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Abstract: This study introduces an advanced forecasting method, utilizing a higher-order circular Pythagorean 

fuzzy time series (C-PyFTSs) approach, for the prediction of Alzheimer’s disease progression. Distinct from 

traditional forecasting methodologies, this novel approach is grounded in the principles of circular Pythagorean 

fuzzy set (C-PyFS) theory. It uniquely incorporates both positive and negative membership values, further 

augmented by a circular radius. This design is specifically tailored to address the inherent uncertainties and 

imprecisions prevalent in medical data. A key innovation of this method is its consideration of the circular nature 

of time series, which significantly enhances the accuracy and robustness of the forecasts. The higher-order aspect 

of this forecasting method facilitates a more comprehensive predictive model, surpassing the capabilities of 

existing techniques. The efficacy of this method has been rigorously evaluated through extensive experiments, 

benchmarked against conventional time series forecasting methods. The empirical results underscore the 

superiority of the proposed method in accurately predicting the trajectory of Alzheimer’s disease. This 

advancement holds substantial promise for improving prognostic assessments in clinical settings, offering a more 

nuanced understanding of disease progression. 

Keywords: Fuzzy set; Circular Pythagorean fuzzy set; Score function; Higher order time series forecasting; 

Alzheimer’s disease progression 

1. Introduction

Decision-making, defined as the process of selecting the optimal choice from a range of alternatives to

achieve organizational objectives, is a critical area of research in today's complex problem-solving environments 

(Attaullah et al., 2022). The field of Multicriteria Decision Making (MCDM) particularly addresses challenges 

encompassing multiple objectives or conditions. Numerous MCDM techniques have been developed to manage 

decisions involving diverse, competing criteria in scenarios characterized by ambiguity. Applications of these 

methods span various domains, including printer selection (Gündoğdu & Ashraf, 2021) and solar power plant 

development (Khan et al., 2020). Traditional MCDM algorithms, however, face limitations in handling 

imprecise or unclear verbal judgments, as they require exact numerical values. To address this gap, 

enhancements have been made to standard fuzzy sets in MCDM methodologies through the incorporation of 

Pythagorean fuzzy sets, neutrosophic sets, and spherical fuzzy sets (Chinram et al., 2020). These advancements 

have significantly improved the handling of ambiguity in data forecasting, which is increasingly relevant for 

MCDM. 

The introduction of fuzzy set theory, developed by Zadeh et al. (1996), marked a significant advancement in 

decision-making processes plagued by statistical ambiguity. Fuzzy sets, defined for each element x in a domain 

set, assign a membership degree ranging from 0 to 1. However, fuzzy sets encounter limitations, notably their 

inability to represent non-membership. To overcome this limitation, Atanassov (1999) introduced the 
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intuitionistic fuzzy set (IFS), which offers a more comprehensive understanding of membership degrees. IFS 

utilizes both membership degree V(p) and non-membership degree M(p), adhering to the constraint that 0 ≤ V(p) 

+ M(p) ≤ 1. The utility of IFS in various real-world applications has been extensively researched and validated 
(Atanassov, 2007). Building upon the concept of IFS, Nayagam et al. (2011) explored an interval valued 
Pythagorean fuzzy set (IVIFS), which represents an extension of IFS and a modification of the standard fuzzy set. 
IVIFS has found wide application in decision-making contexts (Tan, 2011; Xu, 2011).

Addressing scenarios where the sum of membership and non-membership degrees exceeds one, Yager (2013) 

proposed the Pythagorean fuzzy set (PyFS). PyFS, based on the Pythagorean theorem, allows for a more 

nuanced representation of uncertainty compared to standard fuzzy sets. Cuong & Kreinovich (2013) introduced 

the picture fuzzy set (PFS) concept, which includes membership degree V(p), neutral membership degree K(p), 

and non-membership degree M(p), with the constraint that 0 ≤ V(p) + K(p) + M(p) ≤ 1. Garg (2017) further 

developed weighted averaging operations for PFS, and its applications in various decision-making fields have 

been extensively studied (Dutta, 2017). However, PFS encounters limitations in situations where V(p) + K(p) + 

M(p) ≥ 1, leading to inadequate outcomes. To address these challenges, Ashraf et al. (2019b) proposed the 

spherical fuzzy set (SFS), a variation of PFS, which enables more accurate and precise representation of 

uncertainty. SFS has been employed in diverse areas (Ashraf et al., 2019a), including COVID-19 (Ashraf et al., 

2020) and healthcare diagnostics (Mahmood et al., 2019), establishing itself as a valuable tool in decision-

making. Further extending this concept, Ullah et al. (2018) introduced T-spherical fuzzy set (T-SFS) for tackling 

multidimensional decision-making difficulties. The novel contribution of this paper lies in its exploration of C-

PyFS. Unlike PyFS, C-PyFS incorporates a circular radius, enhancing the management of uncertainty in higher-

dimensional spaces. 

Prediction, defined as the process of deducing patterns or future occurrences from historical data, plays a 

crucial role in diverse fields such as marketing, economics, finance, and weather forecasting. The analysis of 

time-series data, which changes over time, is instrumental in addressing these predictive challenges. The concept 

of fuzzy time series, as delineated in Song & Chissom (1993b)’s definition, represents a significant advancement 

in this domain. Following their foundational work, Song & Chissom (1993a) and Song & Chissom (1994) 
utilized fuzzy sets for data projection, which was later refined by Joshi and Kumar (2012a). The exploration of 

fuzzy theory in data estimation has been pursued through various methodologies by numerous scholars, with 

notable contributions found in (Athar & Riaz, 2022; Farid & Riaz, 2023; Farid et al., 2023; Riaz & Farid, 2022; 

Riaz et al., 2022a; Riaz et al., 2022b) A majority of these studies have employed IFS, recognizing their utility in 

encapsulating uncertainty in fuzzy logic connections. However, only a select few forecasting models, notably 

those developed by Kumar & Gangwar (2015b) and Joshi & Kumar (2012b), have incorporated IFS (Gangwar & 

Kumar, 2014). The wind speed prediction model proposed by Jiang et al. (2019) has been widely adopted, with its 

effectiveness demonstrated using data from the University of Alabama (Cheng et al., 2008; Chou, 2011). In 

these studies, error comparisons between outcomes were conducted to identify the most effective forecasting 

strategy. 

