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Abstract: Alzheimer’s disease (AD), a progressive neurodegenerative disorder characterized by severe cognitive 

decline, necessitates early and accurate diagnosis to improve patient outcomes. Recent advancements in deep 

learning (DL), particularly convolutional neural networks (CNNs), have demonstrated significant potential in 

medical image analysis (MIA). This study presents a robust CNN-based framework for the classification of AD 

using magnetic resonance imaging (MRI) data. The proposed methodology incorporates contrast stretching for 

image preprocessing, followed by principal component analysis (PCA) and recursive feature elimination (RFE) 

for feature selection, to enhance the discriminative power of the model. The framework is designed to classify 

MRI into four distinct categories: non-demented, very mildly demented, mildly demented, and moderately 

demented. Experimental validation on a comprehensive dataset reveals that the proposed approach achieves 

exceptional performance, with a validation accuracy of 97% and a training accuracy of 100%, alongside reduced 

loss and improved sensitivity. The integration of PCA and RFE is shown to effectively reduce dimensionality 

while retaining diagnostically critical features, thereby optimizing the model’s efficiency and interpretability. 

These findings underscore the potential of DL techniques to revolutionize the early detection and diagnosis of AD, 

offering a powerful tool for clinical decision-making and advancing the field of neuroimaging analysis. The 

proposed framework not only addresses the challenges of high-dimensional data but also provides a scalable and 

generalizable solution for the classification of neurodegenerative disorders. 

Keywords: Alzheimer’s disease (AD); Convolutional neural networks (CNNs); Medical image classification; 

Recursive feature elimination (RFE); Magnetic resonance imaging (MRI) 

1. Introduction

Doctors can use artificial intelligence (AI) to help them diagnose patients more quickly and accurately. It may

predict a disease's risk beforehand, enabling its prevention. To analyze medical data and treat diseases, researchers 

can employ deep learning (DL) (Helaly et al., 2022). In contrast, medical image analysis (MIA) can be a laborious 

and complex process. To identify Alzheimer’s disease (AD) early, a DL model was used in this study.  

In order to process data and generate patterns for utilization in decision-making, DL (sometimes referred to as 

deep structured learning or hierarchical learning) is an AI function that mimics how the human brain functions (So 

et al., 2019). In AI, DL is a subset of machine learning (ML) that includes networks that can learn unsupervisedly 

from unstructured or unlabelled data. Deep neural learning and deep neural network (DNN) are some names for 

it.  

Working memory comes initially. Maintaining focus and attention while receiving data is its responsibility. 

Short-term memory (STM) comes next. STM oversees the preservation of information for slightly more than a 24-

hour period. At last, for durations longer than a day, all of the events observed are recorded and stored in long-

term memory (LTM) (Jiang et al., 2022). Memory, reasoning, and the ability to perform even the most basic tasks 

have all been severely affected by AD, a degenerative brain disease.  

AD is a degenerative disease of the brain and neurological system that worsens over time (Wen et al., 2020). 

The incidence of AD is rising annually as a result of the global acceleration of the aging process. As the condition 

203

https://orcid.org/0000-0001-9349-5695
https://orcid.org/0009-0003-1011-2014
https://orcid.org/0009-0002-0943-1993
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.56578/hf020403&domain=pdf


worsens, older adults with AD will face a number of brain damage symptoms, including progressive memory loss, 

mobility issues, a decline in language expression, and cognitive challenges (Logan et al., 2021). Magnetic 

resonance imaging (MRI) of the brain is typically used to assess this stage of neuropsychiatric symptom 

development. The progression of AD is seen in Figure 1. 

 

 
 

Figure 1. Progression of AD 

 

In recent years, research has focused on utilizing ML to diagnose AD from data like MRI. This technology has 

expedited the medical process and made the task of medical experts easier. The objective in this study is to use a 

convolutional neural network (CNN) to classify AD images (Ben Ahmed et al., 2015). The most traditional and 

widely used DL framework is CNN, which is a multilayer neural network. The state of the art (SOTA) method for 

image classification is CNN with DL (Poloni et al., 2021).  

