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Abstract: Brain tumors represent a critical medical condition where early and accurate detection is paramount for effective  treatment  and  improved  patient  outcomes.  Traditional  diagnostic  methods  relying  on  Magnetic Resonance  Imaging  (MRI)  are  often  labor-intensive,  time-consuming,  and  susceptible  to  human  error, underscoring  the  need  for  more  reliable  and  efficient  approaches.  In  this  study,  a  novel  deep  learning  (DL) framework based on the Densely Connected Convolutional Network (DenseNet) architecture is proposed for the automated classification of brain tumors, aiming to enhance diagnostic precision and streamline medical image analysis. The framework incorporates adaptive filtering for noise reduction, Mask Region-based Convolutional Neural Network (Mask R-CNN) for precise tumor segmentation, and Gray Level Co-occurrence Matrix (GLCM) for robust feature extraction. The DenseNet architecture is employed to classify brain tumors into four categories: gliomas,  meningiomas,  pituitary  tumors,  and  non-tumor  cases.  The  model  is  trained  and  evaluated  using  the Kaggle  MRI  dataset,  achieving  a  state-of-the-art  classification  accuracy  of  96.96%.  Comparative  analyses demonstrate that the proposed framework outperforms traditional methods, including Back Propagation (BP), U-Net, and Recurrent Convolutional Neural Network (RCNN), in terms of sensitivity, specificity, and precision. The experimental results highlight the potential of integrating advanced DL techniques with medical image processing to significantly improve diagnostic accuracy and efficiency. This study not only provides a robust and reliable solution  for  brain  tumor  detection  but  also  underscores  the  transformative  impact  of  DL  in  medical  imaging, offering radiologists a powerful tool for faster and more accurate diagnosis. 

Keywords:  Brain  tumor  classification;  Deep  learning;  DenseNet  architecture;  Magnetic  Resonance  Imaging; Adaptive filtering; Feature extraction; Medical image processing; Tumor segmentation 

1. Introduction

Brain tumors are potentially fatal illnesses brought on by the brain's aberrant cells growing out of control. The location  and  category  of  these  tumors  have  a  major  influence  on  neurological  function,  causing  a  variety  of 

symptoms,  including  headaches,  seizures,  and  cognitive  impairments  (Saleh  et  al., 2020).  Early  accurate diagnostics  are  the  basis  for  effective  therapies  and  increasing  survival  rates.  Radiologists  manually  assess Magnetic Resonance Imaging (MRI) as part of standard diagnostic procedures. This is a laborious process that is subject to human interpretation errors. Medical imaging has been transformed by advances in deep learning (DL), especially Convolutional Neural Networks (CNNs), which allow for accurate and automated processing of brain MRI data. 

DL stands for disciplines of Artificial Intelligence (AI) that learn characteristics and spot patterns in data using neural  networks.  Images  and  other  grid-like  data  are  processed  using  CNNs,  which  are  specialized  DL 

architectures (Alqudah et al., 2020; Sharma et al., 2020). Starting with basic patterns like edges and working their 

way up to more intricate structures like tumor borders in  Figure 1, they employ convolutional layers to extract characteristics in a hierarchical manner. Because CNNs can analyze huge volumes of image data fast and lessen the  need  for  manual  feature  extraction,  they  have  shown  remarkable  efficacy  in  medical  imaging  for  tumor 

identification  and  classification  (Rasool  et  al., 2022).  CNNs  can  recognize  patterns  that  distinguish  between 
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healthy and diseased tissues, including pituitary tumors, meningiomas, and gliomas, by training on labeled datasets. 
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Figure 1. Location of common tumors within the brain

Recurrent Convolutional Neural Networks (RCNNs) expand upon the advantages of CNNs by adding recurrent 

layers, which capture contextual and spatial connections amongst features  (Khan et al., 2022). RCNNs improve CNNs' proficiencies in spatial feature extractions by considering connections between various image components. 

Contextual information (Lakshmi et al., 2023) enables more accurate classifications of brain tumor identifications, which makes RCNNs useful for identifying different tumors or evaluating irregular borders. Convolutional and recurrent layer integration is useful in high-precision medical imaging tasks. 

The  use  of  DL  in  brain  tumor  detection  has  produced  notable  advantages.  CNN/RCNN-powered  automated systems  analyze  MRI  more  quickly  and  reliably,  relieving  radiologists  from  workloads  and  increasing  the 

diagnostic precision (Gao et al., 2022; Kokila et al., 2021) as they spot even minute patterns and irregularities that human evaluations miss. However, because they assume spherical clusters, classic segmentation techniques like k-means  clustering  sometimes  require  assistance  with  uneven  tumor  borders.  This  restriction  may  lower  the accuracy of other processes, such as feature extraction and classification. 