Building upon the IFS concept, Ashraf et al. (2023b) introduced the circular intuitionistic fuzzy set (C-IFS), 

which replaces points with circles centered at (ȷA(x), ℓA(x)). Each element of C-IFS is represented by a circle with 

a radius r ranging from 0 to 1 and centered at (ȷA(x), ℓA(x)). This innovative approach allows for a single total 

membership value within the C-IFS circle, offering a more comprehensive model for contradictory and ambiguous 

information. The C-IFS differentiates itself from regular IFS at r > 0, while at r = 0, it converges to a traditional 

IFS (Chen, 2023). This concept not only provides an enhanced understanding of membership but also enables 

decision-makers to construct grades as circular memberships within the C-IFS framework. Subsequent research on 

C-IFS has been applied to MCDM issues (Perçin, 2022; Khan et al., 2022), demonstrating its applicability and 
effectiveness. Building upon this, the concept of the circular and disc spherical fuzzy set emerged as a further 
evolution, encapsulating the advancements of previous methodologies (Ashraf et al., 2023a).

Historically, evidence assessment and rating have been fundamental in scientific decision-making. However, 

these methods have demonstrated limitations in projecting future values. Chen (1996) pioneered the use of time 

series analysis for enrollment forecasting, marking a significant shift in predictive methodologies. Following this, 

Kumar & Gangwar (2015a) introduced the concept of induced IFS to enhance forecasting capabilities. Further 

advancement was made by Abhishekh et al. (2018), who applied this technique to higher-order IFS. Despite 

these developments, a challenge persisted in determining the radius of a circle in PyFS, a crucial aspect for in-

depth analysis. This gap led to the development of C-PyFS, representing a paradigm shift in prediction 

algorithms. C-PyFS uniquely handles membership forms, including circular radius, which diverges from 

traditional member representations. Particularly useful in scenarios where the sum of membership and non-

membership is less than or equal to one with a circular radius, C-PyFTSs have shown efficacy in time series 

forecasting. The present study focuses on C-PyFTSs, aiming to reduce error rates in higher-order forecasting. 

This work exemplifies the application of the proposed method in forecasting Alzheimer’s disease indices. The 

study of these indices serves to deepen the understanding of the medical field, assisting in effective management 

and monitoring of patient conditions. Additionally, the findings offer governments valuable insights for 
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informed decision-making, especially in healthcare management. 

The structure of the remainder of this study is outlined as follows: 

⚫ The application of fuzzy sets and C-PyFS in bridging the subsequent sections of the article is discussed.

⚫ Definitions pertinent to the proposed method are provided, including those for circular Pythagorean

membership, non-membership, and radius values essential for score calculation.

⚫ Concepts pertaining to time-variant and time-invariant C-PyFTSs are introduced.

⚫ A detailed flowchart is presented, elucidating the proposed forecasting strategy and its application in

data prediction.

⚫ The methodology is applied to Alzheimer’s disease data, with results tabulated for comprehensive

analysis.

⚫ The study then extends to higher-order forecasting, building upon the initial findings.

⚫ The study concludes with a presentation of the overall findings and implications.

2. Preliminaries

This section succinctly delineates the foundational concepts of time series analysis, C-PyFSs, and fuzzy sets,

which are instrumental in bridging to the subsequent section of the study. 

Definition 2.1: The concept of Zadeh's fuzzy set is articulated as follows: Given a set Q, the fuzzy set Q 

within a universal set O is represented by: 

 , ( )qQ o o o O=  ∣

where, µq(o) is the membership function of the fuzzy set Q, mapping µq(o): Q → [0, 1]. This function quantifies 

the degree of membership of element o in Q. 

Definition 2.2: Khan et al. (2023): Considering a nonempty set Ψ, a Pythagorean fuzzy set ξ within Ψ is 

defined as ξ = {⟨o, µξ(o), νξ(o)⟩; o ∈ Ψ}, wherein the membership and non-membership degrees are determined 

by the functions µξ(o), νξ(o): → [0, 1], and for each element o ∈ Ψ, it holds that 0 ≤ µξ
2(o) + νξ

2(o) ≤ 1. 

Definition 2.3: Çakır et al. (2022): For a universal set Ψ, a C-PyFS ξ in Ψ is characterized as: 

 , ( ), ( );o o o r o   = ∣

where, 

2 20 ( ) ( ) 1o o   +  (1) 

where, µξ: Ψ → [0, 1] and νξ: Ψ → [0, 1] describe the degrees of membership and non-membership, respectively, 

of the element o ∈ Ψ. The distinctive feature of C-PyFS, denoted by r ∈ [0,1], is the radius of a circle that 

encapsulates each component o ∈ Ψ. 