The study aims to address the problem of model accuracy and data sensitivity. Additionally, it uses CNN to 

categorize four classes of AD, as shown in Figure 2. In that instance, the recursive feature elimination (RFE) 

approach was applied and principal component analysis (PCA) was incorporated into CNN. In a model, PCA is 

seen as a commonly utilized technique, whose aim is to reduce dataset dimensions (AbdulAzeem et al., 2021). It 

enables the model to visualize the data simply and train itself more quickly. In this work, a PCA was used to 

confirm whether or not the features are independent of one another. The least features were eliminated and new 

independent features were produced from the previous ones with the support of PCA. 

 

 
 

Figure 2. Types of classes in AD 
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Exploring the best feature in a database is the goal of RFE, which is similar to a greedy optimization technique 

(Fu’adah et al., 2021). To do this, the model's basic DL algorithm must be fitted, the features must be ranked 

according to importance, the least important features must be removed, and the model must then be re-fitted.  

 

2. Literature Review 

 

Islam & Zhang (2018) proposed applied ensemble DL models combining CNNs with other architectures. It 

enhances the performance in complex tasks like image classification, MIA, and more. MRI data was used to 

diagnose AD. MRI scans from relevant datasets were obtained, providing various imaging modalities such as T1-

weighted images, which are crucial for AD diagnosis. High-level features were automatically extracted from the 

MRI data using a CNN. By recognizing patterns like shrinkage in particular brain regions, the CNN layers were 

able to recognize AD. To guarantee uniformity throughout the dataset, one of the preprocessing stages involved 

normalizing the MRI intensity values. PCA helps in reducing the dimensionality of the extracted features. The 

computational cost was also reduced via PCA; it also emphasized the most relevant features. For classification 

tasks, the more comprehensive and effective solution was offered by these models, because these models utilize 

the robustness of several methods. 

Basaia et al. (2019) proposed a 3D CNN model trained on structural MRI data. It is considered to be an effective 

method for evaluating volumetric medical images. Comprehensive data regarding the brain structure were offered 

by the following activities: disease detection, brain segmentation, and structural MRI scans. The 3D CNN model 

lowered the computational cost and maintained the spatial data via reducing the dimensionality of the feature maps. 

To perform tasks like regression or classification, 3D CNNs usually have fully connected layers that use the 

features after feature extraction. The entire volume of MRI data was analyzed by the 3D CNN model, effectively 

capturing the spatial relationship among various brain regions. However, the 2D CNN model fails to capture that. 

Compared to 2D models, the 3D CNN models are effective and attain better classification accuracy in tasks like 

AD detection, brain tumor classification, and brain segmentation. The problems related to computational demands 

and data requirements must be managed carefully. 

Ortiz et al. (2016) proposed a 3D CNN model with transfer learning (TL) applied to brain MRI data. Through 

task adaptation, TL uses a model that has already been trained on a large dataset. This leverages the learned features 

and weights from the pre-trained model, reducing the need for extensive training on the new dataset. While 

modifying and retraining parts of the pre-trained model on the target dataset (brain MRI), other parts remain fixed. 

This adapts the model to the specific features of MRI data. For 3D CNNs, TL might involve pre-trained models 

on large 3D datasets. In practice, pre-trained models for medical images are less common than 2D models, but 

there are specialized models available for tasks such as brain segmentation. TL in 3D CNNs typically involves 

extracting features from pre-trained models and fine-tuning the network on MRI data to improve performance for 

specific tasks. TL helps in achieving higher accuracy by leveraging pre-trained features that capture general image 

patterns, which are fine-tuned to the specific characteristics of MRI data. It results in improved accuracy, reduced 

training time, and better feature extraction, though it comes with challenges related to data compatibility, 

computational demands, model interpretability and robustness in classification. 

