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Abstract: Background: Lung cancer poses a great threat to human life and health. Although the density differences between lesions and normal tissues shown on enhanced CT images is very helpful for doctors to characterize and detect lesions, contrast agents and radiation may cause harm to the health of patients with lung cancer. By learning the mapping relationship between plain CT image and enhanced CT image through deep learning methods, high quality synthetic CECT image results can be generated based on plain scan CT image. It has great potential to help save treatment time and cost of lung cancer patients, reduce radiation dose and expand the medical image dataset in the field of deep learning. Methods: In this study, plain and enhanced CT images of 71 lung cancer patients were retrospectively collected. The data from 58 lung cancer patients were randomly assigned to the training set, and the other 13 cases formed the test set. The Convolution Vison Transformer structure and PixelShuffle operation were  combined  with  CycleGAN,  respectively,  to  help  generate  clearer  images.  After  random  erasing,  image scaling and flipping to enhance the training data, paired plain and enhanced CT slices of each patient are input into the network as input and labeled, respectively, for model training. Finally, the peak signal-to-noise ratio, structural similarity and mean square error are used to evaluate the image quality and similarity. Results: The performance of our proposed method is compared with CycleGAN and Pix2Pix on the test set, respectively. The results show that the SSIM value of the enhanced CT images generated by the proposed method improve by 2.00% and 1.39%, the  PSNR  values  improve  by  2.05%  and  1.71%,  and  the  MSE  decreases  by  12.50%  and  8.53%,  respectively, compared with Pix2Pix and CycleGAN. Conclusions: The experimental results show that the improved algorithm based on CylceGAN proposed in this paper can synthesize high-quality lung cancer synthetic enhanced CT images, which is helpful to expand the lung cancer image data set in the deep learning research. More importantly, this method can help lung cancer patients save medical treatment time and cost. 
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1. Introduction   



Globally, cancer incidence and death are rising, with lung cancer being the most commonly diagnosed form of cancer (11.6% of the total cases) (Lahiri et al., 2023). The rapid development of computed tomography (CT) has been proven that it can significantly help the diagnosis of lung diseases (Bushara et al., 2023). CT can be divided into non-contrast CT(NCCT) and contrast-enhanced CT(CECT), and different types of CT have shown different advantages in various applications. CECT increases the density difference between lesions and normal tissues by injecting contrast media into blood vessels (Kojima et al.,  2010). This helps doctors to understand the blood supply of  the  disease  and  the  relationship  between  mediastinal  lesions  and  cardiac  macrovessels,  thus  improving  the accuracy of differentiating benign from malignant lung diseases. However, the disadvantage of CECT is that it increases the scanning time for patients, the examination cost, and cannot be used in patients with contraindications to iodine contrast media. In addition, needle insertion into the human body during the use of contrast agents in https://doi.org/10.56578/hf020104 
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high-pressure syringes may cause discomfort  (Wu et al., 2023) and may result in leakage of contrast agents or greater irritation to the patient’s local skin. Instead, NCCT shows a low contrast between tumor areas and tissues, which is not conducive to the localization and qualitative diagnosis of lung lesions. The heart and surrounding tissues such as the chest wall, spine, and pulmonary vessels move several millimeters, producing a phenomenon of interleaved or staircase artifacts known as respiratory artifacts (Maier et al., 2021; Hertanto et al.,  2012). Axial slices of NCCT from a lung cancer patient and CECT from an injected intravenous contrast agent are shown in Figure  1.  Stripes,  artifacts  and  motion  artifacts  are  common  phenomena  in  clinical  work  (Wang  et  al., 2023a). 

Post-processing features such as scan reconstruction parameters or ECG editing cannot eliminate this phenomenon, so the effect of artifacts on image quality cannot be ignored. In addition, the situation of blood supply in lung cancer patients is complicated on CT imaging, which makes the generation of CECT more difficult. With the wide application  of  Generative  Adversarial  Networks  (GAN)  in  image  generation  (Skandarani  et  al., 2023),  these problems are expected to be solved. 







