Eq. (3). The 

result of this process was the generation of 2085 high-risk samples and 826 low-risk samples, classified based on 

the processed plantar pressure data. 

 

 
 

Figure 3. GASF 

 

2.3 Fall Risk Assessment Modeling Algorithm 

 

2.3.1 EfficientNet 

CNNs have been recognized for their capacity to autonomously extract features from images through 

convolutional kernel manipulation. The enhancement of a network’s depth, width, and image resolution typically 

facilitates the acquisition of multiscale features. However, increasing network depth can lead to complexities like 

vanishing gradients, while augmenting network width and image resolution significantly elevates computational 

and memory demands. EfficientNet (Woo et al., 2018), an innovative architecture, was developed to balance these 

aspects by uniformly scaling the network’s depth, width, and resolution with fixed scaling factors. With variants 

ranging from B0 to B9, EfficientNet allows for model parameter adjustments to suit diverse tasks and 

computational resources. For the task of fall risk classification using plantar pressure data, the EfficientNetB0 

architecture was selected. This architecture primarily comprises Mobile Inverted Convolution (MBConv) modules, 

utilizing 3×3 and 5×5 convolutional kernels. Each MBConv module includes two 1×1 convolutional layers (Conv), 

a depthwise separable convolutional layer (DWConv), and a Squeeze-and-Excitation (SE) module, as illustrated 

in Figure 4. The structure of EfficientNet is detailed in Table 1, showcasing its ability to effectively extract and 

utilize features from plantar pressure data for fall risk classification. 
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Table 1. Efficientnet network architecture 

 
Stage I Operator F Resolution H*W Channels C Layers L 

1 Conv3*3 224*224 32 1 

2 MBConv1, k3*3 112*112 16 1 

3 MBConv6, k3*3 112*112 24 2 

4 MBConv6, k5*5 56*56 40 2 

5 MBConv6, k3*3 28*28 80 3 

6 MBConv6, k5*5 14*14 112 3 

7 MBConv6, k5*5 14*14 192 4 

8 MBConv6, k3*3 7*7 320 1 

9 Conv1*1&Pooling &FC 7*7 1280 1 

 

 
 

Figure 4. The MBConv module 

 

2.3.2 Transfer learning 

Transfer learning refers to the transfer of parameters from a trained model (pre-trained model) to a new model 

to facilitate training (Canayaz, 2021; Wang et al., 2022). It is predicated on the premise that many data sets or 

tasks share correlations, allowing for the transfer of previously learned model parameters (akin to transferring 

knowledge) to a new model. This accelerates and optimizes the model’s learning process, eliminating the need to 

learn from scratch, as is common with most networks. The transferred parameters serve as a robust feature set, 

reducing the reliance on new data sets and shortening training durations. In this study, the weights from the 

EfficientNet model, trained on a large public dataset, were utilized as pre-trained model weights for the binary 

classification task of fall risk. The optimal parameters of the new model were obtained through retraining, 

demonstrating the efficiency and effectiveness of transfer learning in this context. 

 

2.3.3 CBAM  

CBAM, as proposed by Woo et al. (2018), is an enhancement mechanism for CNNs, involving spatial and 

channel-wise attention processes. The module, depicted in Figure 5, comprises both a spatial attention module and 

a channel attention module, offering a plug-and-play feature that allows for integration at any point within the 

network without altering the input feature characteristics. 

The channel attention module, illustrated in Figure 6, operates on the principle of discerning inter-channel 

relationships. It processes the input channel features F through both Maximum Pooling (MaxPool) and Average 

Pooling (AvgPool) to derive MaxPool(F) (MaxPool (F)∈R1×1×c) and AvgPool(F) (AvgPool (F)∈R1×1×c) features. 

These are subsequently passed through a multi-layer perceptron (MLP), which performs dimensionality reduction 

followed by enhancement. The output of the MLP, after undergoing a sigmoid activation function, yields the 

channel attention feature Mc(F), as formulated in Eq. (4), where W0 and W1 represent the respective weights. 

 

( ) ( )( )1 0 1 0

( ) Sigmoid(MLP(MaxPool( )) (AvgPool( )))

Sigmoid (MaxPool( )) (AvgPool( ))

CM F F F

W W F W W F

= +

= +
 (4) 

 

In parallel, the spatial attention module, shown in Figure 7, focuses on the relationships between spatial 

attributes to generate spatial attention maps. The input features F' undergo spatially-oriented MaxPool and 

AvgPool operations, resulting in MaxPool(F') (MaxPool (F')∈R1×1×c) and AvgPool(F') (AvgPool(F') ∈ R1×1×c) 

features. These features are first concatenated channel-wise, followed by a convolution operation with a 7×7 kernel. 