To classify AD using MRI data, a deep CNN model was created by Tariq et al. (2019). The goal is to create a 

CNN model capable of accurately classifying MRI into different AD-related classes. In order to build a classifier 

that can differentiate between different disease states, this usually entails extracting features from MRI scans. The 

MRI is accepted by the input layer. While 3D CNNs deal with volumetric data, 2D CNNs often handle images as 

slices or projections. These layers use either 2D or 3D convolutions to extract hierarchical features from MRI. The 

use of many convolutional layers with varied filter sizes was considered to collect various levels of information. 

After feature extraction, the gathered features were combined using fully connected layers to determine the final 

classification. The output layer uses an activation function (AF), such as softmax for multi-class classification 

(MCC) or sigmoid for binary classification, to produce class probabilities. The objective of this strategy is to give 

accurate and dependable MRI classification for the diagnosis and comprehension of AD by utilizing cutting-edge 

approaches and ongoing improvement.  

Kong et al. (2022) proposed an applied 3D CNN model on functional magnetic resonance imaging (fMRI) data 

for AD detection. This method involves leveraging the spatiotemporal information within fMRI volumes to 

identify patterns associated with the disease. By identifying variations in blood flow, which represent neural 

activity in various brain areas, fMRI measures brain activity. Unlike structural MRI, which captures the anatomy 

of the brain, fMRI provides insight into brain function and connectivity. fMRI data consists of 3D volumes over 

time, making it a 4D dataset. Each voxel represents a small cube of brain tissue, and the signal intensity indicates 

the level of neural activity. The brain function gets affected by AD. Disruption in neural activity and connectivity 

are the consequences of AD. The fMRI is employed for detecting these variations. For early diagnosis, this fMRI 

is considered to be an effective tool. Typically, a softmax AF is used in the final layer to produce class probabilities. 

The application of this technique has demonstrated significant potential in clinical settings, particularly for early 

diagnosis and monitoring of disease progression, considering the fact that it requires careful attention to data 
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preparation, model construction, and the challenges of working with high-dimensional, temporal data. 

By combining CNN with a recurrent neural network (RNN), Li et al. (2019) showed how to diagnose AD by 

utilizing the advantages of both architectures for the analysis of neuroimaging data, such as MRI or fMRI. While 

RNNs, especially long short-term memory (LSTM) networks or gated recurrent units (GRUs), are effective at 

capturing temporal dependencies, CNNs are good at extracting spatial features from images. The purpose of CNNs 

is to automatically and adaptively learn feature spatial hierarchies from input images. CNNs are especially good 

in finding patterns in brain scans in neuroimaging, such as fMRI activation patterns or structural abnormalities in 

MRI. RNNs are made to identify previous inputs in order to identify patterns in data sequences. In the context of 

neuroimaging, RNNs can be used to analyze sequences of brain scans over time, capturing temporal dynamics that 

may indicate the progression of AD. It provides a powerful tool for diagnosing AD by leveraging the spatial and 

temporal characteristics of brain scans. Improved clinical diabetes mellitus, improved monitoring of disease 

progression, and earlier and more accurate diagnosis are all possible outcomes of this hybrid approach. 

To enhance CNN performance on MRI data, the data augmentation approach was used by Singh et al. (2022). 

This method decreases overfitting, increases the robustness of the model, and improves CNNs' capacity for 

generalization. Medical datasets, including MRI scans, are often limited in size due to the difficulty in acquiring 

and labelling medical images. This limitation can lead to overfitting in CNN models. MRI scans can vary due to 

different scanning protocols, patient positioning, and anatomical differences. Data augmentation helps CNNs learn 

to handle this variability effectively. By expanding the variety of the training dataset, enhancing generalization, 

and decreasing overfitting, data augmentation is a potent method to improve CNN performance on MRI data. By 

carefully applying spatial, intensity-based, and advanced augmentation methods, models can achieve higher 

accuracy and robustness, making them more effective for clinical diagnosis and research in the context of AD and 

other neurological disorders. 

By combining preprocessing with feature extraction, Amoroso et al. (2018) used DL models for AD 

classification using MRI data. Preprocessing, feature extraction, and the use of DL architectures were all integrated 

into a thorough procedure. Memory loss, cognitive decline, and behavioural abnormalities are symptoms of AD, 

a degenerative neurological condition. For the condition to be managed, an early and precise diagnosis is essential. 