A Densely Connected Convolutional Network (DenseNet) architecture for automated brain tumor identification was proposed in this research. The technique starts with segmentation using  Mask Region-based Convolutional Neural Network (Mask R-CNN) and pre-processing using adaptive filters to eliminate noise from MRI. Mask R-CNN  overcomes  the  drawbacks  of  conventional  methods  by  enabling  accurate,  pixel-level  segmentation 

(Choudhury et al., 2020; Latif et al., 2021). Gray Level Co-occurrence Matrix (GLCM), which records texture-related characteristics, extracts features and tumor types are classified into gliomas, meningiomas, pituitary tumors, or non-tumorous categories using the DenseNet architecture, which is known for effective feature reuse through densely  linked  layers.  The  suggested  methodology  combines  sophisticated  segmentation  and  classification algorithms  in  order  to  overcome  the  shortcomings  of  current  systems.  While  DenseNet  guarantees  effective processing of complicated feature representations, it improves accuracy by managing uneven tumor borders. This method is a viable way to incorporate DL into clinical operations as it increases diagnostic precision and provides scalability and dependability. 

2. Literature Review 

Jia & Chen (2020) suggested brain tumor segmentation using  Fully Automatic Heterogeneous Segmentation with Support Vector Machines (FAHS-SVM) where automated methods based on anatomical, morphological, and relaxometry  parameters  scan  the  cerebral  venous  system  in  MRI  scans.  High  degrees  of  consistency  between structures and surrounding brain tissues are indicative of the segmentation. One or more layers of hidden nodes in Extreme  Learning  Machine  (ELM)  learning  analyze  data  and  learn  using  probabilistic  neural  networks  in classifications. The work’s numerical findings precisely identified both normal and diseased brain tissues in MRI, 

demonstrating the efficacy of the technique. Chellakh et al. (2023) introduced deep rule-based (DRB) classifiers for brain tumor classification in MRI, where features extracted using AlexNet, Visual Geometry Group (VGG)-16,  Residual  Network  (ResNet)-50,  and  ResNet-18  were  compared  and  evaluated  for  their  performance.  For classification,  a  DRB  classifier  was  employed.  The  first  database  uses  two  Kaggle  website  datasets  that  are available to the public: tumor and no tumor. Meningiomas, gliomas, and pituitary tumors are all included in this multiclass  database.  Notable  results  were  obtained  from  experimental  data.  A  comparative  analysis  with  other 
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state-of-the-art distance methodologies and traditional methods demonstrated the suggested strategy’s efficacy in classifying brain tumors on MRI samples.   

Malla et al. (2023) recommended Deep Convolutional Neural Networks (DCNNs) based on transfer learning for the categorization of brain tumors into pituitary, glioma, and meningioma. Visual Geometry Group Network (VGGNet) is a pre-trained DCNN architecture that transfers learning parameters to target datasets after extensive training on large datasets. It also improves the performance by freezing and fine-tuning the neural network's layers. To  overcome  problems  with  data  overfitting  and  vanishing  gradients,  the  proposed  solution  includes  Global Average Pooling (GAP) layers at outputs. The suggested architecture was evaluated and compared to other DL-

based  algorithms  for  classifying  brain  tumors  on  Figshare  datasets.  Haq  et  al.  (2022)  used  enhanced  CNNs  to categorize brain tumors from brain MRI data. The usage of data augmentation and the transfer learning approach enhanced models’ classification, resulting in high prediction accuracy when compared to the baseline models. The suggested method could be used to detect brain tumors in healthcare systems based on the Internet of Things (IoT). 

Bhanothu et al. (2020) provided Faster R-CNNs by employing the Region Proposal Network (RPN) to locate and localize tumors. The three most frequent forms of brain cancers identified in MRI were pituitary tumors, gliomas, and meningiomas. The VGG-16 architecture served as foundational layers for classifiers and regional suggestions in the suggested method. The classification of the algorithm demonstrated that it had an average level of precision in detecting pituitary tumors, meningiomas, and gliomas. 