Figure 1.  (A) Axial NCCT of lung cancer. (B) Axial CECT of lung cancer. During the image acquisition, due to the patient’s autonomous or respiratory movement and other non autonomous movement, there are staggered layers between slice (A) and (B) and the generation of stripes and shadows in (B). NCCT, non-contrast computed tomography; CECT, contrast-enhanced CT computed tomography In recent years GAN has been widely used in medical image tasks such as image segmentation (Beji et al.,  2023;  

Dash et al., 2023; Skandarani et al., 2023; Zhong et al., 2023), lesion classification (Chen et al., 2023; Fan et al., 

2023), and lesion detection (Esmaeili et al., 2023;  Vyas & Rajendran, 2023). And the study of GAN in medical image  synthesis  tasks  has  dominated.  The  high-quality  medical  image  data  synthesised  by  GAN  is  now  being validated by radiologists and can be used for radiological teaching or for big data deep network training (Kelkar et al., 2023). In addition, it has successfully remedied the problems of missing medical images and unbalanced data  for  classification  and  labeling  due  to  difficulties  in  medical  image  data  acquisition  and  involving  patient privacy. CycleGAN is widely used for cross domain or cross-modality medical image synthesis due to its ability to process unpaired data. CycleGAN can be trained with unpaired data to simulate the implicit distribution of real data distribution to generate real images (Torbunov et al., 2023), which makes it very suitable for the interleaving problem  caused  by  respiratory  motion  in  this  task.  Chandrashekar  et  al.  (2020)  used  CycleGAN  to  learn  the relationship between soft tissue components to mimic contrast-enhanced CTA without contrast agents. It is also assumed that the raw data from non-contrast material CT contains enough information to distinguish blood and other soft tissue components. The accuracy of network output is assessed by comparing it with a contrast image. 

The test results show that the CTA generated from the non-contrast images are very similar to the ground truth. 

Agrawal et al. (2020) accomplished bidirectional exchange of content and style between two image modalities, CT  and  MR,  on  a  pelvic  dataset  by  means  of  an  improved  CycleGAN  network.  The  validation  results  by radiologists showed that the subtle variations in MR and CT images generated by the improved network may not be identical to the real images, but can be used for medical purposes. In this work, it has been shown that cycleGAN 

can be used for medical image translation tasks.Many unpaired medical image synthesis tasks can achieve good results by using CycleGAN, but most of these methods are completed by CNN. Although CNN can well extract the local information in the feature map, such as image edge, textture and rich context semantic information, the receptive field of CNN is limited. In addition, the transpose convolution used in the up-sampling portion of the CycleGAN generator results in a checkerboard artifacts that greatly reduces the quality of the generated image. 

The  Convolution  Vision  Transformer  structure  merges  the  advantages  of  Convolutional  Neural  Networks (CNNs)  and  Vision  Transformers  (ViTs).  Convolutional  Neural  Networks  (CNNs)  are  recognised  for  their efficiency in processing local features through their convolutional layers, while Vision Transformers (ViTs) excel at  capturing  global  dependencies  in  an  image  through  self-attention  mechanisms  (Maurí cio  et  al., 2023).  The 

PixelShuffle operation, also known as sub-pixel convolution, is a technique mainly used for upscaling images in 35

super-resolution tasks (Wang et al.,  2023b). The combination of Convolutional Vision Transformer structures and PixelShuffle  operations  in  CycleGANs  is  a  powerful  tool  for  advanced  image  processing  tasks.  This  approach leverages the strengths of convolutional operations, transformer models, and efficient upscaling to significantly enhance the quality and effectiveness of generated images. 

In this paper, we propose the NC2C-TransCycleGAN, which integrates the CVT (Komorowski et al., 2023) structure that can perceive long distances range. In addition, the PixelShufflfle operation (Sun et al.,  2023) is added into the CycleGAN to reduce the serious impact of the checkerboard artifacts caused by transposed convolution operation  on  the  image  generation  quality.  The  advantage  of  NC2C-TransCycleGAN  is  that  it  can  learn  the complex information of lung cancer enhanced CT images in a specific way without manually annotating the lung cancer  regions,  generate  more  accurate  enhanced  regions,  and  then  synthesize  CECT  images  of  lung  cancer patients and avoid the appearance of checkerboard artifacts. 