A non-invasive imaging method that produces fine-grained structural images of the brain is MRI. These images 

are valuable for detecting brain atrophy and other abnormalities associated with AD. The main challenges include 

the complexity of the brain's anatomy, variability in MRI scans, and the need for robust preprocessing and feature 

extraction methods to maximize the effectiveness of DL models. By addressing the challenges of small sample 

sizes, high dimensionality, and the need for interpretability, these models have the ability to significantly improve 

early diagnosis and treatment of AD, ultimately impacting patient outcomes and advancing research in the field of 

neuroimaging. 

In order to improve the diagnosis accuracy, Khvostikov et al. (2018) suggested to utilize DL-based multi-modal 

fusion, which combines MRI and positron emission tomography (PET) data for AD detection by integrating 

complementary information from both imaging modalities. MRI and PET provide different types of information—

structural and functional. Combining them can lead to a more comprehensive understanding of the disease. By 

fusing data from both modalities, the model can detect subtle changes in the brain that might not be evident from 

a single modality, leading to improved diagnostic accuracy, particularly in early stages like mild cognitive 

impairment (MCI). A hybrid approach that involves both feature- and decision-level fusion was implemented. 

Features from MRI and PET were first fused, and the combined feature set was then employed for training a DL 

model, whose output was further refined by an ensemble of decision-level fusion methods. The future goal is to 

use graph neural networks (GNNs) to model the relationships between different brain regions as captured by MRI 

and PET, providing a more holistic view of how AD affects brain connectivity. With the ability to improve clinical 

practice and patient outcomes, it makes use of the advantages of both imaging modalities and DL to offer a greater 

understanding of the disease. 

Using structural MRI data, Jain et al. (2019) created a CNN-based DL framework for the early detection of AD. 

In order to detect small neurological changes linked to the early stages of AD, this method makes use of CNNs' 

capacity to automatically extract pertinent features from high-dimensional image data. 

Early detection of AD is critical as it enables interventions that can slow disease progression, improve quality 

of life, and provide time for planning and treatment. Structural magnetic resonance imaging (sMRI) is one of the 

most informative imaging modalities for capturing anatomical changes in the brain, such as hippocampal atrophy, 

which are early indicators of AD. The CNN-based framework can be integrated into clinical workflows, providing 

radiologists and neurologists with an advanced tool for the early detection of AD, potentially leading to earlier 

interventions. It achieves a high sensitivity with improved accuracy. 

 

3. Methodology 

 

Image classification, a core mechanism in computer vision (CV), has been extensively researched and applied 

across various domains. Classifier, image feature extraction and selection, and image preprocessing are usually its 
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three main parts (Lu & Weng, 2007). A collection of 10,432 JPEG images of patients with four categories (mildly 

demented, moderately demented, non-demented, and very mildly demented) was used to implement DL features 

for the classification of AD. In order to speed up the execution of the DL algorithms, the model was created using 

the Python programming language and the Keras and TensorFlow libraries. The system was backed by a graphics 

processing unit (GPU) with NVIDIA. 

Figures 3-6 illustrate the four classes of the 10,432 images in the dataset, which was made available by Kaggle, 

for testing purposes. 

 

 
 

Figure 3. Class 0 (mildly demented) of AD 

 

 
 

Figure 4. Class 1 (moderately demented) of AD 

 

 
 

Figure 5. Class 2 (non-demented) of AD 

 

 
 

Figure 6. Class 3 (very mildly demented) of AD 
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3.1 Preprocessing 

 

Getting higher-quality images is the goal of image preprocessing. In this case, the input (IQ) image quality was 

improved by the application of contrast stretching. In order to preserve the final image's shape without causing 

damage, the contrast stretching technique was employed in this work. The contrast stretching (Widodo et al., 2016) 

approach is a subset of the point processing method, which implies that it depends only on the intensity of a single 

pixel and not on the pixels surrounding it. The image's grey level range is presumed to be between 0 and 255 in 

this case. The transformation proceeds in a straight line with no alteration to the grey level image generated if the 

grey level values are 𝑎1 = 𝑎2 and 𝑏1 = 𝑏2 (Radha & Tech, 2012). However, the method generates a value if the 

grey level value is considered to be 𝑎1 < 𝑎2 and 𝑏1 < 𝑏2. Three functions to calculate contrast stretching are 

described in Eqs. (1)-(3). The contrast stretching function is given in Figure 7. 