Ullah et al. (2023) presented TumorDetNet, an integrated end-to-end DL network for classifying and detecting brain tumors. 48 convolution layers with leaky ReLU and ReLU activations were used to produce most unique deep feature maps. Dropout layers and average pooling found distinct patterns and reduced data overfitting. Brain tumors  were  identified  and  categorized  using  softmax  and  fully  connected  layers.  Their  results  on  six  popular Kaggle  brain  tumor  MRI  datasets  successfully  identified  meningioma,  pituitary,  and  glioma  tumors,  classified benign and malignant brain tumors, and detected brain malignancies, demonstrating the accuracy of classifying 

brain  tumors.  Saxena  &  Singh  (2024)  suggested  two  CNN  designs  (DenseNet169  and DenseNet201)  for  brain tumor identification. The models of DenseNet169 and DenseNet201 were trained on large MRI datasets of brain tumors  of  all  sizes  and  types.  The  wide  range  of  links  between  these  models  facilitates  feature  reuse  and  data interchange,  which  boosts  tumor  localization  accuracy  and  performance.  The  separate  testing  dataset  evaluates trained models, and performance metrics like accuracy and loss were examined where results demonstrated  the efficacy of both models. In terms of test accuracy, train accuracy, train loss, and test loss, DenseNet201 performed better than DenseNet169, ResNet-50, and VGG19. 

Fakouri  et  al.  (2024)  classified  brain  cancers  in  MRI  using  ResNet  architectures.  The  MRI  quality  of  159 individuals from cancer image archives was enhanced by Gaussian and median filters. In addition, image edges were identified by edge detection operators. The training process involved two stages: the network was initially trained on the original images, followed by the incorporation of preprocessed images enhanced with Gaussian and median  filters.  This  two-stage  approach  was  demonstrated  to  improve  the  performance  of  the  DL  network,  as 

evidenced by the experimental results. Stephe et al. (2024) suggested automated tumor detection and classification in MRI using the Osprey Optimization Algorithm (OOA) with DL (BTDC-OOADL). The Wiener filtering (WF) model  was  used  in  the  BTDC-OOADL  technique  to  remove  noise.  The  BTDC-OOADL  method  uses  the MobileNetV2 technique to extract features. OOA was used for the MobileNetv2 model's optimal hyperparameter selection.  The  Graph  Convolutional  Network  (GCN)  model  can  recognize  and  classify  brain  tumors.  The experimental  results  can  be  evaluated  using  benchmark  data.  The  simulation  results  suggest  that  the  BTDC-OOADL system improves with new methods. 

Veeramuthu et al. (2022) introduced combined feature and image-based classifiers (CFIC) that use features and images to categorize brain tumors. Actual image feature-based classifiers (AIFC), segmented image feature-based classifiers (SIFC), exacted features and segmented image feature-based classifiers (ASIFC), actual image-based classifiers  (AIC),  segmented  image-based  classifiers  (SIC),  and  actual  and  segmented  image-based  classifiers (ASIC) with CFIC were all part of the architecture for image classification based on various deep neural networks and DCNNs. The proposed classifiers were trained and tested using the brain tumor detection 2020 dataset from Kaggle. In terms of the acquired accuracy, specificity, and sensitivity values, CFIC performed better than the other classifiers. The proposed CFIC method performs better than the existing classification methods. 

3. Proposed Methodology 

This work proposes a unique DL-based classification technique, DenseNet, for handling issues highlighted in this study, aiming to categorize brain tumors in order to increase human longevity and lower the death rate. The suggested  low-complexity  technique  classifies  brain  malignancies  accurately  compared  with  other  methods. 

Figure 2 shows the four phases of the recommended technique. An adaptive filtering technique was used for pre-processing in the first phase, and the Mask R-CNN was used for segmentation in the second phase. In the third phase, feature extractions were carried out using GLCM. DenseNet was used in the fourth phase for classification. 
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Figure 2. Overall workflow of the proposed model

3.1 Pre-Processing 

Pre-processing is a crucial step for identifying and classifying brain tumors from MRI. The adaptive filter plays a central role in enhancing image quality by removing noise while preserving essential features like edges, which 

are  critical  for  accurate  tumor  detection  and  segmentation  (Irmak, 2021).  Pre-processing  minimizes  noise  and distortion  in  images  to  enhance  segmentation  precision.  Techniques  like  median  filtering  preserve  edges  while smoothing,  and  adaptive  filtering  adjusts  dynamically  to  image  variations,  ensuring  cleaner  and  more  accurate images ready for segmentation. 

The adaptive filter adjusts dynamically to the local characteristics of the image. It calculates the denoised pixel value                                                     2 𝐼̂(𝑥, 𝑦)  using the local mean ( 𝜇̂ ) and variance ( 𝜎̂) within a defined window, along with the global noise 

𝐿                  𝑦

variance ( 2 𝜎) as per Eq. (1). 

