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Abstract: The depth of a decision tree (DT) affects the performance of a DT classifier in predicting mortality 

caused by heart failure (HF). A deeper tree learns complex patterns within the data, theoretically leading to better 

predictive performance. A very deep tree also leads to overfitting, because the model learns the training data rather 

than generalize to new and unseen data, resulting in a lower classification performance on test data. Similarly, a 

shallow tree does not learn much of the complexity within the data, leading to underfitting and a lower performance. 

The pruning method has been proposed to set a limit on the maximum tree depth or the minimum number of 

instances required to split a node to reduce the computational complexity. Pruning helps avoid overfitting. 

However, it does not help find the optimal depth of the tree. To build a better-performing DT classifier, it is crucial 

to find the optimal tree depth to achieve optimal performance. This study proposed cross-validation to find the 

optimal tree depth using validation data. In the proposed method, the cross-validated accuracy for training and test 

data is empirically tested using the HF dataset, which contains 299 observations with 11 features collected from 

the Kaggle machine learning (ML) data repository. The observed result reveals that tuning the DT depth is 

significantly important to balance the learning process of the DT because relevant patterns are captured and 

overfitting is avoided. Although cross-validation techniques prove to be effective in determining the optimal DT 

depth, this study does not compare different methods to determine the optimal depth, such as grid search, pruning 

algorithms, or information criteria. This is the limitation of this study. 

Keywords: Machine learning (ML); Classification; Performance optimization; Heart failure (HF)

1. Introduction

Researchers have proposed various automated ML systems for predicting the risk of HF (Abdualgalil et al.,

2022; Furizal et al., 2023). ML has provided intriguing new opportunities in improving patient outcomes in the 

medical healthcare field (Ali et al., 2023). Random forest, K-nearest neighbors (KNN), and support vector machine 

(SVM) classifiers have been proposed for predicting mortality caused by HF (Javeed et al., 2023). Experimental 

results demonstrate that SVM with linear kernel has an accuracy of 90.74% in predicting cardiac mortality, 

outperforming DT and KNN classifiers. 

Furthermore, Shukur & Mijwi (2023) compared the performance of different ML techniques for HF diagnosis. 

The comparative analysis shows that the SVM model achieves 96% accuracy on the Cleveland clinical dataset. 

The result also suggested that the artificial neural network achieved 95% accuracy in predicting death occurrences 

due to cardiac failure. 

Similarly, De Lio et al. (2023) and Mahmud et al. (2023) evaluated the performance of various ML techniques 

(e.g. DT, KNN, and light gradient boosting) for predicting cardiac failure death occurrences. The evaluation shows 

that random forest predicts HF more effectively than other ML models, with an accuracy of 87%. 

Additionally, deep learning has also been used for predicting congestive HF (Rahman et al., 2023). It is usually 

difficult to identify HF at the early stage. In addition, HF brings other health complications at a later stage. Thus, 
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it is paramount to provide a more accurate and timely means to predict the severity of HF. ML enhances the 

prediction of HF (Kerexeta et al., 2023). Various optimization techniques, such as grid search and parameter tuning, 

have been highlighted as a method for enhancing the performance of ML for predicting HF. 

DT is one of the most widely used algorithms for classification tasks (Goretti et al., 2022). For instance, 

Chandrasekhar & Peddakrishna (2023) developed an extra tree-based intelligent model for predicting HF. 

Predicting HF death occurrences improves patient outcomes as it helps identify at-risk HF patients. Similarly, 

Chen et al. (2023) predicted HF death occurrences using an extra tree classifier. The experimental result shows 

that this model is very helpful to clinicians in prioritizing patient care. 

The performance evaluation of the DT, logistic regression, random forest, naïve Bayes, and SVM shows that 

the DT outperforms other ML models (Alotaibi, 2019). Furthermore, the review presented in the study shows that 

the DT model obtains 93.19% accuracy in HF survival prediction. 

In a research conducted by Ghiasi et al. (2020), classification and regression trees (CART) were employed to 

automate the diagnosis of HF. The CART-based classifier achieved 98.61% accuracy for distinguishing between 

death occurrences and survival caused by HF. Although the overall accuracy was good, the classifier was not tested 

on the positive class for its accuracy. 