The degree of uncertainty in this context is computed using the formula: 

( ) 1 ( ) ( )o o o    = − − (2) 

Definition 2.4: Çakır et al. (2022): The operations constituting C-PyFS are defined as follows: For any two 

sets Å and Ø within C-PyFS (Ψ), it is established that: 
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where, d(Å, Ø) is the standardized shortest distance between the sets Å and Ø. 
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Definition 2.5: If ϑ(e)(e = 0, 1, 2,….,) is a subset of L and the universe of discourse upon which C-PyFS fk(e) 

= ⟨µξ(o), νξ(o); r⟩ (k = 1, 2, ....,) are defined, then F(e) = f1(o), f2(o) is a collection of fk(e) constructed to form C-

PyFTSs on ϑ(e)(e = 0, 1, 2, ….,). 

Definition 2.6: Given that L(e-1, e) represents a circular Pythagorean logical relationship, it is determined 

that V(e) = V(e-1)×L(e-1, e), where V(e) is influenced by V(e-1). This relationship is denoted as V(e－1) → V(e). 

Definition 2.7: Assuming V(e) is influenced by V(e-1) and symbolized as V(e-1) → V(e), it follows that V(e) 

and V(e-1) share a circular Pythagorean relationship, expressed as V(e) = V(e-1)×L(e-1, e). If L(e-1, e) is 

independent of time e, V(e) is classified as a time-invariant circular Pythagorean time series, with L(e, e-1) = 

L(e-1, e-2) for all e. Conversely, V(e) is termed a time-variant circular Pythagorean time series when this 

condition is not met. 

Definition 2.8: A circular Pythagorean logical relationship is defined as Ga → Gb, where V(e-1) = Ga and (e) 

= Gb, with Ga, Gb denoting the current and future states of the circular Pythagorean logical relations (C-PLRs). 

This set is represented as Ga1, Ga2, ......, Gan → Gb, where V(e-n) = Ga1, V(e-n+1) = Ga2, since V(e) is influenced 

by multiple C-PyFSs V(e-n), V(e-n+1), V(e-1), etc. Such relationships are termed higher-order circular 

Pythagorean time series. 

 

3. An Algorithm of Handling Circular Pythagorean Time Series Forecasting 

 

The proposed methodology encompasses three distinct segments (A, B, and C) for effectively addressing 

scenarios in C-PyFTSs. Initially, the establishment of circular Pythagorean logical relations and their groups is 

undertaken. Subsequently, the circular Pythagorean forecasting technique is applied to ascertain the anticipated 

value of the issue. Finally, the limitations of the approach are critically examined. 

 

3.1 Methodology for First-Order C-PyFTSs Forecasting 

 

The following steps outline the process for constructing circular Pythagorean logical relations and their groups 

using the score formula: 

Step I: The time series data are mapped to the specified range Ψ, defining the discourse universe as Ψ = [Amin 

－ A1, Amax － A2]. Here, A1 and A2 are chosen positive values to accommodate the entire data time series, while 

Amin and Amax represent the smallest and largest data points in the time series, respectively. 

Step II: The discourse universe Ψ is segmented into intervals of equal duration. 

Step III: The value of ρv, the n-th circular Pythagorean fuzzy membership and non-membership, is determined 

based on the constructed intervals. 
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( ;[ , , ]) 1 ( ;[ , , ])o o     = −  (4) 

 

Step IV: The radius of a C-PyFS is computed using Eqs. (5) and (6).  

Let the Pythagorean fuzzy pairings in a PyFS Ni be {⟨ci,1, di,1⟩⟨ci,2, di,2⟩, ....}, where i is the number of PyFS Ni, 

each of which includes λi. The arithmetic average of the Pythagorean fuzzy pairs is calculated as follows: 
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The radius is the greatest Euclidean distance in the set ⟨µ(Ni)
, ν(Ni)⟩. 

47



( )( ) ( )( )
2 2

1 , ,max
i i i

i j i j i jN N
r c d   = − + −  (6) 

 

Step V: The score degree is calculated using the equation, and the highest value of score degree is selected: 

 

1
( ) ( ( ) ( ) 2 (2 1)) where ( ) [ 1,1]

3
s s s r p s   = − + −  −  (7) 

 

where, p is a value between 0 and 1. 

Step VI: The circular Pythagorean fuzzy logical relationships (C-PyFLRs) are formulated. C-PyFLRs are 

represented by ρa → ρb, where ρa is the C-PyFS of year y and ρb is the C-PyFS of the subsequent year y+1. 

Moreover, ρa denotes the present state, and ρb denotes the state that occurs next. 

Step VII: Circular Pythagorean fuzzy logical relationship groups (C-PyFLRGs) are constructed based on the 

C-PyFLRs. 

 

3.2 Determination of Forecasted Values in C-PyFSs 

 

The process for ascertaining the forecasted values in C-PyFSs is described as follows: 

In scenarios where the circular Pythagorean value of data ℘a is not influenced by any other circular 

Pythagorean values, the C-PyFLRGs of the corresponding value remain constant. In cases where the value 

dependent on ℘a cannot be determined, the circular Pythagorean value defaults to zero. If the circular 

Pythagorean value of data ℘a is derived from ℘b(℘b → ℘a), attention is directed to the C-PyFLRGs of ℘b. 

If the C-PyFLRGs of ℘b are vacuous (℘b → ℘b), the forecasted value is identified as the center of ℘b. 

In situations where the C-PyFLRGs of ℘b are one-to-one (℘b → ℘a), the forecasted value of ℘a is the median 

value. 

For cases where the C-PyFLRGs of ℘b are not one-to-one (℘b → ℘a1, ℘a2, ……℘an), the forecasted value is 

the average of the median values of ℘a1, ℘a2, ..., ℘an. 