𝑦

𝜎 2

𝐼̂(𝑥, 𝑦) = 𝐼̂(𝑥, 𝑦) −   𝑦 ∙ (𝐼̂(𝑥, 𝑦) − 𝜇̂ ) 2               𝐿                                     (1) 

𝜎̂ 𝑦

The filter performs as follows: 

Noise-free regions:     2 If 𝜎 = 0, indicating no noise, the pixel remains unchanged, which can be expressed by 

𝑦

Eq. (2). 

𝐼̂(𝑥, 𝑦) = 𝐼̂(𝑥, 𝑦) (2) 

Edge preservation:                                    2      2 In areas with high local variance of 𝜎̂ > 𝜎, the filter retains details such as edges, crucial 

𝑦     𝑦

for distinguishing tumor boundaries. 

Uniform regions:         2     2 When 𝜎̂ ≈ 𝜎, the pixel value smoothens towards local means and it can be expressed by 

𝑦    𝑦

Eq. (3). 

𝐼̂(𝑥, 𝑦) = 𝜇̂ (3)  𝐿

 

191

Adaptive filters optimize the balance between noise reduction and feature preservation, where edges and other characteristics  are  preserved  while  smoothing  uniform  areas  by  examining  local  variations.  This  improves identification  and  classification  of  malignancies  such  as  gliomas,  meningiomas,  and  pituitary  tumors  and guarantees high-quality inputs for segmentation and classification. The dependability of DL models in medical imaging is enhanced by the usage of adaptive filters in MRI pre-processing. 

3.2 Segmentation 

Mask R-CNN, a DL model designed for instance segmentation, is ideal for brain tumor segmentation in MRI 

(Hussain & Khunteta, 2020). It extends Faster R-CNN by adding a pixel-level segmentation branch to detect and segment tumors accurately. The process involves feature extraction, region proposal, bounding box refinement, and mask generation.   

The input MRI is passed through a backbone network like ResNet or ResNeXt, which extracts a feature map. This feature map highlights essential patterns in the image, such as edges and textures, critical for detecting tumors. The feature map serves as the basis for region proposal and segmentation. 

[image: ]

 

Figure 3. Instance segmentation of the Mask R-CNN framework

RPN  identifies  Regions  of  Interest  (ROIs)—areas  in  the  feature  map  likely  to  contain  a  tumor.  It  generates anchor boxes of various sizes and aspect ratios and assigns a score to each, indicating the probability of containing 

a tumor, as shown in Figure 3. The RPN loss function optimizes both classification and localization represented in Eq. (4). 

𝐿𝑅𝑃𝑁 = 𝐿𝐶𝑙𝑠 + 𝐿𝑟𝑒𝑔 (4) 

where, 𝐿𝐶𝑙𝑠 is the classification loss for distinguishing tumor and non-tumor regions, and 𝐿𝑟𝑒𝑔  is the regression loss for refining the anchor box coordinates. 

Detected ROIs are mapped back to the feature map using ROI Align, which resolves spatial misalignment issues 

caused by ROI pooling in previous methods (Shabu & Jayakumar, 2020). This alignment is achieved via bilinear interpolation, ensuring pixel-level precision can be expressed by Eq. (5). 

 

𝐴𝑙𝑖𝑔𝑛𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = ∑ 𝑤𝑖,𝑗 ⋅ 𝐹(𝑖, 𝑗) (5) 

𝑖,𝑗

where, 𝐹(𝑖, 𝑗)  represents feature map values, and 𝑤 𝑖,𝑗  are the interpolation weights. 

Each aligned ROI undergoes classification to determine if it contains a tumor and what type. Simultaneously, the bounding box is refined to better localize the tumor. 

𝐿𝑏𝑜𝑥 = 𝐿𝐶𝑙𝑠 + 𝐿𝑟𝑒𝑔 (6) 
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where, 𝐿     classifies the ROI (e.g., gliomas, meningiomas, or non-tumor) and         adjusts the size and location 𝐶𝑙𝑠 𝐿 𝑟𝑒𝑔 of the bounding box. 

For each ROI classified as a tumor, a segmentation mask is generated using a convolutional mask branch. This branch  outputs  a  binary  mask  that  segments  the  tumor  from  the  surrounding  tissue.  The  mask  prediction  is optimized using the binary cross-entropy loss, as expressed by Eq. (7). 

1 𝑁

𝐿𝑚𝑎𝑠𝑘 = −   ∑[𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)]                          (7) 𝑁

𝑖=1

where, 𝑦𝑖  is the ground truth mask for pixel 𝑖; 𝑦̂𝑖  is the predicted mask probability for pixel 𝑖; and 𝑁  is total number of pixels in the ROI. 

