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Abstract: Tuberculosis (TB), an airborne disease caused by Mycobacterium, poses a significant global health 

challenge due to its rapid transmission through air and interaction with infected individuals. This study presents a 

comprehensive dynamic model to assess the impact of TB treatment and vaccination strategies in Nigeria, focusing 

on the comparative analysis of untreated and treated populations, as well as evaluating mortality and recovery 

outcomes. Through simulations conducted using the Berkeley Madonna Software, it was observed that the 

populations of latent and susceptible individuals exhibit a near-equivalence, yet the cohort undergoing treatment 

markedly surpasses other groups. Interestingly, the infected demographic aligns closely with the average values 

across all compartments. An alarming trend was noted in chronic patients, whose numbers initially increase, 

followed by a decline over a six-year period, and then a subsequent rise, while the count of treated individuals 

demonstrates a continuous decrease. The study further reveals a pressing need for treatment among vaccinated 

individuals, highlighting a nuanced interplay between vaccination and therapeutic interventions. By employing 

stability and sensitivity analyses, this research underscores the critical importance of treatment in managing TB 

infection, advocating for enhanced strategies to mitigate the spread of this infectious disease. The findings 

contribute valuable insights into the dynamics of TB infection and the pivotal role of treatment, underscoring the 

necessity for integrated approaches in addressing the TB epidemic, particularly in regions burdened by high 

infection rates. 
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1. Introduction

TB is a global illness that mainly affects the lungs and is caused by Mycobacterium, which can be spread when 
an individual with the illness coughs, sneezes, or sings, passing through the air to susceptible individuals. TB is 

one of the most contagious diseases, claiming more lives every day (World Health Organization, 2019). In the 

exploration of TB management strategies, Sulayman & Abdullah (2022) identified a significant distinction 

between the approaches to health education and the lack thereof, which divided infectious individuals into two 

classes: infected individuals treated at home versus those treated in hospital settings (Huo & Zou, 2016). In every 

population, at least one-third has a TB disease, which yields millions of deaths and new cases annually (Castillo-

Chavez & Song, 2004; Sudre et al., 1992; Ullah et al., 2019). In order to identify ways to control diseases in the 

population, several studies have been conducted in mathematical modelling (Atangana & Doungmo Goufo, 

2014; Goufo et al., 2016; Goufo et al., 2017; Leon et al., 2017; Ndondo et al., 2016; Tchepmo Djomegni et al., 

2018), which is developed and applied to the spread of diseases in order to understand the epidemiological 

transition phenomenon (Kasereka et al., 2014; Kasereka, et al., 2018) at different locations. 

Every country has different scenarios, but there are major surprises when it comes to Nigerians in terms of 

diseases. Some Nigerians don’t go to the hospital before they get cured of their illness, because maybe they have 

a strong immune system, lack money or don’t believe in hospital treatment. In fact, some people go to the 

clinic/chemist that they can afford. Chemists provide a healthcare centre where individuals get treated at a low 

price, but the healthcare officer at the place is not professional. Some formal doctors used to call them quack 
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doctors (which means unprofessional) because they did not want formal education. These people are healthcare 

providers with professional training and are acquainted with their boss. Some individuals go to either a secondary 

or tertiary hospital for treatment. This study focuses on people with TB who try medication or treatment, as well 

as those who do not take medication or treatment or go to the hospital. How can they get cured? Some research 

(Saito & Nagasaki, 2008) shows that individuals with high-level melanin hormone can get cured because the 

hormone fights the virus to some extent. The model proposed in this study presents the transmission dynamics of 

TB among individuals, examining scenarios both in the presence and absence of treatment interventions. The 

motive behind this is because TB is among the most communicable diseases in the world. The model reveals that 

some individuals recover without treatment at each stage, while others become chronically infected, rendering 

them incurable. They have to return home for treatment, and some people got vaccinated to avoid being infected. 

After the treatment, all the individuals move to the susceptible group so that the process can start again and again. 

This work designed a model for TB, incorporating both treated and untreated scenarios. Nigeria was used as a 

pilot. The model was analysed using a compartmental modelling approach to study the transmission dynamics of 

TB at different stages of infection. 