 

3.3 Evaluation of Error Using Root Mean Square Error (RMSE) and Average Forecasting Error (AFE) 

 

The precision of time series forecasting is commonly evaluated using RMSE and AFE. The following 

definitions apply to these measures of forecasting accuracy: 
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In these formulations, Fi and Oi represent the forecasted and observed data points, respectively, within the 

time series. τ represents the total number of observations in the time series. A lower value of RMSE or AFE 

indicates enhanced accuracy in the forecasting method. 

 

4. Implementation of the Proposed Method of Alzheimer’s Disease 

 

This case study details the implementation of predictive analytics in a renowned medical department 

specializing in neurological disorders, with a focus on Alzheimer’s disease. The study demonstrates 

how the integration of advanced data analytics techniques has substantially improved the ability to 

predict daily patient numbers, providing insights into the disease and revolutionizing patient care and 

resource management. 

Alzheimer's disease, a progressive neurodegenerative disorder, affects millions globally. In the 

context of a neurologically-focused medical department, the challenge was the efficient management 

of the influx of Alzheimer’s patients. The unpredictable nature of patient admissions complicated staff 
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scheduling, resource allocation, and patient care planning. The application of predictive analytics was 

aimed at accurately forecasting the daily patient count. 

The core aim of this case study is to illustrate how predictive analytics has transformed patient 

management approaches. By analyzing historical data and employing advanced modeling techniques, 

the study sought to forecast the daily number of Alzheimer’s patients. Table 1 presents a comparison 

between true patient numbers and forecasted values using circular Pythagorean fuzzy (C-PyF) values. 
 

Table 1. Predictive analytics in Alzheimer’s patient forecasting 
 

Date True Value C-PyF Value Date True Value C-PyF Value 

01-11-2001 3929.69 ℘1 03-12-2001 4646.61 ℘6 

02-11-2001 3998.48 ℘1 04-12-2001 4766.43 ℘7 

05-11-2001 4080.51 ℘1 05-12-2001 4924.56 ℘8 

06-11-2001 4082.92 ℘1 06-12-2001 5208.86 ℘11 

07-11-2001 4158.15 ℘2 07-12-2001 5333.93 ℘12 

08-11-2001 4135.03 ℘2 10-12-2001 5321.28 ℘12 

09-11-2001 4123.78 ℘2 11-12-2001 5273.97 ℘11 

12-11-2001 4172.63 ℘2 12-12-2001 5539.31 ℘13 

13-11-2001 4136.54 ℘2 13-12-2001 5407.54 ℘12 

14-11-2001 4277.70 ℘3 14-12-2001 5486.73 ℘13 

15-11-2001 4403.59 ℘4 17-12-2001 5456.15 ℘13 

16-11-2001 4446.62 ℘4 18-12-2001 5329.19 ℘12 

19-11-2001 4548.63 ℘5 19-12-2001 5221.96 ℘11 

20-11-2001 4455.80 ℘4 20-12-2001 5309.10 ℘12 

21-11-2001 4533.37 ℘5 21-12-2001 5109.24 ℘10 

22-11-2001 4450.02 ℘4 24-12-2001 5164.73 ℘10 

23-11-2001 4519.08 ℘5 25-12-2001 5372.81 ℘12 

26-11-2001 4608.32 ℘6 26-12-2001 5392.43 ℘12 

27-11-2001 4580.33 ℘6 27-12-2001 5332.98 ℘12 

28-11-2001 4447.58 ℘4 28-12-2001 5398.28 ℘12 

29-11-2001 4465.83 ℘5 31-12-2001 5551.24 ℘14 

30-11-2001 4441.12 ℘4    

 

This segment delineates the application of the developed approach to Alzheimer's disease data from 2001, 

providing a systematic explanation of the results for easier interpretation and validation of the model. The 

methodology is outlined in the following steps: 

Step I: Definition of the discourse universe 

The discourse universe Ψ for the 2001 Alzheimer's patient data is defined as [3920, 5600]. This range is 

determined using the minimum (Amin) and maximum (Amax) values from Table 1, adjusted by two chosen positive 

numbers A1 = 9.69 and A2 = 48.76. 

Step II: Segmentation of the discourse universe 

The universe Ψ is divided into 14 intervals, denoted as ħv = [3920 + (v − 1)p, 3920 + vp], v = 1, 2, 3,....14 

and p = 120.  

Step III: Establishment of C-PyFTS 

Fourteen C-PyFTS, ℘v(v = 1, 2, 3,....12), are established within the discourse universe based on the interval ħv. 

The C-PyFTS are determined as follows: 

 

℘v = [3920+(v−1)p, 3920+vp, 3920+(i+1)p] for v = 1, 2, 3……13 where p = 120 

 

℘v = [3920+(v−1)p, 3920+vp, 3920+ip] for v = 14 where p = 120 

 

Membership and non-membership values to C-PyFSs are calculated using Eqs. (3) and (4), assuming ϵ = 

0.001. 

 

℘1 = {(3929.69, 0.08, 0.92), (3998.48, 0.65, 0.35), (4080.51, 0.66, 0.34), (4082.92, 0.64, 0.36), (4158.15, 0.01, 0.99), 

(4135.03, 0.21, 0.79), (4123.78, 0.30, 0.70), (4136.54, 0.19, 0.81)} 

℘2 = {(4080.51, 0.34, 0.66), (4082.92, 0.36, 0.64), (4158.15, 0.97, 0.03), (4135.03, 0.79, 0.21), (4123.78, 0.70, 

0.30), (4172.63, 0.89, 0.11), (4136.54, 0.80, 0.20), (4277.70, 0.02, 0.98)} 

℘3 = {(4172.63, 0.10, 0.90), (4277.70, 0.98, 0.02)} 
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℘4 = {(4403.59, 0.97, 0.03), (4446.62, 0.61, 0.39), (4455.80, 0.53, 0.47), (4450.02, 0.58, 0.42), (4159.08, 0.01, 0.99), 