MRI is input into the network and passed through the backbone to generate feature maps. RPN identifies ROIs, which  are  refined  and  aligned  using  ROI  Align.  Finally,  the  mask  prediction  branch  outputs  pixel-level segmentation masks for the detected tumor regions, ensuring precise and accurate delineation of tumor boundaries 

(Kordemir et al., 2024). After the model produces the final output, such as building boxes around detected tumors, classification labels, categorizing tumors, or marking them as non-tumor and pixel-level segmentation masks, it 

accurately delineates tumor boundaries, as shown in Figure 3. 

The total loss function combines contributions from RPN, bounding box refinement, and mask prediction. 

𝐿 = 𝐿𝑅𝑃𝑁 + 𝐿𝑏𝑜𝑥 + 𝐿 (8)  𝑚𝑎𝑠𝑘

This ensures that all components—region detection, classification, and segmentation—are optimized for precise tumor segmentation. By integrating these components, Mask R-CNN excels at segmenting brain tumors in MRI scans. It is capable of  handling irregular tumor boundaries, producing pixel-level masks, and maintaining high accuracy, thereby making it indispensable in medical imaging and diagnostics. 

3.3 Feature Extraction 

Texture analysis helps machine learning (ML) algorithms and visual perception distinguish between healthy and sick tissues. Additionally, it highlights the distinction between healthy tissues and cancerous growth that could otherwise go unnoticed. Accuracy can be improved by selecting significant statistical criteria for early diagnosis 

(Nasrudin, 2024). GLCM may be used to obtain second-order statistical texture information. One may determine the frequency with which pixels with specified values and a certain spatial relationship appear in an image by first constructing a GLCM and then utilizing it to extract statistical metrics. 

GLCM counts frequencies for statistical evaluations of image textures. It is made up of pixel pairs with identical values and relative positions. GLCM functions can extract statistical information that can be used to describe the texture of an image by determining the frequency of pixel pairings with a specific weight and spatial relationship. In GLCM, a two-dimensional histogram, each pair of p and q denotes the frequency at which they occur. It makes use of the grayscales of p and q, the distance of S = 1, the angle (with 0, 45, 90, and 135 degrees representing horizontal, positive diagonal, vertical, and negative diagonal, respectively), and the understanding that, at a specific 

distance S and orientation, a pixel of intensity p looks close to a pixel of intensity q. Figure 4 shows the GLCM feature extraction for generation. 

[image: ]

 

Figure 4. GLCM feature extraction for generation 
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In this study, five distinct statistical features are extracted from GLCM after its calculation. These features are essential for capturing various texture properties of the image, as described below: 

Contrast: Identifies GLCM's local deviations. 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑(𝑖 − 𝑗 2) ∗  𝑃(𝑖, 𝑗) (9) 

Homogeneity: Determines proximities of GLCM element distributions to its diagonals. 

𝑃(𝑖, 𝑗)

𝐻𝑜𝑚𝑒𝑜𝑔𝑒𝑛𝑖𝑡𝑦 = ∑ (10) 

(1 + |𝑖 − 𝑗|)

Dissimilarity: Measures the intensity range of grayscale. 

 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑ 𝑃 𝑖,𝑗 |𝑖 − 𝑗| (11) 

Energy: Reflects pixel uniformity. 

𝑃(𝑖, 𝑗)

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ (12) 

(1 + |𝑖 − 𝑗|)

Correlation: Determines the average degree of connectivity between each pixel in the image and its neighbors. 

(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝐽)

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ (13) 

(𝜎𝑖 ∗ 𝜎𝑗)

where, i and j denote the co-occurrence matrix indices; P(i, j) denotes the elements of the co-occurrence matrix at position (i, j); µx and µy denote the averages of row and column weights in the matrix; and 𝜎𝑥  and 𝜎𝑦  represent the standard deviations of row and column weights in the matrix. 

GLCM’s  ability  to  extract  meaningful  texture-based  features  makes  it  an  integral  part  of  the  brain  tumor 

classification workflow (Özkaraca et al., 2023). By combining these features with advanced classification models, the approach achieves high accuracy and reliability. 

3.4 Classification 

DenseNet is a cutting-edge DL model, known for its densely connected layers, making it efficient and powerful in classifying gliomas, meningiomas, pituitary tumors, and non-tumor cases from MRI (Sabila & Tjahyaningtyas, 

2024) and by leveraging its unique feature-propagation mechanisms.   

DenseNet connects each layer directly to all subsequent layers in the network. Unlike traditional CNNs, where each layer feeds into the next sequentially, DenseNet enables all layers to share information, optimizing feature extraction and gradient flow. 