2. Materials and Methods 



2.1 Materials 



This  study  retrospectively  collected  CT  images  of  lung  cancer  patients  who  underwent  unenhanced  and enhanced examinations between February 2017 and October 2020. The patient inclusion criteria were: (I) patients with  lung  cancer  requiring  lung  CT  enhancement  imaging;  (II)  the  CT  sequence  of  lung  cancer  has  its corresponding  complete  imaging  data,  clinical  data  and  paired  plain  and  enhanced  chest  images;  (III) contraindication for iodinated contrast medium (CM); (IV) Imaging of patients with initial diagnosis of lung cancer on preoperative CT who had not undergone previous lung cancer surgery and other treatments. Exclusion criteria were as follows: (I) CT imaging sequences or clinical data of the lungs were incomplete, and paired plain and enhanced CT sequences were missing; (II) CT images with severe motion artifacts or other artifacts such as poor image quality affect the analysis of the model and experimental results; (III) known severe allergy to iodinated CM injection; (IV) patients who have undergone treatment such as tumor resection. 

Table 1 shows that CT images in the dataset have different tube voltage (in kVp), tube current (in mAS), volume CT  dose  index  (in  mGy),  and  slice  scan  thickness  parameters  when  acquired.  The  data  set  used  in  this  study contained image data of 71 lung cancer patients, including 44 men and 27 women, accounting for 58% and 42% 

of the total data, respectively. The age of the patients ranged from 42 to 86 years with a mean age of 59.85 +8.67 

years. The number of patients aged 42-50 accounted for 11% of the total data, of which 34% were 50-60 years old, 41%  were  60-70  years  old,  and  14%  were  over  70  years  old.  Thirty-one  percent  of  patients  had  metastasis, including pancreas, liver, kidney, brain, bone, chest wall, adrenal gland, lung, etc. Each patient in the dataset has two types of CT images, axial unenhanced CT and corresponding enhanced CT images. These images are all from two different CT manufacturers, Toshiba and Siemens. The data coverage of this experiment is comprehensive and diverse. 

The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by the First Hospital of China Medical University, and individual consent for this retrospective analysis was waived. 



Table 1.  Acquisition parameters of NCCT and CECT 



Parameters 

NCCT 

CECT 

CTDIvol (mGy) 

15.27(3.87-22.40)  16.01(3.75-25.31) 

Voltage (kVp) 

90-120 

90-120 

Tubecurrent (mA) 

111-671 

111-743 

WindowCenter (HU) 

35-40 

40-80 

WindowWidth (HU) 

180-400 

180-400 

Note: CTDIvol, volume CT dose index; NCCT, non-contrast computed tomography; CECT, contrast-enhanced CT computed tomography. 



2.2 Methods 



In this paper, we improve CycleGAN and propose NC2C-TransCycleGAN for the virtual lung cancer enhanced CT image synthesis task. The overall network structure of NC2C-TransCycleGAN continues the dual structure of vanilla  CycleGAN  in  Figure  2.  The  generator  consists  of  an  encoder,  a  transformer,  and  a  decoder.  Generator GCECT or FNCCT attempts to make the generated image as similar as possible to the samples in the underlying real domain of the image. The discriminators DCECT and DNCCT retain the PatchGAN structure from CycleGAN, which  outputs  a  30*30  image  to  discriminate  whether  the  input  image  is  from  a  fake  image  or  a  real  image generated by the generator. 
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Figure 2.  (A) forward cycle-consistency loss of CycleGAN in our task: NCCT to synthetic CECT to NCCT. (B) back cycle-consistency loss: CECT to synthetic NCCT to CECT 



The NC2C-TransCycleGAN is still consistent with the cycle structure of CycleGAN, but its internal structure has been adjusted and updated to make it applicable to more complex medical image generation tasks. 



2.1.1 Image preprocessing 

Each patient in the dataset had CT images in both modalities. The two modalities were axial non-enhanced and corresponding  enhanced  CT  images,  respectively.  Due  to  the  influence  of  respiratory  movement,  the  layers  of these paired data will be separated from each other, and the location, size and shape of tumors are very different, which brings challenges to the task of medical image synthesis. We randomly selected 3253 pairs of data from 50 

patients as the training set, 663 pairs of images from 8 patients as the validiation set and 813 pairs of data from 13 