 

2. Model Description 

 

Figure 1 presents a four-compartment model. In the model, the S population is considered as susceptible people 

who have not contacted TB with a birth rate of µ(1-p)N, where (1-p) is the unvaccinated individual rate with a 

death rate of µ. The S group can contract TB with a rate of 𝛽𝐹𝑆𝐿
1

𝑁
 to the latent (L) stage, in which the L individual 

can return to S with a rate of γ without going to the hospital or taking drugs. It can be noted that the L individual 

can become infectious (I) with the contact rate of FLI, and the transmission rate of δ can be revised to α with a 

death rate of µ. The L individual can also be treated (T) without becoming I if he can be detected early with a rate 

of p. An I individual can also directly become T at a rate of  𝑟2. The T individual can also become I at a contact 

rate of ϵ and a transmission rate of FTI if he is in the chronic stage. In this case, he cannot be T because the drugs 

do not work for him any more, or the disease is not cured. During hospitalization or treatment, the individual can 

also become L (not able to get I due to the drugs taken in the hospital), with a death rate of µ. Before leaving the 

hospital, it is assumed that all the T individuals are vaccinated at the rate of µP. Then all the survival treatment 

moves to S at a rate of q. After the vaccine has expired, the individual can be I again. 

 

 
 

Figure 1. The four-compartment model 

 

2.1 Mathematical Model 

 

The number of S individuals increases and decreases as a result of natural death and latent infection at rates of 

μ(1-p), r3, q, γ with respect to the total population (N), I, T and μ, β, respectively. Therefore, the change rates of 

susceptible populations are given as follows: 

 

3(1 ) SL

dS I
p N r I qT L F S S

dt N
   = − + + + − −  (1) 

 

The S populations are exposed and get I at the rate of β with a transmission rate of FSL and decreased as a result 

of death due to L at a rate of µ; others also contribute to the population from T and I. 
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*

SL TL LI

dL I I
F S C F T I F L L pL L

dt N N
    = + + − − − −  (2) 

 

Similarly, the I population is cured after being T at a rate of r2 and dead at a rate of μ. 
 

3 2LI TI

dI
F L F T I r I r I I

dt
  = + − − − −  (3) 

 

Finally, the T population is generated via the recovery of I individuals in the L stage and vaccinated individuals 

with a rate of µ and a vaccination rate of P. It can be seen from the equation that some individuals also return to 

both I (due to no response to treatment) and L (due to being partially cured to the extent that he/she cannot infect 

the population). 
 

*

2 TL TI

dT I
pL r I PN qT C F T F T T

dt N
 = + + − − − −  (4) 

 

Therefore, based on the above descriptions and assumptions, the TB model, incorporating both treated and 

untreated scenarios, culminates in the derivation of a set of non-linear differential equations. 

 

3

*

3 2

*

2

(1 )

( )

SL

SL TL LI

LI TI

TL TI

dS I
p N r I qT L F S S

dt N

dL I I
F S C F T I F L L pL L

dt N N
t

dI
F L F T I r I r I I

dt

dT I
pL r I PN qT C F T F T T

dt N

   

    

  

 


= − + + + − −


 = + + − − − −


= 
 = + − − − −


 = + + − − − −


F

 

(5) 

 

2.2 Equilibrium State 
 

Equilibrium changes in 0
dS dL dI dT

dt dt dt dt
= = = =  yields: 

 

30 (1 ) SL

I
p N r I qT L F S S

N
   = − + + + − −  (6) 

 

*0 SL TL LI

I I
F S C F T I F L L pL L

N N
    = + + − − − −  (7) 

 

3 20 LI TIF L F T I r I r I I  = + − − − −  (8) 

 

*

20 TL TI

I
pL r I PN qT C F T F T T

N
 = + + − − − −  (9) 

 

At the initial stage, it is assumed that nothing is recorded, i.e., L = 0, I = 0, T = 0, and then it yields: 
 

3

0
(1 ) *0 *0 *0 SLS p N r q SF

N
   = − + + + −  

(1 )S P N= −  

 

The TB-free equilibrium is E = (S, L, I, T) = ((1 − P)N, 0, 0, 0). 
 