𝑥 1 = 𝐻𝑙([𝑥0, 𝑥1, … . . , 𝑥𝑙−1]) (14) 

where, 𝑥1  represents the output of layer 𝑙; 𝐻𝑙  represents the composite functions, i.e., Batch Normalization (BN), ReLU  activation,  and  convolution);  and [𝑥0, 𝑥1, … . . , 𝑥𝑙−1]  is  the  concatenation  of  all  preceding  layer  outputs. This connectivity reduces redundancy, ensures efficient parameter usage, and improves gradient flow, leading to better classification performance. 

Dense blocks: These are groups of layers where outputs are concatenated instead of being added, allowing all layers to share features. Each dense block uses the transformation. 

𝐻 𝑙 = 𝐵𝑁 (𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝑥))) (15) 

This architecture ensures that the model reuses learned features, capturing tumor-specific details like size, shape, and texture. 

Growth rate (𝒌): Defines feature maps added to layers where smaller 𝑘  ensures efficient usage of parameters, while a larger 𝑘  captures more complex tumor features. 

Transition  layers:  Located  between  dense  blocks,  these  layers  compress  the  network  by  reducing  spatial dimensions and feature maps using a 1 × 1 convolution followed by pooling. 
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𝐻 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑃𝑜𝑜𝑙 (𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣(𝑥))) (16) 

After the dense blocks, GAP layers convert feature maps into compact vectors, which are then input to fully connected layers, with the final output class probabilities being determined through a softmax activation function. 

𝑒 𝑧𝑖

𝑝𝑖 =   𝐶    𝑧                                          (17) ∑ 𝑒 𝑗 𝑗=1

where, 𝑝𝑖  is  the  probability  of  the  input  belonging  to  class 𝑖; 𝑧𝑖  represents  the  logit  score  for  class 𝑖;  and 𝐶 indicates a number of classes (gliomas, meningiomas, pituitary tumors, and non-tumors). 

[image: ]

 

Figure 5. Architecture of the DenseNet layers

As shown in Figure 5, the dense block in a densely linked convolutional network must have the same feature 

map size before concatenation can be performed between blocks (Wakili et al., 2022). While keeping the feature map  size  constant,  it  should  be  noted  that  down-sampling  is  a  crucial  element  in  a  CNN,  which  can  be accomplished  by  conducting  convolution  and  pooling  outside  of  dense  blocks.  The  layers  responsible  for convolution and pooling are known as transition layers. In DenseNet designs, transition layers encompass batch-norm layers, 1 × 1 convolutions, and 2 × 2 average pooling, where 1 × 1 convolutions down-sample input features and produce outputs. 

The model is optimized using the categorical cross-entropy loss function. 

1 𝑁 𝐶

𝐿 = −   ∑ ∑ 𝑦 𝑖,𝑗 log(𝑦̂𝑖,𝑗)                                   (18) 𝑁 𝑖=1 𝑗=1

where, 𝑁  is  the  sample  count, 𝐶  is  the  number  of  classes, 𝑦𝑖,𝑗  represents  the  ground  truth  for  sample 𝑖  and class 𝑗, and 𝑦̂𝑖,𝑗  denotes the predicted probability for sample 𝑖  and class 𝑗.

The  training  involves  stochastic  gradient  descent  (SGD)  with  learning  rate  scheduling,  ensuring  effective convergence. Data augmentation (e.g., rotation, flipping, and scaling) is employed to make the model robust to variations in MRI scans. 

DenseNet's efficient architecture ensures that even with limited MRI data, it extracts tumor-specific features with high precision, achieving robust and reliable classification. This is crucial for aiding medical professionals in diagnosing and planning treatments for brain tumor patients. 

4. Results and Discussion 

This proposed model used the Kaggle dataset to test the suggested methods. The two categories of this dataset were  testing  and  training.  Glioma  tumor,  meningioma  tumor,  pituitary  tumor,  and  non-tumor  photos  were  all included in each training and testing set. The testing set consisted of 394 images, while the training set comprised 2,870  images.  Data  preprocessing  techniques  like  brain  stripping  enhanced  descriptions  of  data.  Glioma, 
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meningioma, non-tumor, and pituitary tumors were the categories for performance evaluation. Examples of several 

tumor categories in various locations are depicted in Figure 6 (Bhuvaji, 2020).   

Dataset: https://www.kaggle.com/sartajbhuvaji/brain-tumor-classification-mri 

[image: ]

 

Figure 6. Types of tumors in different places

The suggested approach was implemented in Python, a high-level ML programming language using Keras, and TensorFlow to create neural networks. This is advantageous for both Central Processing Unit (CPU) and Graphics Processing  Unit  (GPU)  processing.  The  hyper-parameters  were  adjusted  using  a  network  search,  with  the parameters selected based on the model’s performance on the validation set. Variables like energy and testing rate changed as the test was being conducted. The learning rate was first set at 0.003 and then gradually decreased to 0.3 × 10−5; the energy was first set at 0.5 and then increased to 0.9. 