patients  as  the  test  set.  The  data  of  each  patient  were  divided  into  multiple  slices  according  to  the  axial  scan direction. These two-dimensional slices were used to train the model. The 512*512 resolution downsampled from the original NCCT and CECT images in this experiment is 256*256 resolution. The CT images of lung cancer for each patient contained an average of more than 60 slices of 2-dimensional axial images. Based on Eq. (1) on the pixel  values  of  NCCT  and  CECT,  resampled  to  a  uniform  distribution  in  the  256  gray  scale  range.  And  data enhancement operations such as horizontal flipping are performed. After that, we normalize the original image and keep the information of the original image as much as possible. The normalization operation smoothes the distribution of the input layer, helps stochastic gradient descent, and helps the network converge quickly during the training process. In order to make the model training more generalized and robust, this experiment expands the training data by online data augmentation operation. Data augmentation methods are widely used in deep learning and provide an effective means to overcome the overfitting phenomenon caused by the scarcity of training data for  the model.  Random  erasing  and  random flipping  are  selected  in  this  experiment.  Random  erasing  refers  to randomly selecting a part of a rectangular region in an image and erasing the pixels in that region using random values.  Random  flipping  means  the  operation  of  flipping  the  image  by  a  certain  angle  along  the  horizontal  or vertical direction. After preprocessing, the enhanced and non-enhanced CT images of lung cancer are input into the network in pairs for training. And real enhanced CT image of the same patient will be used as the ground truth data for network. 
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 I - min(I)



 Image =

 * 255




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2.2.2 NC2C-TransCycleGAN architecture 

The encoder of the generator in NC2C-TransCycleGAN is composed of three convolutional layers. The input lung cancer plain CT image is down sampled through these convolution layers, so that the number of channels of the feature map is expanded and the size is gradually reduced. 

The encoder output is then passed sequentially to four residual blocks, two stage of CvT and three residual blocks in the converter module, which is used to convert the image domain between the two images, each of which 37
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is composed of two convolutional layers. The purpose of the residual structure is to add part of the image features obtained from the input data after feature extraction to the output by means of residuals by introducing a constant mapping jump connection, which ensures that the information of the feature map of the previous layer can also be used  in  the  later  feature  layers,  thus  better  preserving  the  semantic  information  of  the  image  and  reducing  the deviation between the output of the later layers of the network and the original input image content, which can both supplement information while avoiding gradient disappearance or gradient explosion when the network is deeper. After four residual blocks are extracted to the key features in the input CT image, two stage structure in CvT are connected to help obtain the global information. 

A single stage of CvT is shown in (A) of Figure 3.  The stage consists of two parts, the Convolutional Token Embedding layer and the Convolutional Transformer Block. The feature map with the shape of (N, C, H, W) is used  as  the  input  of  the  Convolutional  Token  Embedding  layer.  The  details  are  as  follows:  the  first  step  is  to downsample the feature map after the input passes through a two-dimensional convolution layer, and the second step is to transform the two-dimensional feature map into a sequence shape (N, H*W, C) by reshape operation for layer normalization and input into the Transformer Token Embedding module, where the length of the sequence becomes  shorter.  Similar  to  convolution,  without  padding,  the  size  of  the  feature  map  decreases  after downsampling.  The  length  of  the  sequence  generated  by  the  signature  graph  after  the  Convolutional  Token Embedding  module  is  reduced  to  simulate  the  convolution  down-sampling  operation.  Unlike  convolution,  the Convolutional Token Embedding layer not only extracts local information from the image, but also long-range information  with  the  participation  of  sequence.  The  sequence  vector  is  reshaped  to  get  a  feature  map,  and  the reshape after padding and convolution operations is the previous sequence shape, resulting in Q, K, V, respectively. 

Q is obtained when stride=1, K is obtained when step size is increased to 2, V is obtained separately. This can be formulated as: 



 q/ k / v

 x

 = Flatten Conv2d Reshape2D x ,s  

(2) 

 i

(

(

(  i) )



x q/k/v

i

   is the token input for Q/K/V matrices at layer i. xi   is the original token before Convolution Projection. S 

is the size of convolution kernel size. Conv2d refers to a deep-wise separable convolution. (B) shows this process, which is called Convolutional Projection. Due to the change of step size, K and V are shortened after reshape. As shown in (C), when they enter the Multi-Head Self-Attention module and MLP, the number of neurons and the algorithm of network model will be greatly reduced. In summary, CVT not only guarantees the dynamic attention and  global  context  of  Transformer,  but  also  preserves  the  invariance  of  translation,  scaling  and  distortion  in convolution neural networks. So we introduced CVT into our research work, taking out the individual stages in the network and fusing them into CycleGAN. And the head parameter of multi-head attention (MHA) is set to 2, which helps our model to focus on different aspects of information and capture abundant features. The number of perations of the Convolutional Transformer Block is also set to 2 in our model. Based on the global information of CvT, three residual blocks are used for further feature extraction. This part is called transformer module, which can transform the image from one domain to another. 