 

 
 

Figure 7. Contrast stretching function 

 

 
 

Figure 8. Preprocessing MATLAB screen window 

 

For 0 ≤ 𝑓𝑖(𝑥, 𝑦) < 𝑎1, then: 
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For 𝑎1 ≤ 𝑓𝑖(𝑥, 𝑦) < 𝑎2, then: 
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For 𝑎2 ≤ 𝑓𝑖(𝑥, 𝑦) < 255, then: 
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The preprocessing MATLAB screens are shown in Figure 8. 

 

3.2 Feature Extraction 

 

The retrieved data was normalized to zero mean and unit variance using a conventional scalar function following 

the preprocessing step. Normalization was conducted in order to eliminate the irregularities in the data that hamper 

analysis. Eq. (4) provides the normalized matrix of elements 𝑥(𝑖, 𝑗). 

 

( )
( )

( , ) j

norm

j

x i j mean X
X

std x

−
=  (4) 

 

3.3 Feature Selection 

 

The feature selection approach reduces the dimension size and selects the best features by combining the PCA 

and RFE methods.  

A lot of features in the analysis process often lead to dimension issues being highlighted. The effective way to 

deal with this problem is through PCA. In basic terms, PCA translates the information in 𝑑-dimensional space to 

a 𝑘-dimensional subspace once 𝑘 < 𝑑 and produces a linear combination of initial features (Tonin et al., 2024). 

The principal components (PCs) are the obtained variables 𝑘. With the exception of the variance that is already 

taken into consideration in all of its subsequent components, each PC is addressed towards the maximum variance. 

Compared to the adhering components, this initial component covers the greater variances. Eq. (5) can be used to 

determine PCs:  

 

1 1 1 2 2 d dPC a X a X a X= + + +  (5) 

 

where, 

𝑃𝐶𝑖 denotes the 𝑖th PC; 𝑋𝑖 represents the original feature 𝑗; and 𝑎𝑖 represents the numerical coefficient for 

𝑋𝑖. 

The most used technique for feature selection is PCA. In this case, it only reduces the dimensionality of the 

features. However, the model solely operates on the basis of selected features when a feature selection technique 

is used, and no changes are made (Aker, 2022). PCA is used to initially minimize a feature's dimension, and the 

RFE feature selection method is used to choose the most significant features. 

An example of a feature selection algorithm wrapper is RFE (Chen, 2003). This approach builds models and 

chooses the best ones based on performance metrics, by using a variety of subsets of input features. The combined 

PCA and RFE model is shown in Figure 9.  

 

Algorithm 1: Process of RFE 

Step 1: All predictors are used to optimize the model on the training set.  

Step 2: Model performance computation.  

Step 3: Calculate the importance-based ranking of variables for each subset size. 

Step 4: Preserve the most crucial variables.  

Step 5: Train the model on the training set using predictors.  

Step 6: Determine the model's performance.  

Step 7: The computation of the performance profile is complete.  

Step 8: Choose an appropriate amount of predictors.  

Step 9: Make use of the model that best fits the situation. 
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Figure 9. Combined model of PCA and RFE 

 

3.4 Classification Method 

 

When both the cortical and subcortical regions' sMRI features were retrieved, the normalization and feature 

selection stages were applied to the composite features from both regions (Gupta et al., 2019). It can be utilized to 

distinguish AD from other groups, once the features have been chosen. This method is demonstrated in Figure 10. 

CNN is suggested to complete the classification task. 