(4447.58, 0.60, 0.40), (4465.83, 0.45, 0.55), (4441.12, 0.66, 0.34)} 

℘5 = {(4403.59, 0.03, 0.97), (4446.62, 0.39, 0.61), (4548.63, 0.76, 0.53), (4455.80, 0.46, 0.54), (4533.37, 0.89, 

0.11), (4450.02, 0.42, 0.58), (4519.08, 0.99, 0.01), (4608.32, 0.26, 0.74), (4580.33, 0.50, 0.50), (4447.58, 0.40, 

0.60), (4465.83, 0.55, 0.45), (4441.61, 0.35, 0.65)} 

℘6 = {(4548.63, 0.24, 0.76), (4533.37, 0.11, 0.89), (4608.32, 0.73, 0.27), (4580.33, 0.50, 0.50), (4646.61, 0.94, 0.06)} 
℘7 = {(4646.61, 0.05, 0.95), (4766.43, 0.95, 0.05)} 
℘8 = {(4766.43, 0.05, 0.95), (4924.56, 0.63, 0.37)} 
℘9 = {(4924.56, 0.37, 0.63), (5109.24, 0.09, 0.91)} 
℘10 = {(5208.86, 0.26, 0.74), (5221.96, 0.15, 0.85), (5109.24, 0.91, 0.09), (5164.73, 0.63, 0.37) 

℘11 = {(5208.86, 0.74, 0.26), (5333.93, 0.22, 0.78), (5329.19, 0.26, 0.74), (5221.96, 0.85, 0.15), (5309.10, 0.42, 

0.58), (5164.73, 0.37, 0.63), (5332.98, 0.22, 0.78), (5273.97, 0.72, 0.28), (5321.28, 0.32, 0.68)} 

℘12 = {(5333.93, 0.78, 0.22), (5407.54, 0.60, 0.40), (5456.15, 0.20, 0.80), (5329.19, 0.74, 0.26), (5309.10, 0.57, 

0.43), (5372.81, 0.89, 0.11), (5392.43, 0.73, 0.27), (5332.98, 0.77, 0.23), (5398.28, 0.68, 0.32), (5321.28, 

0.68, 0.32), (5273.97, 0.28, 0.72)} 

℘13 = {(5407.54, 0.40, 0.60), (5486.73, 0.94, 0.06), (5456.15, 0.80, 0.20), (5372.81, 0.11, 0.89), (5392.43, 0.27, 

0.73), (5398.28, 0.32, 0.68), (5551.24, 0.41, 0.59), (5539.31, 0.50, 0.50) 

℘14 = {(5486.73, 0.06, 0.94), (5551.24, 0.59, 0.41), (5539.31, 0.49, 0.51) 

 

Step IV: Calculation of the radius of C-PyFSs 

The radius for each C-PyFS is calculated utilizing Eqs. (5) and (6).  

 
℘1 = {(3929.69 (0.08, 0.92; 0.37)), (3998.48 (0.65, 0.35; 0.44)), (4080.51 (0.66, 0.34; 0.45)), (4082.92 (0.64, 0.36; 0.42)), 

(4158.15 (0.01, 0.99; 0.47)), (4135.03 (0.21, 0.79; 0.19)), (4123.78 (0.30, 0.70; 0.06)), (4136.54 (0.19, 0.81; 

0.21))} 

℘2 = {(4080.51 (0.34, 0.66; 0.39)), (4082.92 (0.36, 0.64; 0.36)), (4158.15 (0.97, 0.03; 0.52)), (4135.03 (0.79, 0.21; 

0.26)), (4123.78 (0.70, 0.30; 0.12)), (4172.63 (0.89, 0.11; 0.40)), (4136.54 (0.80, 0.20; 0.28)), (4277.70 (0.02, 

0.98; 0.84))} 

℘3 = {(4172.63 (0.10, 0.90; 0.62)), (4277.70 (0.98, 0.02, 0.62))} 

℘4 = {(4403.59 (0.97, 0.03; 0.59)), (4446.62 (0.61, 0.39; 0.08)), (4455.80 (0.53, 0.47; 0.02)), (4450.02 (0.58, 0.42; 

0.04)), (4159.08 (0.01, 0.99; 0.77)), (4447.58 (0.60, 0.40; 0.07)), (4465.83 (0.45, 0.55; 0.14)), (4441.12 

(0.66, 0.34: 0.15))} 

℘5 = {(4403.59 (0.03, 0.97; 0.65)), (4446.62 (0.39, 0.61; 0.14)), (4548.63 (0.76, 0.53; 0.26)), (4455.80 (0.46, 0.54; 

0.04)), (4533.37 (0.89, 0.11; 0.57)), (4450.02 (0.42, 0.58; 0.10)), (4519.08 (0.99, 0.01; 0.71)),  (4608.32 

(0.26, 0.74; 0.32)), (4580.33 (0.50, 0.50; 0.02)), (4447.58 (0.40, 0.60 : 0.13)), (4465.83 (0.55, 0.45; 0.09)), 

(4441.61 (0.35, 0.65; 0.20))} 

℘6 = {(4548.63 (0.24, 0.76; 0.38)), (4533.37 (0.11, 0.89; 0.56)), (4608.32 (0.73, 0.27; 0.32)), (4580.33 (0.50, 0.50; 