Senan et al. (2021) proposed a correlation coefficient-based method to select optimal features for improving the 

performance of various ML algorithms (e.g. SVM, and KNN) for predicting HF. The performance of SVM and 

KNN can be improved to 95% with correlation-based feature selection. Although feature selection improved the 

performance of SVM and KNN, the impact of depth on the DT algorithm was not presented in their study. 

Furthermore, in predicting HF events using an ML model, Tragante et al. (2022) compared the performance of 

different ML models (e.g. SVM, DT, and random forest). The performance comparison shows that the DT achieves 

93.19% outperforming other models, such as random forest, logistic regression, and SVM. However, the effect of 

depth on the DT’s performance was not highlighted. 

Several studies (Mpanya et al., 2023; Pedro & Sánchez, 2023; Sabovčik et al., 2022) and literature reviews that 

have been conducted to determine the optimal depth for a DT. In general, a optimal-depth DT can strike a balance 

between capturing important features and relationships in the data and avoiding overfitting (Dangare & Apte, 

2012; Penny-Dimri et al., 2023). Therefore, it is an important task to find the optimal depth to build an accurate 

and reliable model (Beunza et al., 2019; Jang et al., 2023).  

The DT depth is crucial because it directly influences the complexity and generalization ability of the model 

(Tong et al., 2023; Ayon et al., 2020). A deeper tree captures more complex relationships in the data, but it may 

also overfit the training data and perform poorly on new and unseen data. On the other hand, a shallower tree may 

not capture all the important features and relationships in the data, leading to underfitting and poor performance. 

The DT classifier has inherent problems, with a lower value of the maximum tree depth leading to overfitting 

and a higher value leading to more computational time. This research highlights the importance of considering the 

DT depth in building effective classifiers for HF death prediction, because it is crucial for achieving a high 

accuracy. 

This study provides valuable insights into the impact of tree depth on DT classifier performance and emphasizes 

the need for carefully considering this factor in predictive modeling for HF death events. Overall, this research 

aims to investigate the answers to three research questions: What is the optimal DT depth for the test set in HF 

prediction? What is the influence of depth on the performance of DTs? How can the efficiency of the DT be 

improved for HF prediction? 

2. Method

The task of HF based on the ML model generally mainly includes four steps (Assegie et al., 2023; Austina et 

al., 2013; Awan et al., 2019; Pudjihartono et al., 2022). After data collection and pre-processing, training and 

testing data is split. Then after training the model on the training data, the final step involves validating the model 

on the test set. This study investigated the influence of the tree depth to predict the death event of HF patients 

using a dataset, which publicly available in the Kaggle data repository. 

A DT model was trained on the collected dataset after splitting the dataset into training (70%) and testing (30%) 

dataset. The study employed various techniques, such as cross-validation, to test and evaluate different tree depths 

on validation data. It was important to carefully tune the tree depth to balance between capturing relevant patterns 

and avoiding overfitting. The flowchart in Figure 1 illustrates a general overview of the study. 
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Figure 1. Flowchart for developing a DT classifier 

2.1 Data Collection 

2.1.1 Dataset description 

The HF dataset contains 299 samples, of which 203 died, and 96 survived. The samples are described by 11 

representative features, such as age, previous history of anemia, creatinine phosphokinase, ejection fraction, blood 

pressure, number of platelets, serum creatinine, serum sodium, sex, and smoking history of a patient. Table 1 

describes the features used to describe each observation in the HF dataset. A statistical summary of the features is 

illustrated in Table 1. 

Table 1. Explanation of the HF dataset 

Number of 

Observations 
Number of 

Classes 
Number of 

Survivals 
Number of 

Deaths 
Number of 

Input Features 
299 2 96 203 11 

The dataset contains information on HF death events. The input features of the dataset include HF patient 

information, such as age, sex, serum creatinine, serum sodium, blood pressure, ejection fraction, creatinine 

phosphokinase, and platelets. Moreover, other previous historical information, such as anemia, and diabetes, are 

included in the input feature.  

2.1.2 Statistical analysis of HF features 

The statistical analysis includes the z-test and p-test for each independent feature in the HF dataset. These 

statistical tests are important for gaining insight into the significance of each HF input feature, thereby 

developing a better-performing DT model to predict the death event. The significance test using the z-test 

and p-test is illustrated in Table 2. 