 

 
 

Figure 10. Block diagram of image classification on AD 

3.4.1 CNN 

In mathematics, convolution is a crucial analytical procedure. This mathematical operator takes two functions, 

𝑓 and 𝑔, and creates a third function. When functions 𝑓 and 𝑔 are reversed or translated, these functions show 

the area of overlap between them. Eq. (6) often defines its calculation. 

 

( ) ( )* ( ) ( ) ( )defz t f t g t f g t


 
+

=−

= = −  (6) 

 

Eq. (7) contains its integral form as follows: 

 

( ) ( )* ( ) ( ) ( ) ( ) ( )z t f t g t f g t d f t g d     
+ +

− −
= = − = −   (7) 
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A digital image, represented by the symbol 𝑓(𝑥, 𝑦), can be considered as a discrete function of a 2D space in 

image processing. Eq. (8) can be used to represent the output image 𝑧(𝑥, 𝑦), assuming that a 2D convolution 

function 𝑔(𝑥, 𝑦). 

 

( , ) ( , )* ( , )z x y f x y g x y=  (8) 

 

Thus, following the feature extraction and selection preprocessing, the convolution operation can be utilized to 

extract the image features. Similar to this, in DL applications, the input is a high-dimensional array of 3 × image 

width × image length when it is a color image with RGB channels that is made up of individual pixels. The learning 

algorithm defines the kernel as the accounting (Jogin et al., 2018). The kernel is referred to as the "convolution 

kernel" in CNN. Another high-dimensional array is the computational parameter. Eq. (9) can therefore be used to 

represent the analogous convolution operation when 2D images are input. 

 

( , ) ( , )* ( , ) ( , ) ( , )
t h

z x y f x y g x y f t h g x t y h= = − −  (9) 

 

Eq. (10) contains the integral form as follows: 

 

( , ) ( , )* ( , ) ( , ) ( , )z x y f x y g x y f t h g x t y h dtdh= = − −  (10) 

 

Given a convolution kernel of size 𝑚 × 𝑛, Eq. (11) looks like as follows: 

 

0 0

( , ) ( , )* ( , ) ( , ) ( , )
t m h n

t h

z x y f x y g x y f t h g x t y h
= =

= =

= = − −  (11) 

 

In order to indicate the size of the convolution kernels 𝑚 and 𝑛, 𝑓 stands for the input image 𝐺. Algorithms 

frequently use convolution as a matrix product. Assume the convolution kernel is 𝑛 × 𝑛 in size and the image is 

𝑀 × 𝑀. This is analogous to extracting the 𝑛 × 𝑛 image region and expressing it as an 𝑛 × 𝑛 column vector. 

Each image region of 𝑛 × 𝑛 size is multiplied by the convolution kernel during computation (Vasudevan et al., 

2017). 

 

3.4.2 Image classification based on CNN 

The CNN-based image classification model is shown below: 

a) Input: The training set consists of a set of 𝑁 images, each labelled with one of the 𝐾 classification tags. 

b) Learning: This step involves learning the precise features of each class using the training set. This stage is 

commonly referred to as learning a model or a training classifier.  

 

 
 

Figure 11. Classification outcomes 
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c) Evaluation: When comparing the classifier's predicted labels with the image's actual feature vectors, it is 

evident that the classifier's predicted labels are consistent with the image's true classification feature vectors, which 

is a good thing, and the more such cases, the better. The classifier is used to evaluate the classifiers' quality and 

predict the classification feature vector of images that hasn't been examined. Figure 11 shows the classification 

output. 

A classifier must be used to classify the feature vector after it has been extracted from the image, which can 

then be described as a fixed-length vector. From input to output, a typical CNN consists of the following layers: 

input layer, convolutional layer, activation layer, pool layer, fully connected layer, and final output layer 

(Yamashita et al., 2018). The continuous convolution-pool structure decodes, deduces, converges, and maps the 

feature signals of the original data to the hidden layer feature space while the CNN layer creates the relationships 

between various computational neural nodes and transfers input information layer by layer (Shocher et al., 2020). 