In terms of evaluation parameters, five performance metrics—specificity, sensitivity, accuracy, precision, and F1-score—were used to assess the effectiveness of the suggested DenseNet-based framework for classifying brain tumors. These metrics together offer a thorough evaluation of the model's capacity to distinguish between tumor and  non-tumor  instances  while  correcting  classification  discrepancies.  False  positives,  false  negatives,  true positives, and true negatives were the primary data used to create the metrics. 

The  experimental  results  were  derived  from  the  MATLAB  implementation,  which  processes  MRI  through segmentation,  feature  extraction,  and  classification.  The  processed  results  for  each  step  are  systematically 

illustrated in Table 1, which highlights the incremental improvements achieved during the workflow. The overall 

evaluation metrics and their corresponding formulas, as detailed in Table 2, elucidate how each metric reflects the model's performance. 

Sensitivity (recall): The ratio of the number of true positives and false negatives,  which can be expressed by Eq. (19). 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  =   (19) 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Specificity: The  ratio  of  true  negatives  to  different  false  positives  and  true  negatives,  which  can  be  used  to assess the specificity of brain tumor detection. 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = (20) 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Accuracy: The ratio of the precise values found in the population. 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (21) 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

Precision: The ratio of true positives to the sum of true positives and false positives. 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (22) 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

F1-score: The F1-score value can be calculated by Eq. (23). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × (23) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
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Table 1. Implemented stepwise MATLAB output

[image: ]

 

Input Image 

[image: ]

 

Processed Image 

[image: ]

 

Segmentation 

[image: ]

 

Classification 

 

Table 2. Performance metric evaluation

Parameter     BP    U-Net RCNN    Proposed DenseNet Sensitivity    97.87    97.51     98.42            98.84 Specificity    75.47    80.39     89.28            93.43 

Accuracy    88.83    90.86     95.17           96.96 Precision     85.50    88.68     94.34            96.59 F1-score     91.22    92.80     96.34            97.70 
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Figure 7. Comparison of the proposed model with existing methods in sensitivity

Figure 7 illustrates the sensitivity performance of four classification methods: Back Propagation (BP), U-Net, RCNN,  and  the  proposed  DenseNet.  Among  these,  the  proposed  DenseNet  achieves  the  highest  sensitivity, approximately  98.84%,  demonstrating  its  superior  capability  in  correctly  identifying  true  positive  cases.  The RCNN method follows closely with a sensitivity of 98.42%, indicating robust detection accuracy. BP and U-Net methods exhibit slightly lower sensitivity levels of 97.87% and 97.51%, respectively. These results highlight the proposed  DenseNet’s  effectiveness  in  ensuring  minimal  false  negatives,  which  is  critical  for  accurate  tumor detection. 

[image: ]

 

Figure 8. Comparison of the proposed model with existing methods in specificity

Figure 8  compares  the  specificity  of  the  same  four  methods.  The  suggested  DenseNet  achieves  the  highest specificity of 93.43%, outperforming others and indicating superior ability to correctly identify true negative cases (non-tumor  instances)  while  minimizing  false  positives.  RCNN  comes  second  with  an  89.28%  specificity, demonstrating the potent ability to lower false alarms. The specificities of U-Net and BP are lower, at 80.39% and 75.47%,  respectively.  The  outcomes  highlight  the  reliability  of  the  suggested  DenseNet  in  differentiating  non-tumorous patients while lowering diagnostic mistakes. 
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Figure 9. Comparison of the proposed model with existing methods in accuracy

Figure 9 demonstrates accurate categorization with the greatest accuracy of 96.96% achieved by the proposed DenseNet,  demonstrating  its  overall  superior  performance  in  accurately  categorizing  tumor  instances.  RCNN comes second with an accuracy of 95.17%. BP has the lowest accuracy of 88.83%, while U-Net attains an accuracy of 90.86%. These outcomes highlight the sophisticated design and effective feature extraction techniques of the suggested DenseNet, which produce incredibly accurate classification. 

[image: ]

 

Figure 10. Comparison of the proposed model with existing methods in precision

Figure 10 presents the precision performance of the four methods, highlighting their abilities to minimize false positives.  The  best  precision  of  96.59%  is  attained  by  the  proposed  DenseNet,  demonstrating  its  capacity  to accurately detect real positive cases with little misclassification. 94.34% accuracy is attained by RCNN, 88.68% by U-Net, and 85.50% by BP. The outcomes confirm that the suggested DenseNet performs better at correctly detecting tumor instances while lowering the possibility of false alarms. 