Figure 3. (A) one of the stages of the hierarchical multi-stagestructure facilitated by the Convolutional Token Embedding layer. (B) Convolutional projection with stride = 1 and stride = 2 to generate query(Q), key(K), value(V). (C) details of the Convolutional Transformer Block, where the first layer is Convolution Projection NC2C-TransCycleGAN optimizes the decoder of the vanilla CycleGAN 
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The decoder is similar to the inverse process of the encoder. The vanilla CycleGAN completes the upsampling operation using the transposed convolution operation shown in Figure 4, with the aim of expanding the feature map  size  while  reducing  the  low-level  features  from  the  feature  vector,  and  thus  obtaining  the  synthetic  CT 

generated by the network. However, since the size of the convolution kernel represented by the blue box is 3, it is not divisible by the step size of 2. Therefore, it can be seen in the feature map of the input of this figure that the region slid by the blue convolution kernel will have the uneven overlapping trajectories indicated in green in the figure,  which  is  the  checkerboard  artifacts  caused  by  transposed  convolution.  The  actual  performance  of checkerboard artifacts on the synthetic enhanced CT task is shown in Figure  4. Although checkerboard artifacts can theoretically be avoided by learning the weights, they are still an insurmountable problem in the actual image reconstruction process. However, since transposed convolution has the property of learning parameters and makes a valuable contribution to the final result, NC2C-TransCycleGAN uses PixelShuffle operation in another branch parallel  to  transposed  convolution.  The  PixShuffle  operation,  also  known  as  sub-pixel  convolution,  is  an  upsampling method suitable for image super-resolution tasks. It converts a low-resolution feature map into a high-resolution feature map by using ordinary convolution coupled with a pixel shuffle operation. To further enhance image recovery, the Channel Unit (CA) module and the Positional Unit (POS) module are often introduced when using the PixShuffle operation. Unlike the traditional direct interpolation method, the PixelShuffle operation is based on a low-resolution feature image of size H*W*C, convolved to obtain a feature image with r2 channels, where r denotes the magnification factor, and finally a high-resolution feature map of rH*rW*C is reconstructed by  periodic  shuffling.  The  output  result  generated  by  this  branch  of  PixelShuffle  in  NC2C-TransCycleGAN 

performs concat operation with the result generated by the transposed convolution branch to generate the final synthetic CT image. Figure 5 shows the implementation flow of the NC2C-TransCycleGAN algorithm. 







Figure 4. The principle of checkerboard artifacts in two-dimensional image Figure 5.  The pipeline of the Generator network architecture of proposed NC2C-TransCycleGAN 





 

Figure 6. The pipeline of the Discriminator network architecture of proposed NC2C-TransCycleGAN 

39

The  discriminator  is  a  PatchGAN  network  consisting  of  five  convolution  layers.  The  image  of  the  input discriminator passes through multiple convolution layers to produce a 30*30 probability matrix output, where each convolution layer is composed of convolution, instanceNorm, and LeakyReLU operations in turn.  each element of the probability matrix has a true probability for a 70*70 area of the original input NCCT image. This method is more efficient than trying to view the entire input. The discriminator network structure is shown in the Figure 6. 