0.01)), (4646.61 (0.94, 0.06; 0.62))} 

℘7 = {(4646.61 (0.05, 0.95; 0.63)), (4766.43 (0.95, 0.05; 0.63))} 

℘8 = {(4766.43 (0.05, 0.95; 0.41)), (4924.56 (0.63, 0.37; 0.41))} 

℘9 = {(4924.56 (0.37, 0.63; 0.20)), (5109.24 (0.09, 0.91; 0.20))} 

℘10 = {(5208.86 (0.26, 0.74; 0.32)), (5221.96 (0.15, 0.85; 0.48)), (5109.24 (0.91, 0.09; 0.60)), (5164.73 (0.63, 0.37; 

0.20)) 

℘11 = {(5208.86 (0.74, 0.26; 0.40)), (5333.93 (0.22, 0.78; 0.34)), (5329.19 (0.26, 0.74; 0.29)), (5221.96 (0.85, 0.15; 

0.55)), (5309.10 (0.42, 0.58; 0.05)), (5164.73 (0.37, 0.63; 0.12)), (5332.98 (0.22, 0.78; 0.33)), (5273.97 (0.72, 

0.28; 0.37)), (5321.28 (0.32, 0.68; 0.19))} 

℘12 = {(5333.93 (0.78, 0.22; 0.13)), (5407.54 (0.60, 0.40; 0.13)), (5456.15 (0.20, 0.80; 0.70)), (5329.19 (0.74, 0.26; 

0.07)), (5309.10 (0.57, 0.43; 0.17)), (5372.81 (0.89, 0.11; 0.28)), (5392.43 (0.73, 0.27; 0.05)), (5332.98 (0.77, 

0.23; 0.12)), (5398.28 (0.68, 0.32; 0.02)), (5321.28 (0.68, 0.32; 0.02)), (5273.97 (0.28, 0.72; 0.58))} 

℘13 = {(5407.54 (0.40, 0.60; 0.10)), (5486.73 (0.94, 0.06; 0.67)), (5456.15 (0.80, 0.20; 0.47)), (5372.81 (0.11, 0.89; 

0.51)), (5392.43 (0.27, 0.73; 0.28)), (5398.28 (0.32, 0.68; 0.21)), (5551.24 (0.41, 0.59; 0.09)), (5539.31 (0.50, 

0.50; 0.05)) 

℘14 = {(5486.73 (0.06, 0.94; 0.46)), (5551.24 (0.59, 0.41; 0.30)), (5539.31 (0.49, 0.51; 0.16)) 

 
Step V: Computation of the C-PyFS score value 

The score value for each data point within the C-PyFS is calculated using Eq.(7). For instance, the score degree for 

the actual value of 4080.51, located between the circular Pythagorean membership and non-membership values of ℘1 

and ℘2, is ascertained.  

In the process of determining the highest score degree for the specific data point of 4080.51, the 

methodological steps outlined in Step IV were employed. These steps involve the calculation of membership, 
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non-membership, and radii values for the C-PyFS. For the purpose of this calculation, it is assumed that the 

parameter p has a value of 0.5 

 

1 1 1
(4080.51) 0.66, (4080.51) 0.34, (4080.51) 0.45r   = = =  

 

Similarly, 

 

2 2 2
(4080.51) 0.34, (4080.51) 0.66, (4080.51) 0.39r   = = =  

 

The score degree for the data point 4080.51 was then calculated for both ℘1 and ℘2. Then the larger value was 

selected. 

 

1

1
(4080.51) (0.66 0.34 2 0.45(2 0.5 1)) 0.11

3
 = − +   − =  

 

1

1
(4080.51) (0.34 0.66 2 0.39(2 0.5 1)) 0.11

3
 = − +   − = −  

 

Given that ℘1 exhibited a higher score degree than ℘2, ℘1 was determined to be the circular Pythagorean 

value for the data point 4080.51. Subsequent calculations followed a similar procedure for the remaining data 

points. 
Step VI: Formulation of circular Pythagorean logical relationships (C-PLRs) 

C-PLRs are established and presented in Table 2. 

 

Table 2. C-PLRs of order I 

 
℘1→℘1 ℘1→℘1 ℘1→℘1 ℘1→℘2 ℘2→℘2 ℘2→℘2 ℘2→℘2 
℘2→℘2 ℘2→℘3 ℘3→℘4 ℘4→℘4 ℘4→℘5 ℘5→℘4 ℘4→℘5 
℘5→℘4 ℘4→℘5 ℘5→℘6 ℘6→℘6 ℘6→℘4 ℘4→℘5 ℘5→℘4 

℘4→℘6 ℘6→℘7 ℘7→℘8 ℘8→℘11 ℘11→℘12 ℘12→℘12 ℘12→℘11 

℘11→℘13 ℘13→℘12 ℘12→℘13 ℘13→℘13 ℘13→℘12 ℘12→℘11 ℘11→℘12 

℘12→℘10 ℘10→℘10 ℘10→℘12 ℘12→℘12 ℘12→℘12 ℘12→℘12 ℘12→℘14 

 

Step VII: Creation of C-PyFLRGs 

Building upon the C-PLRs, C-PyFLRGs are developed. These groups are displayed in Table 3. 