The extracted feature is then used by the fully connected layer to classify and output. 

Therefore, AD is diagnosed by applying CNN and the images are classified based on the proposed model by 

performing techniques for the image classification. This can result in the high accuracy of images without changing 

the shape of the image and improved sensitivity for positive findings for patients with the disease. 

 

4. Results and Discussion 

 

The four classes of AD, i.e., mildly demented, moderately demented, non-demented, and very mildly demented, 

were identified using the model. The anomalies were removed in feature extraction. It is helpful for clinicians to 

make faster and easier diagnoses of the disease. It resulted in improved accuracy and sensitivity. The accuracy is 

based on the training and validation. Training accounts for 70% of the data evaluation, while validation accounts 

for 30%. The results include 97% validating accuracy, 0.0832 validating loss, 0.0012 training loss, and 100% 

training accuracy. 

The evaluation metrics are as follows: 

Accuracy is a metric for evaluating classification models that measures how well a model performs across all 

classes by calculating the ratio of correct predictions to total predictions. Accuracy is represented in Eq. (12). 

 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
 (12) 

 

The ability of a diagnostic test to accurately determine whether a person has a disease or not is known as 

sensitivity. It is a test's capacity to detect positive results in individuals who have a condition. Eq. (13) represents 

sensitivity. 

 

TP
Sensitivity

TP FN
=

+
 (13) 

 

Figure 12 shows the training accuracy, which compares the accuracy of the other classification system (OCS) 

algorithm and the CNN algorithm based on image classification. The training accuracy of CNN is 100%. This 

training accuracy is reached in 19 epochs for the training dataset. 

 

 
 

Figure 12. Training accuracy results 

212



 
 

Figure 13. Validation accuracy results 

 

Figure 13 shows the validation accuracy, which compares the accuracy of the OCS algorithm and the CNN 

algorithm based on image classification. The validation accuracy of the CNN is 97%. This validation accuracy is 

reached in 19 epochs for the training dataset. 

 

 
 

Figure 14. Training loss results 

 

Based on image classification, Figure 14 compares the training loss of the CNN and OCS algorithms. By 

evaluating the model's inaccuracy on the training set, training loss is a metric that assesses how well a model fits 

training data. CNN has a training loss of 0.0012, which is lower than that of the OCS algorithm. 

 

 
 

Figure 15. Validation loss results 
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Based on image classification, Figure 15 shows the validation loss that contrasts the loss of the CNN and OCS 

algorithms. A DL model's performance on the validation set is evaluated using a metric called validation loss. 

CNN has a validation loss of 0.0832, which is lower than that of the OCS method. 

 

 
 

Figure 16. Sensitivity results 

 

Figure 16 compares the performance of two methods, OCS and CNN, in terms of sensitivity across different 

numbers of iterations. The results show that the CNN method consistently achieves higher sensitivity than OCS, 

with a faster and smoother growth trend. In contrast, OCS shows a slower increase with noticeable fluctuations. 

Ultimately, CNN nearly reaches 100% sensitivity, while OCS remains significantly lower. These findings indicate 

the superior accuracy and efficiency of CNN compared to OCS in this experiment. 

 

5. Conclusions 

 

The image classification for AD by CNN based on DL was proposed in this study. This methodology includes 

preprocessing, feature extraction, feature selection and classification. In the preprocessing technique, the contrast 

stretching was used to make the shape of the image unchanged as the original image. After preprocessing, feature 

extraction was used to remove the anomalies in the data. The integration of PCA and RFE was employed to reduce 

the dimension of the size of the image and select the best features. Finally, CNN was implemented to diagnose 

AD early through image classification. This classification improved the accuracy of the dataset and it also resulted 

in high sensitivity. The accuracy was based on the training and validation. The data evaluation consists of training 

(70%) and validation (30%). Additionally, the validation loss and training loss were attained. The expected 

increase was attained for both training and validation accuracy. The resulting accuracy helps in image classification 

without changing the original dataset in the diagnosis of AD. The sensitivity of image classification predicts how 

well the patient is affected by the disease. 
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