The experimental environment for this study is configured as follows: the graphics card model is NVIDIA Tesla P100;  the  video  memory  is  16  GB;  CUDA  version  is  11.3;  the  operating  system  is  Linux;  the  development language  and  version  is  Python  3.9;  the  development  framework  and  version  is  PyTorch  1.8.1.  In  the  training process of the experiment, we set the hyperparameters of the network as follows: for the learning rate scheduler, we use ReduceLROnPlateau in Pytorch to adaptively adjust the learning rate, which can detect the dynamics of the specified indicators within a specified number of times, and automatically decay the learning rate when the loss curve is no longer falling or the accuracy indicator is no longer rising, allowing the network to obtain better learning  results,  where  the  main  parameters  corresponding  to  the  adaptive  method.  The  initial  learning  rate  of ReduceLROnPlateau is set to 0.005, and the patience is 7, the learning rate reduction coefficient is 0.01, batchsize is set to 1, the beta value of the Adam optimizer is set to 0.5, and the weighing parameter λ1 is set to 0.5. The loss function for network training uses the same loss function used for training in the vanilla CycleGAN. 



2.2.3 Evaluation method 

The CT image synthesis task can essentially be viewed as an image processing problem, so the quality of images generated by GAN networks can be measured using commonly used image quality evaluation criteria. In order to objectively compare the image synthesis effects of different networks, this study will introduce three evaluation metrics, PSNR (peak signal-to-noise ratio), SSIM (structural similarity), and MSE (mean squared error), which are commonly used internationally (Prodan et al., 2023) to quantitatively evaluate and compare the performance of three networks, NC2C-TransCycleGAN, original CycleGAN, and Pix2Pix. These indicators are widely used in the evaluation of medical image synthesis. The MSE formula is as follows, where sCECT represents the virtual image synthesized by the network: 



 N

 1

 MSE =

( CECT( i) -sCECT( i)) 2  

(3) 

 N i=1



where,   N denotes the total number of pixels in the image area, and i is the index of the aligned pixels in the image area. 

PSNR is a commonly used index for evaluating image restoration. It is used to represent the ratio between the maximum signal of the image and the background noise. The larger the value, the better the image quality. The PSNR is defined as: 
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MAX represents the maximum pixel value of ground truth CECT and sCECT images. 

SSIM measures image similarity from three aspects: brightness, contrast, and structure. It is the most commonly used index to measure the performance of image reconstruction. The closer the SSIM value is to 1.0, the closer the generated enhanced CT is to the real enhanced CT and its formula can be expressed as: (2 
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3. Results   



We compare the NC2C-TransCycleGAN with Pix2Pix and CycleGAN, which perform well in image generation. 

The average value of all test slice indexes is calculated, and the result of the average value is shown in Table 2. It can  be  seen  from  the  results  that  our  proposed  method  is  higher  than  other  methods  in  these  three  indicators. 

Among them, the SSIM value of the image generated by our method is 2.00% and 1.39% improved by the Pix2Pix and  CycleGAN,  and  the  PSNR  value  is  2.05%  and  1.71%  better  than  that  of  the  Pix2Pix  and  CycleGAN, respectively. Compared with Pix2Pix and CycleGAN, our method improved MSE value by 12.50% and 8.53% 

respectively. This is due to the existence of cycle loss, which reduces CycleGAN’s requirements for data pairing. 

Although each pair of data in our data set comes from the same patient, the layer-to-layer mismatch caused by the 40

breathing movement causes the layer-to-layer correspondence to be incomplete. This will have a great impact on the results of the Pix2Pix network. Because our method introduces the CvT structure, the network can also focus on more global information while extracting features, making the prediction of tumor blood supply more accurate than  CycleGAN.  Compared  with  CycleGAN  using  transposed  convolution  as  upsampling,  PixShuffle  method makes a great contribution to the clarity of the generated image. Figure 7 is helpful to observe the improvement of checkerboard artifacts by our network, and we compared different lung locations in patients with lung cancer. We compare the effects of four groups of lung tomography, where each group contains tomographic images of the same positon from two patients with lung cancer. The first and second rows in (A) are CT images of the same location layer in two patients, as are (B), (C), and (D). The first column in the figure is NNCT, the second column is the real CECT, the third column is the result of synthetic CECT generated by Pix2Pix, the fourth column is the result generated by CycleGAN, and the last column is the result of NC2C-TransCycleGAN. The enlarged area and whole CT slice show that the better effect of our method is not accidental, but has good wide applicability. As can be seen in the images of the first patients of (A) and (C), the virtual CECT images generated by our network have an enhanced effect on the presence of a blood supply location that is closer to the ground truth. From the images of the first patient in (B) and (D), it can be seen that our proposed method can effectively reduce the influence of chessboard artifacts at cardiac tomography and other locations. The shape, image contrast and the course of the blood vessel section generated from the first patient of (A) and the second patient of (B), (C) and (D) are also closer to the reality, and pay great attention to the generation of details. 