2.3 Stability of the Disease-Free Equilibrium 
 

( )

S S S S

S IL T

L L L L

S IL T
D t

I I I I

S L I T

T T T T

S L I T

   

 

   

 

   

   

    
 
   

    
 
   =
    
 
    
    
 
    

F

 

(10) 
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LI TI

TL TL TI

I
F r SF q

N N

I I
F F p SF C F T C F

D t N N N N

F r r F

I
p r C F T q C F F

N N

   
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
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 
 − − − − + +
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 
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 

− − − − − 
 

F  (11) 

 

The eigenvalue is A−λI=0, which means that the function F(t)=0 and A=DF(t). 
 

3

* *

3 2

* *

2

1

1 1

0

0

1
0

SL SL

SL LI SL TL TL

LI TI

TL TL TI

I
F r SF q
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I I
F F p SF C F T C F
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F r r F
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 
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 

 

 

The characteristic equation of the function A−λI=0 is as follows: 
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2
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0
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When the TB-free is substituted with A−λI, it yields: 

 

3
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LI TI
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p r q F
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The characteristic equation of the function A−λI=0 is as follows: 

3 2 3 2

2 2
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This also yields: 

 

( ) ( )( ) ( )3 2 2 0LI TI TI LI TI TIF p r r q F r F F q F p F               − − − − − − − − − − − − − − − − − − − − − − − =       
 

 

Utilizing the parameter values in Table 1 yields the following results: 
 

λ = −0.08, −0.291, −0.2903, −1.2874 
 

2.4 Basic Reproductive Number (R0) 

 

To find the reproductive number, only two stages are considered, i.e., the L and I stages. The equations are as 

follows: 

 

*

SL TL LI

L I I
SF C F T I F L L pL L

t N N
    


= + + − − − −


 (12) 

 

3 2LI TI

I
F L F T I r I r I I

t
  


= + − − − −


 (13) 

 

Eq. (12) at equilibrium yields: 

 
 

*0 SL TL LI

I I
F S C F T I F L L pL L

N N
    = + + − − − −  

 

This is equal to: 

 

( ) *

SL LI TL

I I
F S L F p C F T I

N N
    = + + + − −  (14) 

 

Eq. (13) at equilibrium yields: 
 

3 20 LI TIF L F T I r I r I I  = + − − − −  
 

This is equal to: 
 

( )3 2LI TIF L I r r F T  = + + + −  

 
 

To find the reproductive number, the following is equated: 

 

( ) ( )

1
0

( )

0

SL SL

SL

LILI LI

I I
SF SF

N N
F

t NL I

FF L F L

L I

 



 

    
             = =    
      
 

  

F  (15) 
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Assuming that there is no interaction at the beginning, the equation can be expressed as follows, according to 

Georges (Kamanga, 2020): 
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As delineated by Georges (Kamanga, 2020), RO can be calculated as follows: 

 
2 4

2
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−  −
=  

 

RO is the biggest eigenvalue of matrix FV−1, calculated according to: 
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0.7*1*7,500,000 0.099 0.2*1

200,000,000
2

(0.2*1 0.001 0

 
+ 

+ + + 

+ + + + + + + + + + + +

 
+ 

 

+ + .01 0.08)(0.099 0.15 0.8 0.08)+ + + +

 

 

2
0.0000002183 0.1253 0.0582

0.0000002183 4* *
0.325 0.3285 0.3285

0.1253
2*

0.3285

oR

 
−  − 

 
=  

 

0.0000002183 0 0.27033632

0.7629
oR

−  −
=  

 

0.3544oR i=  

 

Tables 1 and 2 describe the parameters of the model. 

 

Table 1. Rate description in the model   

 
Parameter Interpretation 

μ(1-p)N Birthrate of Individuals to Susceptible Populations 

μS Death rate due to Susceptible Populations S 

μL Death rate due to Latent L 

μI Death rate due to Infectious I 

μT Death rate due to Treatment T 

γL Number of latent individual recover to S due to natural recovery 

αI Number of Infectious individual recover to L due to natural recovery 
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ϵFTIT Number of treated individual who become chronic 

μPN Number of vaccinated Individuals 

βFSLS
1

𝑁
 Number of people infected at Latent stage 

δFLIL Number of infected individual from Latent statge to Infectious 

r2I Number of individual who when for Treatment 

r3I Number of infectious individual who recover Natural without treatment 

qT Number of treated individual who move to Susceptible after treatment 

pT Number of Latent who detect the early and want to hospital for treatment 

C*FTIT
1

𝑁
 Number of treated Individual who return to Latent stage 

 