A subsequent sigmoid activation operation produces the spatial attention feature Ms(F), as outlined in the 

computational process.  
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𝑀𝑆(𝐹) = 𝜎(f7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹′);𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹′)])) = 𝜎 (f7×7 ([𝐹
𝑎𝑣𝑔
𝑆 ; 𝐹𝑚𝑎𝑥

𝑆 ])) (5) 

 

where, σ represents the sigmoid function, 𝐹𝑎𝑣𝑔
𝑆  and 𝐹𝑚𝑎𝑥

𝑆  denote the mean and maximum pooling features, 

respectively.  

 

 
 

Figure 5. CBAM 

 

 
 

Figure 6. Channel attention module 

 

 
 

Figure 7. Spatial attention module 

 

2.3.4 CBAM-EfficientNet framework 

The integration of CBAM into the EfficientNet framework represents a pivotal enhancement in the processing 

of plantar pressure data. CBAM, combining the channel attention module and the spatial attention module, 

facilitates the extraction of global feature information, thereby augmenting the network's classification accuracy. 

While shallow networks are proficient in extracting low-level features with high generalization capabilities, they 

entail higher computational costs. Deep networks, conversely, are adept at extracting more specific, finer details 

pertinent to particular datasets. By embedding the CBAM module within MBConv of the deep network, an 
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emphasis on salient features of plantar pressure data is achieved. This strategic placement, post DWConv 

convolution, allows the network to broaden its scope in learning diverse features. 

Figure 8 illustrates the structure of the MBConv module integrated with the CBAM module. Comparative 

experimental analyses were conducted to ascertain the optimal network layers for the application of the attention 

mechanism, culminating in the integration of the CBAM module into Stages 5, 6, 7, and 8 of the network 

architecture, as detailed in Table 1. 

 

 
 

Figure 8. The MBConv module integrated into CBAM module 

 

The CBAM-EfficientNet model, as proposed in this study, encompasses both transfer learning and the CBAM 

mechanism within the EfficientNet architecture. The initial weights of the EfficientNet network, pretrained on the 

ImageNet dataset, were subsequently applied to the foot pressure sensor dataset (Figure 9). The model adopts a 

strategy wherein the shallow layers of the network are frozen, allowing only the deeper layers to undergo weight 

parameter updates. This approach is predicated on the understanding that while shallow layers in convolutional 

networks excel in extracting low-level features with strong generalization capabilities, deeper layers are more 

focused on dataset-specific, finer details. Consequently, in this transfer learning classification task, only the weight 

parameters of the deep layers are permitted adjustment, while those of the shallow layers remain static. This 

methodology significantly enhances the classification performance on the two-dimensional representation of foot 

pressure data, effectively addressing fall risk assessment challenges. The first four stages of the network were 

frozen, and the subsequent feature extraction layers, inclusive of those with CBAM integration, underwent training 

to update weight parameters, culminating in the refined classification of fall risk assessment. 

 

 
 

Figure 9. CBAM- Efficientnet model 

 

3. Experiments and Analyses 

 

3.1 Experimental Setting 

 

The experiment was designed to evaluate human fall risk using plantar pressure data and to verify the accuracy 

of this approach. Initially, EfficientNet network models with and without transfer learning were trained and 

compared. Subsequently, the attention mechanism, specifically the CBAM module, was integrated into the 

MBConv module at various stages (8; 7, 8; 6, 7, 8; and 5, 6, 7, 8) of the EfficientNet network. The impact of these 

different configurations was then assessed through training. The final phase involved comparing the optimal model 

with traditional classical networks and existing methods. 

The deep learning framework PyTorch 2.5.0 was utilized for model construction, supported by hardware 

comprising an Intel Core i9-7900 processor and NVIDIA Geforce GTX3090 graphics card. For classification 

purposes, the 'high' category was treated as a positive example, and the 'low' category as negative. Optimal model 

parameter settings, as validated through experimental testing, are presented in Table 2. 