Table 2. Comparison of test metrics results of three models Evaluation Criteria 

Pix2Pix 

CycleGAN  NC2C-TransCycleGAN 

PSNR(dB) 

19.9046 

19.9718 

20.3130 

SSIM 

0.8378 

0.8429 

0.8546 

MSE 

734.9404 

703.0354 

643.0944 

Note: CycleGAN: Cycle-Consistent Adversarial Networks. NC2C-TransCycleGAN: non-contrast to contrast-enhanced CT image synthesis using transformer CycleGAN. PSNR: peak signal-to-noise ratio. SSIM: structural similarity. MSE: mean squared error. 



In addition, the data related to the experiment were statistically analyzed using SPSS (https://www.ibm.com/cn-zh/analytics/spss-statistics-software) statistical software (Windows version 22.0) in this paper. As appropriate, chi-square test or univariate analysis of variance was used to compare the age, sex, smoking, cancer type, metastasis, lesion location, and image thickness of lung cancer patients between the training set and the test set. No significant difference was found in patient feature between the training and test datasets (p=0.081-0.598, p >0.05). Detailed results  are  given  in  Table  3.  The  Kruskal-Wallis  test  was  used  to  compare  the  evaluation  indexes  of  the  three groups model CVT, CycleGAN, Pix2Pix, and the independent samples Ttest was used to compare the results of model indexes between each two groups. The statistical results in Table 4 show that the synthetic CECT results generated by the three models are very significantly and statistically different (<0.001). 



Table 3.  Patient characteristics and statistics 



Variable 

χ2 

Male Number 

Age(years) 

/ 

0.551 

Sex 

0.356 

0.213 

Type 

1.386 

0.500 

Metastatic 

0.495 

0.482 

Position 

0.278 

0.598 

Thickness 

3.054 

0.081 

Note: χ2: chi-square. 



Table 4.  Statistical differences about TransCycleGAN, Cyclegan and Pix2Pix method Model 

PSNR  p-value  MSE  p-value  SSIM  p-value NC2C-TransCycleGAN 

CycleGAN 

2.46E - 43 

2.46E - 43 

8.84E - 48 

Pix2Pix 

NC2C-TransCycleGAN 

5.31E - 16

CycleGAN



9.57E - 14 

5.64E - 26 



NC2C-TransCycleGAN 

1.34E - 32

Pix2Pix



6.10E - 10 

3.84E - 11 



Note: CycleGAN: Cycle-Consistent Adversarial Networks. NC2C-TransCycleGAN: non-contrast to contrast-enhanced CT image synthesis using transformer CycleGAN. PSNR: peak signal-to-noise ratio. SSIM: structural similarity. MSE: mean squared error. 
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Figure 7.  The synthetic CT results at four different positions produced by the three models 4. Discussion   



The complexity of the blood supply around the tumor requires the generation of models with strong learning ability. To explore the capability of NC2C-TransCycleGAN in generating image details, we used the difference images as a reference in Figure 8 and selected a more diverse and complex CECT layer of lung cancer patients. In Figure  8,   the  first  row  of  (A)  shows  the  results  of  CECT,  Pix2Pix-generated  images,  CycleGAN,  and  NC2C-TransCycleGAN,  respectively.  The  first  column  of  the  second  row  of  (A)shows  the  NCCT  images,  and  the remaining  columns  show  the  synthetic  CECT  generated  by  Pix2Pix,  CycleGAN,  and  NC2C-TransCycleGAN, respectively and the difference images between the real CECT. From the visualization of the generated results and the results marked by the red magnified area, it can be seen that for the same locations of the CT images, our 42

[image: Image 18]

network  control generates  details  and  judgments  about  the presence  or  absence  of  the  enhanced  area  are  more accurate than Pix2Pix and CycleGAN. As in difference image of (A), our network accurately generates the burr signs of the lesions, which shows that our network has a strong ability to extract the features of the lesions during training. In difference image of (B) and (C), even the liquefied face, our network can generate an result closer to that  of  a  true  image  liquefied  surface  and more  similar  contrast,  and  is  more  adept  at  generating details  of  the image.  In  difference  image  of  (D),  the  shape  of  the  bronchial  bifurcation  and  its  surroundings,  the  generation results  of  our  network  are  closer  to  the  real  images  than  those  of  other  networks.  In  summary,  NC2C-TransCycleGAN can produce higher quality mediastinum, blood vessels, lesions, liquefaction surfaces and other areas,  which  shows  that  our  method  has  greater  potential  to  help  doctors  diagnose  patients  or  medical  dataset augmentation. 