Table 2. Description of parameters of the model 

 
Parameter Interpretation   

μ Death rate 0.08 (Saito & Nagasaki, 

2008) 

N Population of Nigeria 200,000,000 (Sudre et al., 1992) 

P Vaccinated Individual 0.2 (Saito & Nagasaki, 

2008) 

(1-P) unvaccinated Individual 0.8 (Saito & Nagasaki, 

2008) 

FTI Chronic contact Frequency 1 Assume 

FLI Contact frequency of Latent Infectious L to Infectious I 1 Assume 

FSL Contact rate of Susceptible S to Latent Infectious L 1 (Saito & Nagasaki, 

2008) 

γ Ratio of contact susceptible individual S to latent infectious L 0.001 (Saito & Nagasaki, 

2008) 

α Ratio of infectious I to latent infectious L 0.099 (Saito & Nagasaki, 

2008) 

ϵ Ratio of treatment T to infectious I 0.15 (Saito & Nagasaki, 

2008) 

β Ratio of susceptible S to latent infectious L 21 (Saito & Nagasaki, 

2008) 

δ Ratio of individual from Latent L to Infectious I 0.2 (Saito & Nagasaki, 

2008) 

r2 Ratio of individual from Infectious I to Treatment T 0.8 (Saito & Nagasaki, 

2008) 

r3 Ratio of infectious individual who recover Natural without 

treatment 

0.15 (Saito & Nagasaki, 

2008) 

q Ratio of treated individual who move to Susceptible after 

treatment 

0.2 (Saito & Nagasaki, 

2008) 

p Ratio of Latent who detect the early and want to hospital for 

treatment 

0.01 (Saito & Nagasaki, 

2008) 

C* Ratio of treated Individual who return to Latent stage 0.7 (Saito & Nagasaki, 

2008) 

 

3. Simulation and Result 

 
Figure 2 shows the pictorial flow of each compartment model. The red line shows how the number of S 

individuals is decreasing due to the virus. The line rapidly decreases from the second year until the fifth year. The 

blue line shows the rapid increase of L individuals due to the higher contact rate. The number of I individuals is 

very high to the extent that it almost meets S individuals. The green line shows the I individuals and how the 

disease spreads to the population. The last line, which is purple, shows T people, whose number is greater than 

that of all the remaining compartments. The subgraph (a) of Figure 3 shows the comparison between the S and L 

individuals which meet at equilibrium approximately 3.5 years later. This shows that the virus really has a large 

impact due to its higher reproductive number. The number of L individuals continues to grow till it reaches the 

population size. Therefore, a lot of people may contract the disease, known or unknown. The subgraph (b) of 

Figure 3 displays the comparison between the S and T individuals. The more S decreases, the more T follows. It 

also shows that the government shows clear concern for the disease, but the population is affecting disease control 

once more. The subgraph (a) of Figure 4 shows the comparison between the I and T individuals. The vaccine and 

treatment yield good results, with the vaccinated T population being higher than the I population, which is awesome. 

The subgraph (b) of Figure 4 also shows the difference between the L and T individuals. Totally, 143 T individuals 

are also higher than the L individuals.  

The subgraph (a) of Figure 5 shows the number of deaths per compartment. It can be seen that the S has the 
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highest number of deaths, maybe due to the population in the compartment. The number of S decreases during 0-

2 years, increases rapidly from around 2.2-4 years, which is the extremely high point of the S, and finally decreases 

to almost zero. The number of I individuals also decreases at some point in the green line. At some point, the 

deaths of the S and I individuals are almost equal, which shows that the disease is killing people and individuals 

also die naturally, with the deaths reaching 4*108. The L individuals are represented by the blue line. The number 

also decreases drastically, and the death rate in the treatment also decreases rapidly, indicating that the intervention 

is effective. The subgraph (b) of Figure 5 shows how people are recovering from the disease. The treatment rate 

of recovery is very high compared to other compartments, followed by S individuals who recover within the period 

of 1.5 to 5.2 years before becoming stable after 5 years. The numbers of I and L individuals are also decreasing 

due to their willingness to receive the treatment and the assumption that they are leaving the compartment for 

medication. The subgraph (a) of Figure 6 shows the number of I individuals recovered to S without treatment. This 

shows that many I individuals have no symptoms and recover without awareness, but the virus has a higher value 

of risk in the fourth year. The yellow line represents the increase in S, while the purple line represents the decrease 

in L. Both compartments become stable after six years. The subgraph (b) of Figure 6 shows both the movement of 

how I people get cured without treatment and the fact that the number is higher than that of those moving to an I 

compartment. The negative value shows the release of individuals from their compartment, and the positive value 

shows their absorption in the compartment.  