Table 2. Statistical description of independent features 

Input Feature Description z-Test p-Test

Age Continuous 4.98 <0.005 

Anaemia Boolean 2.12 0.03 

Creatinine phosphokinase Continuous, mcg/L 2.23 0.03 

Diabetes Boolean 0.63 0.53 

Ejection fraction Continuous -4.67 <0.005 

High blood pressure Boolean 2.20 0.03 

Platelets Continuous -0.41 0.68 

Serum creatinine Serum creatinine mg/dL 4.58 <0.005 

Serum sodium Serum creatinine mg/dL -1.90 0.06 

Sex Male or female -0.94 0.35 
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The significance analysis for each of the input features is summarized in Table 2. It is observed from Table 2 

that the age of the patient, ejection fraction, and serum creatinine have p-values <0.005. Based on the 

significance test, age, serum creatinine, and ejection fraction have much significance on the predictive 

performance of the DT. 

2.1.3 Mean value analysis 

The arithmetic mean is one of the most intuitive measures of central tendency (Javid et al., 2020). The variable 

of size n consists of the values (X1, X2, ... Xn). The arithmetic mean of this data is defined as the formula given 

in Eq. (1): 

1

1 n

i
i

X X
N =

=  (1) 

where, N is the number of total values of a given data point or sample. 

The mean values of the HF features are revealed in Figure 2. As observed from Figure 2, the mean values of 

age, phosphokinase, and blood pressure of the HF patients are higher for death caused by HF. However, the 

ejection fraction and serum are lower. Thus, it can be concluded that HF patient with lower blood ejection and 

serum creatine has a higher chance of death. 

Figure 2. Mean values of HF features for survival and death events 

2.1.4 Correlation of each feature with the death event 

The correlation value of the HF feature varies from –1 to 1. When it is closer to 1, it means that a strong positive 

relationship exists. For example, the median age value tends to increase the probability of a death event. When the 

coefficient is closer to –1, it means that there is a strong negative relationship (Lu et al., 2022). Figure 3 shows 

correlation coefficients, highlighting the relationships between various HF features and the likelihood of death 

events.  

The correlation between the dependent variable (death event), and the independent variables or the HF input 

feature is given by the formula in Eq. (2).  
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where, r signifies the Pearson correlation coefficient, N signifies the number of data points in the HF dataset, Xi 

signifies values of the variable X in the HF dataset, Yi signifies values of the variable Y in the HF dataset, X denotes 

the mean of variable X, and Y signifies the mean of the values of variable in heart disease dataset. 

As indicated in Figure 3, serum creatinine, age, and blood pressure are strongly correlated to death events. In 

contrast, time, ejection fraction, serum sodium, platelets, smoking, and sex have a negative correlation to death 

event caused by HF. 
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Figure 3. Correlation of HF with death events 

2.1.5 Evaluation criteria 

Accuracy is the most important evaluation metric for the effectiveness of ML. It helps assess the effectiveness 

of DT (Shehzadi et al., 2022). To test the improbability of the DT, prediction probability is employed as an 

efficiency. Another useful metric used for the assessment of the model is the accuracy score and receiver operating 

characteristics (ROC) curve. A classifier’s accuracy and ROC curve are defined as follows. 

TAccuracy
N

= (3) 

where, T is the correctly predicted test examples, and N is the total samples considered in testing. In the HF dataset, 

there are more types of errors because one class occurs more frequently than the other. 

This is very common in practice, especially in medical datasets, where the data samples in the positive class are 

lower than the negative (Suresh et al., 2022). In such cases, accuracy might not sufficiently describe the 

performance score of a classification model. Accuracy does not sufficiently quantify the efficiency of the 

predictive model in imbalanced classification tasks (Qian et al., 2022). Therefore, the ROC curve is employed as 

a performance metric for evaluating the classification model on HF death prediction. In addition, a confusion 

matrix is also employed as an alternative performance measure to provide better results in evaluating and selecting 

a predictive model for the imbalanced classification task. The matrix is also commonly used to evaluate the 

effectiveness of the ML model for HF prediction (Alizadehsani et al., 2019). The matrix is a two-dimensional 

array, where the rows correspond to the true class (ground truth) and the column corresponds to the predicted class. 

The observations correctly predicted that HF death event is true positive (TP) and the observations correctly 

predicted as non-HF death is true negative (TN). In contrast, the observations incorrectly classified as HF patient 

death are false positive (FP) and those incorrectly predicted as not survived HF patient are true negative (TN). 