Figure 8.  The synthetic CT results at four different positions produced by the three models 43

In conclusion, although the resulting enhanced CT images show differences in  subtle details from the ground truth  enhanced  CT  images,  the  comparison  results  show  that  by  improving  CycleGAN,  our  proposed  NC2C-TransCycleGAN network has better image quality and potential to accomplish this task. The results of the models in this study can assist in the training of deep learning models, such as pretraining or data enhancement techniques. 

In the future, our method will expand to generate enhanced 3D CT images and be used as an extended synthetic reality training dataset for lung cancer detection to compensate for the lack of data in the real image distribution. 

The  conversion  of  low-dose  CT  to  normal-dose  flat-scan  CT  can  also  be  accomplished  with  the  help  of  deep learning methods, thus helping to reduce the radiation dose ingested into the patient's body. 
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Abstract: Background: Lung cancer poses a great threat to human life and health. Although the density differences
between lesions and normal tissues shown on enhanced CT images is very helpful for doctors to characterize and
detect lesions, contrast agents and radiation may cause harm to the health of patients with lung cancer. By learning
the mapping relationship between plain CT image and enhanced CT image through deep learning methods, high
quality synthetic CECT image results can be generated based on plain scan CT image. It has great potential to help
save treatment time and cost of lung cancer patients, reduce radiation dose and expand the medical image dataset
in the field of deep learning. Methods: In this study, plain and enhanced CT images of 71 lung cancer patients
were retrospectively collected. The data from 58 lung cancer patients were randomly assigned to the training set,
and the other 13 cases formed the test set. The Convolution Vison Transformer structure and PixelShuffle operation
were combined with CycleGAN, respectively, to help generate clearer images. After random erasing, image
scaling and flipping to enhance the training data, paired plain and enhanced CT slices of each patient are input into
the network as input and labeled, respectively, for model training. Finally, the peak signal-to-noise ratio, structural
similarity and mean square error are used to evaluate the image quality and similarity. Results: The performance
of our proposed method is compared with CycleGAN and Pix2Pix on the test set, respectively. The results show
that the SSIM value of the enhanced CT images generated by the proposed method improve by 2.00% and 1.39%,
the PSNR values improve by 2.05% and 1.71%, and the MSE decreases by 12.50% and 8.53%, respectively,
compared with Pix2Pix and CycleGAN. Conclusions: The experimental results show that the improved algorithm
based on CylceGAN proposed in this paper can synthesize high-quality lung cancer synthetic enhanced CT images,
which is helpful to expand the lung cancer image data set in the deep learning research. More importantly, this
method can help lung cancer patients save medical treatment time and cost.

Keywords: Contrast-enhanced CT image synthesis; Cycle-Consistent adversarial networks improvement; Data
augmentation; Deep learning

1. Introduction

Globally, cancer incidence and death are rising, with lung cancer being the most commonly diagnosed form of
cancer (11.6% of the total cases) (Lahiri et al., 2023). The rapid development of computed tomography (CT) has
been proven that it can significantly help the diagnosis of lung diseases (Bushara et al., 2023). CT can be divided
into non-contrast CT(NCCT) and contrast-enhanced CT(CECT), and different types of CT have shown different
advantages in various applications. CECT increases the density difference between lesions and normal tissues by
injecting contrast media into blood vessels (Kojima et al., 2010). This helps doctors to understand the blood supply
of the disease and the relationship between mediastinal lesions and cardiac macrovessels, thus improving the
accuracy of differentiating benign from malignant lung diseases. However, the disadvantage of CECT is that it
increases the scanning time for patients, the examination cost, and cannot be used in patients with contraindications
to iodine contrast media. In addition, needle insertion into the human body during the use of contrast agents in
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