Figure 7 illustrates the number of patients discharged from the hospital due to their chronic condition or lack of 

response to medication. Therefore, the patients need to return home and enter the I compartment. As displayed in 

the figure, the blue line, which is T, decreases after the fourth year and increases after the second year of endemic. 

However, the red line, which is I, rapidly increases from zero year to the fourth, decreases after the fourth year till 

the sixth year, and continues to increase afterwards. This shows that the disease is still circulating among the 

masses and that the chronic disease has not been eradicated. The subgraph (a) of Figure 8 shows how the I 

compartments are losing individuals to the T ones. The numbers are equal in terms of the axis, and the negative 

value of I shows the number of people moving to T compartments for effective treatment. The disease is at 

equilibrium at five-and-a-half years. The subgraph (b) of Figure 8 shows the number of individuals vaccinated. 

The T has the highest vaccinated population, which is almost 7 million people, followed by the I population of 

more than 4 million, the L population of almost 30 million, and finally the S individuals. As shown in the figure, 

the number of S individuals is negative and converges to zero, which means people are moving from one 

compartment to another. The subgraph (a) and (b) of Figure 9 display the death rate for each compartment when 

the death rate parameter increases to 4.9. It can be seen that even if the death rate increases, the population dies in 

each compartment becomes stable in less than a year. 

 

 
 

Figure 2. TB simulation results 

 

 
(a) Comparison between S and L 
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(b) Comparison between S and T 

 

Figure 3. Comparative analysis between S, L and T 
 

 
(a) Comparison between T and I 

 
(b) Comparison between T and L 

 

Figure 4. Comparative analysis between T, I and L 

 

 
(a) Number of deaths per compartment 
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(b) Recovery rate per the compartment 

 

Figure 5. Sensitivity analysis of death and recovery rate 

 

 
(a) Recovery from L without Treatment 

 
(b) Sensitivity analysis of S and L without treatment 

 

Figure 6. Sensitivity analysis of non-treated individuals 

 

 
 

Figure 7. Chronic individuals 
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(a) T individuals 

 
(b) Vaccinated individuals 

 

Figure 8. Sensitivity analysis of T and vaccinated individuals 

 

 
(a) Sensitivity analysis of µ on L and I 

 
(b) Sensitivity analysis of µ on T and S citizens 

 

Figure 9. Sensitivity analysis of µ 
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4. Conclusions  

 

In this study, a mathematical model is developed for TB transmission by examining scenarios both in the 

presence and absence of treatment interventions. It can be found that the treated population is greater than the 

untreated population. Vaccinated and unvaccinated individuals are also compared. It can be found that vaccinated 

individuals are much higher than individuals in other compartments. Calculations reveal that the disease-free 

equilibrium and the basic reproductive number are less than one, indicating that the disease is under control. Or, it 

is unstable, indicating that the disease is not under control. In conclusion, the presented simulation shows that 

vaccination is able to prevent the disease from spreading. 
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Nomenclature 

 
μ Death rate 

N Population of Nigeria 

P Vaccinated Individual 

(1-P) unvaccinated Individual 

FTI Chronic contact Frequency 

FLI Contact frequency of Latent Infectious L to Infectious I 

FSL Contact rate of Susceptible S to Latent Infectious L 

γ Ratio of contact susceptible individual S to latent infectious L 

α Ratio of infectious I to latent infectious L 

ϵ Ratio of treatment T to infectious I 

β Ratio of susceptible S to latent infectious L 

δ Ratio of individual from Latent L to Infectious I 

r2 Ratio of individual from Infectious I to Treatment T 

r3 Ratio of infectious individual who recover Natural without treatment 

q Ratio of treated individual who move to Susceptible after treatment 

p Ratio of Latent who detect the early and want to hospital for treatment 

C* Ratio of treated Individual who return to Latent stage 
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