 

 

7



Table 2. Model parameter setting 

 
Setting Item Parameter Value 

learning rate 0.1 

Batch size 32 

Epoch 200 

Dropout 0.2 

 

Evaluation metrics such as accuracy, precision, sensitivity, and F1-score were employed to assess model 

performance. 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

 

F1 − score =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (9) 

 

3.2 Comparison of Transfer Learning Model Results 

 

Figure 10 illustrates the model accuracy and loss value curves for configurations with and without transfer 

learning. At equivalent epochs, the model employing transfer learning exhibited higher accuracy, lower loss values, 

and faster convergence. Without transfer learning, accuracy peaked at approximately 93.8%, with a final loss value 

of 0.221. Post-transfer learning implementation, accuracy increased to 96.2%, and the loss value decreased to 

0.143. Table 3 presents a comparison of the performance metrics, with transfer learning demonstrating superior 

results, thereby enhancing the classification performance of the fall risk assessment model and increasing 

classification efficiency.  

 

 
(a) 
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(b) 

 

Figure 10. (a) Comparison of accuracy; (b) Comparison of loss value 

 

Table 3. Performance comparison of baseline models 

 
Module Precision Sensitivity F1-Score 

EfficientNet 96.9% 96.8% 96.8% 

Pre-EfficientNet 98.0% 97.2% 97.6% 

 

3.3 Impact of Attention Mechanism Placement on Model Performance 

 

Investigations were conducted on networks with pre-training and varying placements of the CBAM module. It 

was observed that models augmented with the CBAM module exhibited enhanced performance in terms of 

accuracy compared to the initial Pre-EfficientNet model without the module. The inclusion of the CBAM module 

resulted in an increase in accuracy by 0.3-2%, precision by 0.6-1.2%, and F1-score by 0.6-1.5%. These results 

underscore the efficacy of transfer learning in expediting network training and improving classification accuracy, 

particularly in scenarios with limited data. 

 

Table 4. Classification results of different improved models 

 
Module Accuracy Precision Sensitivity F1-Score 

Pre-EfficientNetB0 96.2% 98.0% 97.2% 97.6% 

Stage 8 96.5% 98.6% 97.8% 98.2% 

Stage 7 and 8 96.7% 98.7% 98.0% 98.3% 

Stage 6, 7 and 8 97.2% 99.1% 98.4% 98.7% 

Stage 5, 6, 7 and 8 98.5% 99.2% 99.0% 99.1% 

 

Table 4 presents the classification results of the various improved models, revealing that the network achieves 

optimal average evaluation metrics when the CBAM module is added at stages 5, 6, 7, and 8. The average accuracy 

in this configuration was recorded at 98.2%, marking a significant enhancement in the model’s classification 

capabilities. This improvement can be attributed to the CBAM attention mechanism's focus on crucial features in 

plantar pressure data from both spatial and channel dimensions. Figure 11 compares the accuracy and loss value 

variation curves of the optimal model (CBAM added at stages 5, 6, 7, 8) with the base model (Pre-EfficientNet). 

The optimal model demonstrated higher accuracy and lower loss values, stabilizing at an epoch of approximately 

110, thereby confirming the added value of CBAM in learning pivotal features to improve classification accuracy. 
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(a) 

 

 
(b) 

 

Figure 11. (a) Comparison of model accuracy with or without CBAM; (b) Comparison of model loss values 

with and without CBAM 

 

3.4 Evaluation of Model Effectiveness 

 

Comparative experiments were conducted with classical networks such as ShuffleNet, ResNet50, and 

ResNet101. Figure 12 showcases the variation in accuracy among these models. The CBAM-EfficientNet 

approach achieved higher accuracy and faster convergence compared to other classical networks, attributed to the 

efficiencies brought by transfer learning and the inherent advantages of the EfficientNet network architecture 

(uniform tuning of network width, depth, and accuracy) complemented by the CBAM mechanism for extracting 
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significant features from plantar pressure data. Table 5 displays the evaluation metrics for the classical network 

models and the proposed method in this study. The CBAM-EfficientNet method attained the highest accuracy at 

98.5%, exhibiting superior performance in precision, sensitivity, and F1-score. Additionally, this model is 

characterized by a reduced number of parameters, thereby necessitating fewer resources. 