 

Table 3. C-PyFLRGs of order I 

 
℘1→℘1 ℘1→℘1 ℘1→℘1 ℘1→℘2      

℘2→℘2 ℘2→℘2 ℘2→℘2 ℘2→℘2 ℘2→℘3     

℘3→℘4         

℘4→℘4 ℘4→℘5 ℘4→℘5 ℘4→℘5 ℘4→℘5 ℘4→℘6    

℘5→℘4 ℘5→℘4 ℘5→℘6 ℘5→℘4      

℘6→℘6 ℘6→℘4 ℘6→℘7       

℘7→℘8         

℘8→℘11         

℘10→℘10 ℘10→℘12        

℘11→℘12 ℘11→℘13 ℘11→℘12       

℘12→℘12 ℘12→℘11 ℘12→℘13 ℘12→℘11 ℘12→ ℘12 ℘12→ ℘12 ℘12→ ℘12 ℘12→ ℘12 ℘12→ ℘14 

℘13→℘12 ℘13→℘13 ℘13→℘12       

 

4.1 Computation of Forecasted Values Using C-PyFSs 

 

Table 4 presents the forecasted values derived from the C-PyFSs model. Due to the absence of an initial value 

on November 1, 2001, the model was unable to generate a forecast for that date. Subsequently, forecasted values 

for the following days were computed using the established methodology. 
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Table 4. Forecasted value of Alzheimer’s disease of order I 
 

Date True Value Forecasted Value Year True Value Forecasted Value 

01-11-2001 3929.69 − 03-12-2001 4646.61 4520 

02-11-2001 3998.48 4100 04-12-2001 4766.43 4600 

05-11-2001 4080.51 4100 05-12-2001 4924.56 4880 

06-11-2001 4082.92 4100 06-12-2001 5208.86 5240 

07-11-2001 4158.15 4100 07-12-2001 5333.93 5360 

08-11-2001 4135.03 4220 10-12-2001 5321.28 5420 

09-11-2001 4123.78 4220 11-12-2001 5273.97 5420 

12-11-2001 4172.63 4220 12-12-2001 5539.31 5420 

13-11-2001 4136.54 4220 13-12-2001 5407.54 5420 

14-11-2001 4277.70 4220 14-12-2001 5486.73 5420 

15-11-2001 4403.59 4400 17-12-2001 5456.15 5420 

16-11-2001 4446.62 4520 18-12-2001 5329.19 5420 

19-11-2001 4548.63 4520 19-12-2001 5221.96 5420 

20-11-2001 4455.80 4520 20-12-2001 5309.10 5420 

21-11-2001 4533.37 4520 21-12-2001 5109.24 5420 

22-11-2001 4450.02 4520 24-12-2001 5164.73 5240 

23-11-2001 4519.08 4520 25-12-2001 5372.81 5240 

26-11-2001 4608.32 4520 26-12-2001 5392.43 5420 

27-11-2001 4580.33 4600 27-12-2001 5332.98 5420 

28-11-2001 4447.58 4600 28-12-2001 5398.28 5420 

29-11-2001 4465.83 4520 31-12-2001 5551.24 5420 

30-11-2001 4441.12 4520    

 

Figure 1 depicts a graphical representation of both the actual and forecasted values related to Alzheimer’s 

disease cases. 

 

 

 

Figure 1. True and observed values of order I 

 

5. Circular Pythagorean Logical Relationships (C-PLRs) of Order II 

 

In this section, the methodology extends to constructing the C-PLRs and their corresponding groups for 

second-order forecasting in Alzheimer’s disease. The Table 5 delineates the C-PLRs for order II Alzheimer’s 

disease forecasting. 
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Table 5. C-PLRs of order II 

℘1, ℘1→℘1 ℘1, ℘1→℘1 ℘1, ℘1→℘2 ℘1, ℘2→℘2 ℘2, ℘2→℘2 ℘2, ℘2→℘2 

℘2, ℘2→℘2 ℘2, ℘2→℘3 ℘2, ℘3→℘4 ℘3, ℘4→℘4 ℘4, ℘4→℘5 ℘4, ℘5→℘4 

℘5, ℘4→℘5 ℘4, ℘5→℘4 ℘5, ℘4→℘5 ℘4, ℘5→℘6 ℘5, ℘6→℘6 ℘6, ℘6→℘4 

℘6, ℘4→℘5 ℘4, ℘5→℘4 ℘5, ℘4→℘6 ℘4, ℘6→℘7 ℘6, ℘7→℘8 ℘7, ℘8→℘11 

℘8, ℘11→℘12 ℘11, ℘12→℘12 ℘12, ℘12→℘11 ℘12, ℘11→℘13 ℘11, ℘13→℘12 ℘13, ℘12→℘13 

℘12, ℘13→℘13 ℘13, ℘13→℘12 ℘13, ℘12→℘11 ℘12, ℘11→℘12 ℘11, ℘12→℘10 ℘12, ℘10→℘10 

℘10, ℘10→℘12 ℘10, ℘12→℘12 ℘12, ℘12→℘12 ℘12, ℘12→℘12 ℘12, ℘12→℘14 

Based on the C-PLRs, Table 6 presents the C-PyFLRGs for order II. 

Table 6. Circular Pythagorean logical relationship groups of order II 

℘1, ℘1→℘1 ℘1, ℘1→℘1 ℘1, ℘1→℘2 ℘1, ℘2→℘2 

℘2, ℘2→℘2 ℘2, ℘2→℘2 ℘2, ℘2→℘2 ℘2, ℘2→℘3 ℘2, ℘3→℘4 

℘3, ℘4→℘4 ℘4, ℘4→℘5 

℘4, ℘5→℘4 ℘4, ℘5→℘4 ℘4, ℘5→℘6 ℘4, ℘5→℘4 ℘5, ℘4→℘5 ℘5, ℘4→℘5 ℘5, ℘4→℘6 
℘5, ℘6→℘6 ℘6, ℘6→℘4 

℘6, ℘4→℘5 ℘4, ℘6→℘7 

℘6, ℘7→℘8 ℘7, ℘8→℘11 

℘8, ℘11→℘12 ℘11, ℘11→℘12 ℘11, ℘12→℘10 

℘12, ℘12→℘11 ℘12, ℘12→℘12 ℘12, ℘12→℘12 ℘12, ℘12→℘14 ℘12, ℘11→℘13 ℘12, ℘11→℘12 

℘11, ℘13→℘12 ℘13, ℘12→℘13 ℘13, ℘12→℘11 

℘12, ℘13→℘13 ℘13, ℘13→℘12 

℘12, ℘10→℘10 ℘10, ℘10→℘12 

℘10, ℘10→℘12 

5.1 Determination of Forecasted Value of C-PyFSs 

Table 7 illustrates the forecasted values for Alzheimer's disease, computed using the second-order C-PyFSs as 

outlined in Section B. 