F1-score balances precision and recall (sensitivity) values.  As shown in  Figure 11, the  proposed DenseNet's exceptional balance between sensitivity and accuracy is demonstrated by its greatest F1-score of 97.70%. With an F1-score of 96.34%, RCNN comes in second, demonstrating dependable performance. BP has the lowest F1-score at 91.22%, while U-Net has an F1-score at 92.80%. These outcomes demonstrate that the suggested DenseNet is resilient in reaching a high degree of classification accuracy while preserving sensitivity and precision.
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Figure 11. Comparison of the proposed model with existing methods in F1-score

5. Conclusions 

The proposed DenseNet-based framework for brain tumor classification combines adaptive filtering for noise reduction (with an impressive accuracy of 96.96%), Mask R-CNN for accurate tumor segmentation, and DenseNet for effective feature extraction and classification. This method improves the identification of tumor  categories, such as gliomas, meningiomas, pituitary tumors, and non-tumors, and tackles difficulties in irregular tumor border segmentation.  Even  though  the  method  performs  better  than  existing  models  like  BP,  U-Net,  and  RCNN,  its computational  complexity  and  training  needs  still  allow  for  improvement.  To  further  increase  accuracy  and therapeutic application, future research should concentrate on maximizing the model's computing efficiency and integrating multimodal data, such as genetic and clinical information. 
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Abstract: Brain tumors represent a critical medical condition where early and accurate detection is paramount for
effective treatment and improved patient outcomes. Traditional diagnostic methods relying on Magnetic
Resonance Imaging (MRI) are often labor-intensive, time-consuming, and susceptible to human error,
underscoring the need for more reliable and efficient approaches. In this study, a novel deep learning (DL)
framework based on the Densely Connected Convolutional Network (DenseNet) architecture is proposed for the
automated classification of brain tumors, aiming to enhance diagnostic precision and streamline medical image
analysis. The framework incorporates adaptive filtering for noise reduction, Mask Region-based Convolutional
Neural Network (Mask R-CNN) for precise tumor segmentation, and Gray Level Co-occurrence Matrix (GLCM)
for robust feature extraction. The DenseNet architecture is employed to classify brain tumors into four categories:
gliomas, meningiomas, pituitary tumors, and non-tumor cases. The model is trained and evaluated using the
Kaggle MRI dataset, achieving a state-of-the-art classification accuracy of 96.96%. Comparative analyses
demonstrate that the proposed framework outperforms traditional methods, including Back Propagation (BP), U-
Net, and Recurrent Convolutional Neural Network (RCNN), in terms of sensitivity, specificity, and precision. The
experimental results highlight the potential of integrating advanced DL techniques with medical image processing
to significantly improve diagnostic accuracy and efficiency. This study not only provides a robust and reliable
solution for brain tumor detection but also underscores the transformative impact of DL in medical imaging,
offering radiologists a powerful tool for faster and more accurate diagnosis.

Keywords: Brain tumor classification; Deep learning; DenseNet architecture; Magnetic Resonance Imaging;
Adaptive filtering; Feature extraction; Medical image processing; Tumor segmentation

1. Introduction

Brain tumors are potentially fatal illnesses brought on by the brain's aberrant cells growing out of control. The
location and category of these tumors have a major influence on neurological function, causing a variety of
symptoms, including headaches, seizures, and cognitive impairments (Saleh et al., 2020). Early accurate
diagnostics are the basis for effective therapies and increasing survival rates. Radiologists manually assess
Magnetic Resonance Imaging (MRI) as part of standard diagnostic procedures. This is a laborious process that is
subject to human interpretation errors. Medical imaging has been transformed by advances in deep learning (DL),
especially Convolutional Neural Networks (CNNs), which allow for accurate and automated processing of brain
MRI data.

DL stands for disciplines of Artificial Intelligence (AI) that learn characteristics and spot patterns in data using
neural networks. Images and other grid-like data are processed using CNNs, which are specialized DL
architectures (Alqudah et al., 2020; Sharma et al., 2020). Starting with basic patterns like edges and working their
way up to more intricate structures like tumor borders in Figure 1, they employ convolutional layers to extract
characteristics in a hierarchical manner. Because CNNs can analyze huge volumes of image data fast and lessen
the need for manual feature extraction, they have shown remarkable efficacy in medical imaging for tumor
identification and classification (Rasool et al., 2022). CNNs can recognize patterns that distinguish between
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