 

Table 5. Classification results of different models 

 
Module Accuracy Precision Sensitivity F1-Score 

CBAM-EfficientNet 98.5% 99.2% 99.0% 99.1% 

Shufflenet 91.1% 96.1% 95.0% 95.3% 

Resnet50 94.3% 98.3% 96.0% 97.0% 

Resnet101 93.9% 98.2% 95.5% 96.7% 

 

 
(a) 

 

 
(b) 

 

Figure 12. (a) Comparison of accuracy with classical network models; (b) Comparison of loss values with 

classical network models 
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3.5 Comparison with Contemporary Research Findings 

 

A comparative analysis was conducted to evaluate various methods used in current research for assessing fall 

risk through plantar pressure sensors, as summarized in Table 6. Liang et al. (2019) applied the ConvLSTM method 

to extract spatiotemporal features from raw plantar pressure data, demonstrating its effectiveness in predicting fall 

risk among the elderly and establishing a correlation between heel force and fall risk. Shalin et al. (2021) focused 

on the efficacy of gait freeze detection and prediction using plantar pressure sensors, validating the suitability of 

LSTM networks for this type of data. Chan (2023) explored fall detection using a hybrid CNN and RNN model, 

proving the model's applicability to both plantar pressure and inertial sensor data. 

The comparative experiments, conducted on the dataset assembled in this study, indicate that the proposed 

CBAM-EfficientNet model outperforms existing methods in accuracy, precision, sensitivity, and F1-score, while 

also being more resource-efficient. Specifically, when compared to ConvLSTM, improvements of 6.2% in 

accuracy, 2.6% in precision, 3.4% in sensitivity, and 2.9% in F1-score were observed. Relative to LSTM, 

enhancements in accuracy, precision, sensitivity, and F1-score were 6.7%, 2.8%, 3.8%, and 3.4%, respectively. 

Compared with the hybrid CNN and RNN model, the CBAM-EfficientNet model showed an increase of 4.2% in 

accuracy, 1.6% in precision, 2.4% in sensitivity, and 0.9% in F1-score. The lightweight nature of the proposed 

network further substantiates the CBAM-EfficientNet model's superior performance in accurately classifying fall 

risk. 

 

Table 6. Comparison of contemporary research findings 

 
Module Accuracy Precision Sensitivity F1-Score 

CBAM-EfficientNet 98.5% 99.2% 99.0% 99.1% 

convLSTM (Liang et al., 2019) 92.3% 96.6% 95.6% 96.0% 

LSTM (Yu et al., 2022) 91.8% 96.4% 95.2% 95.7% 

CNN+RNN (Chan et al., 2023) 94.3% 97.6% 96.6% 98.0% 

 

4. Conclusion 

 

In pursuit of robust fall risk detection methods suitable for daily life applications, this research undertook an 

extensive examination of existing fall assessment methodologies. The selection of a particular data processing 

technique was necessitated by the voluminous nature of plantar pressure data. A novel neural network model for 

fall risk assessment was proposed, incorporating an attention mechanism, and was built upon a gait dataset 

gathered using plantar pressure sensor devices. Utilizing the EfficientNet model as a base, transfer learning was 

applied, and the CBAM module was integrated, enhancing the accuracy of risk classification. Initial network 

weights, trained on a large dataset, were employed to expedite network training and improve learning efficiency. 

The incorporation of the CBAM module at higher stages of the model augmented the network's capacity to discern 

critical features in plantar pressure data, thus boosting classification accuracy. The optimized model achieved a 

classification accuracy of 98.5%, a precision of 99.2%, and a sensitivity of 99.0%. These outcomes affirm the 

efficacy of the proposed method in enhancing the classification of plantar pressure data, which holds significant 

practical implications in assisting medical professionals in fall risk diagnosis. 

The study leveraged the GASF algorithm to transform foot pressure sensor data into two-dimensional images, 

achieving data simplification and robustness. The integration of transfer learning markedly improved the efficiency 

of fall risk assessment classification. The experimental results validated the ability of GASF images to maintain 

accuracy in fall risk assessment while reducing data scale, making the model more suitable for practical 

deployment in fall risk monitoring scenarios. 

Despite its contributions, this study has limitations. The complexity of the human body's motor system cannot 

be fully captured by plantar pressure sensors alone. Future work could involve the integration of additional sensors 

or diverse sensor types, ensuring practical applicability in daily life, to acquire more comprehensive limb 

movement data. This would enable more nuanced analysis and processing of complex movement behaviors. 

Additionally, the current model predicts fall risk as high or low but lacks the granularity to determine specific risk 

severity or fall probability. Future endeavors could focus on more precise data labeling to address this limitation. 
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This study adheres to strict ethical guidelines, ensuring the rights and privacy of participants. Informed consent 

was obtained from all participants, and personal information was protected throughout the study. The methodology 
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solely for the purpose of this research and is stored and processed in a secure and confidential manner. 
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