Table 7. Forecasted value of Alzheimer’s disease of order II 

Date True Value Forecasted Value Years True Value Forecasted Value 

01-11-2001 3929.69 − 4580 

02-11-2001 3998.48 − 4760 

05-11-2001 4080.51 4100 4880 

06-11-2001 4082.92 4100 5240 

07-11-2001 4158.15 4100 5360 

08-11-2001 4135.03 4160 5240 

09-11-2001 4123.78 4220 5400 

12-11-2001 4172.63 4220 5420 

13-11-2001 4136.54 4220 5360 

14-11-2001 4277.70 4220 5360 

15-11-2001 4403.59 4400 5480 

16-11-2001 4446.62 4400 5360 

19-11-2001 4548.63 4520 5360 

20-11-2001 4455.80 4520 5420 

21-11-2001 4533.37 4580 5420 

22-11-2001 4450.02 4520 5120 

23-11-2001 4519.08 4580 5360 

26-11-2001 4608.32 4520 5360 

27-11-2001 4580.33 4640 5400 

28-11-2001 4447.58 4400 5400 

29-11-2001 4465.83 4520 

03-12-2001 4646.61 

04-12-2001 4766.43 

05-12-2001 4924.56 

06-12-2001 5208.86 

07-12-2001 5333.93 

10-12-2001 5321.2 

11-12-2001 5273.97 

12-12-2001 5539.31 

13-12-2001 5407.54 

14-12-2001 5486.73 

17-12-2001 5456.15 

18-12-2001 5329.19 

19-12-2001 5221.96 

20-12-2001 5309.10 

21-12-2001 5109.24 

24-12-2001 5164.73 

25-12-2001 5372.81 

26-12-2001 5392.43 

27-12-2001 5332.98 

28-12-2001 5398.28 

31-12-2001 5551.24 5400 

30-11-2001 4441.12 4520 

A graphical representation, Figure 2, compares the actual values with the forecasted values for Alzheimer’s 

disease using the second-order C-PyFS approach. 
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Figure 2. Graph of the actual and forecasted values of order II 

 

5.2 Measurement of Error Using RMSE and AFE 

 

To assess the accuracy of the forecasts, Table 8 presents the calculations for RMSE and AFE. These metrics 

are crucial for evaluating the precision of the forecasting method. 

 

Table 8. RMSE and AFE for first and second-order forecasting methods 

 
Tools Proposed Method (Order I) Proposed Method (Order II) 

MSE 98.03 84.61 

AFE 1.61 1.34 

 

6. Discussion 

 

The results delineated in Table 8 articulate a comparative analysis between first- and second-order C-PyFTSs 

forecasting. It has been observed that the second-order C-PyFTS forecasting demonstrates a superior 

performance over the first-order model, as evidenced by the calculated error rates using established error 

measurement formulas. 

A notable trend is observed in the forecasting accuracy: higher-order C-PyFTS models tend to yield lower 

error rates. This pattern holds for the third-order forecasting error, which is smaller than that of the second-order. 

This indicates that, generally, as the order increases, the accuracy of the C-PyFTS model improves, suggesting a 

more refined prediction capability. However, it is crucial to underscore that the quality and completeness of the 

data play a pivotal role in enhancing forecast accuracy, alongside the chosen forecasting methodology. 

The RMSE value distinctly validates the efficacy of the proposed algorithm for addressing complex 

forecasting scenarios. The accuracy of the forecasting method, as manifested in the error metrics, has significant 

practical implications. Specifically, in the context of patient care within the neurological department, the 

application of the predictive analytics model enabled proactive patient management and optimized day-to-day 

operational efficiency. Anticipating patient inflow facilitated more effective resource allocation, ensuring 

optimal patient care. 

The significance of the radius in C-PyFS extends beyond its traditional role in membership and non-

membership determination. In C-PyFS, the radius is instrumental in influencing the overall dimensions and 

configuration of the fuzzy set. This, in turn, impacts the set’s ability to represent intricate and uncertain data 

comprehensively, enhancing the model's adaptability and interpretability in handling complex fuzzy logic 

problems. 

 

7. Conclusions 

 

The study presented herein demonstrates the increasing preference for C-PyFSs when dealing with scenarios 

where the sum of membership and non-membership degrees is one or less. It has been discerned that traditional 

PyFSs are inadequate in addressing such cases, leading to the utilization of C-PyFSs in instances where the 

aggregate of membership and non-membership values equals one. The proposed approach utilizing C-PyFSs has 

been identified as less complex and more straightforward, primarily due to the adoption of a simplified scoring 

formula. This methodology was applied to forecast the indices of Alzheimer’s disease, demonstrating its utility 
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in predicting data using the established criteria. Furthermore, the extension of this approach to higher-order 

forecasts revealed that higher-order predictions are characterized by reduced errors, thereby enhancing their 

utility in future value estimations. 

The application of the recommended strategy yielded predictions for the ensuing years, indicating its potential 

for extensive use in various forecasting scenarios. Future research avenues may explore the application of C-

PyFSs across diverse time-series forecasting problems, comparing their efficacy against existing methodologies. 

Such investigations could offer additional insights and enhancements to the forecasting process, broadening the 

scope and applicability of C-PyFSs in diverse research and practical domains. 
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