TPR =
TP

TP + FN
(4) 

The true positive rate (TPR) indicates the portion of HF death events among correctly predicted ones. In 

dissimilarity, the false positive rate (FPR) indicates the number of HF death events among the HF survival 

predictions. The FPR is given as follows:  

FPR =
FP

TP + TN
(5) 

The precision defines the fraction of TP, among all instances that the DT has categorized as positive: NTP and 

number of false positives (NFP). The value is determined with the following formula. 
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Precsion =
NTP

NTP + NFP
 (6) 

 

3. Results and Discussion  

 

In this section, the proposed model is evaluated on the test set using training, test, and cross-validation accuracy 

on the HF dataset. In summary, the impact of DT depth on accuracy is an important consideration in ML. Finding 

the right balance between underfitting and overfitting is crucial for building effective classification models. Thus, 

different tree depths need to be carefully evaluated using cross-validation techniques to maximize accuracy. This 

study emphasizes the trade-off between overfitting and underfitting when determining the optimal DT depth. 

Techniques, such as pruning and cross-validation, are suggested to find the right balance that achieves the best 

predictive power. 

 

3.1 Effect of Depth on DT Classifier  

 

Additionally, the impact of tree depth on interpretability is highlighted, emphasizing the need to consider both 

predictive power and interpretability when determining the optimal DT depth. Overall, the reviews stress the 

importance of finding the optimal depth to maximize predictive power while maintaining interpretability. 

As shown in Figure 4, the maximum DT depth is an important attribute contributing to the performance of the 

DT, significantly affecting the training, testing, and cross-validation accuracy. Table 3 delineates the relationship 

between the depth of the tree and its corresponding performance metrics. 

 

Table 3. Performance of DT vs depth of the tree 

 
Depth Training Accuracy Testing Accuracy Cross-Validation Accuracy 

1 75.12 72.22 73.72 

2 87.08 80 81.36 

3 91.87 83.33 86.36 

4 94.26 85.56 86.13 

5 95.69 81.11 85.18 

6 97.61 82.22 87.08 

7 100 84.44 84.23 

8 100 82.22 85.18 

9 100 81.11 85.66 

10 100 83.33 85.66 

11 100 83.33 85.66 

12 100 83.33 85.66 

13 100 83.33 85.66 

14 100 82.22 85.66 

15 100 82.22 85.66 

16 100 82.22 85.66 

17 100 82.22 85.66 

18 100 82.22 85.66 

19 100 82.22 85.66 

20 100 82.22 85.66 

 

In this case, the result illustrated in Figure 4 suggests that a maximum depth value between 3 and 7 is appropriate, 

confirming higher values of cross-validation accuracy while reducing the overfitting probability. A depth value of 

more than 7 results in overfitting with training accuracy closer to 100%, and lower test and cross-validation 

accuracy in HF death event prediction. The increase in the DT depth leads to better performance on the training 

data, as the model captures more intricate patterns and relationships within the data. However, deeper trees are 

also more prone to overfitting, because they learn to memorize the training data rather than generalize to new and 

unseen data, leading to poor performance on test or validation data. The lower-depth trees may not capture all the 

nuances of the data and underfit, leading to lower accuracy and predictive power. Therefore, it is crucial to find 

the optimal DT depth to achieve the best performance. It is evident from Figure 4 that the optimal depth value can 

be selected through cross-validation. 
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Figure 4. Accuracy vs depth 

4. Conclusions

In conclusion, it is crucial to find the optimal DT depth to achieve high accuracy and generalizability in

predicting HF death events. This research highlights the importance of incorporating DT depth into building 

effective classifiers for HF death prediction, with depth range of 1 to 20 being considered. A deeper tree captured 

more intricate patterns and interactions within the data, leading to better predictive performance. However, there 

was also an overfitting risk, because the model memorized the training data and did not generalize well to new 

data. It was found that the DT depth significantly affected the predictive performance. Overall, this study provides 

valuable insights into the impact of DT depth on accuracy and emphasizes the need for careful consideration of 

this parameter in building effective classification models. It is also recommended that advanced pruning techniques 

and ensemble methods can be further studied to improve the accuracy of DTs across different datasets and 

applications. However, apart from the dataset used in this study, other datasets need to be utilized. Furthermore, it 

is recommended that other pre-processing techniques and larger depth space than the one considered in this study 

can be used in future studies, thereby confirming the findings of this study. 
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