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Abstract: Smart cities, ITS, supply chains, and smart industries may all be developed with minimal human 

interaction thanks to the increasing prevalence of automation enabled by machine-type communication (MTC). 

Yet, MTC has substantial security difficulties because of diverse data, public network access, and an insufficient 

security mechanism. In this study, we develop a novel IIOT attack detection basis by joining the following four 

main steps: (a) data collection, (b) pre-processing, (c) attack detection, and (d) optimisation for high classification 

accuracy. At the initial stage of processing, known as "pre-processing," the collected raw data (input) is normalised. 

Attack detection requires the creation of an intelligent security architecture for IIoT networks. In this work, we 

present a learning model that can recognise previously unrecognised attacks on an IIoT network without the use 

of a labelled training set. An IoT network intrusion detection system-generated labelled dataset. The study also 

introduces a hybrid optimisation algorithm for pinpointing the optimal LSTM weight when it comes to intrusion 

detection. When trained on the labelled dataset provided by the proposed method, the improved LSTM 

outperforms the other models with a finding accuracy of 95%, as exposed in the research. 

Keywords: Industrial IoT; Long Short-Term Memory; Attack Detection; Network connectivity; Unknown attacks 

1. Introduction

The IIoT is a subset of the IoT that makes it possible to connect devices in a smart way to provide predictive

services in an industrial sector that is becoming more and more automated [1]. Machine-type communication 

(MTC) is an example of pervasive communication that is needed for the interconnection of devices so that 

machines can collaborate on an IIoT task without human intervention. One machine gathers sensitive information 

from the business setting and sends it to others using a wireless or cellular network interface [2, 3]. The information 

is then analysed by a computer model, which makes precise judgements and perhaps initiates robotic processes. 

The Internet is used for machine-to-machine communication; however, this exposes MTC systems to a wide 

variety of security threats, with, but not incomplete to, attacks, network exploitation, injection attacks [4, 5]. 

Furthermore, the MTC system's many devices collect an enormous variety of data (industrial-critical data) that 

needs regular monitoring to prevent data breaches and tampering. 

Due to variables such as the devices' limited resources, the network's dynamic topology, and the variety of attack 

vectors, detecting assaults on the routing scheme of IIoT strategies can be challenging [6]. Recent years have seen 

the development of a number of methods for dealing with this problem, machine learning-based approaches. 

Different aspects of network traffic, like traffic patterns, are used by these techniques to detect and categorise 

routing attacks [7, 8]. Particular attention is paid in this essay to the RPL protocol, which is vulnerable to routing 

attacks. Attacks against RPL may be broken down into two groups: those that are carried over from WSNs and 

those that are special to RPL and take advantage of its particular weaknesses [9]. This page details a variety of 

RPL assaults, such as Flood Attacks, Data-DoS/DDoS Attacks [10], which mostly target layer 3 of the OSI perfect. 

In reality, the application layer is the highest level of the IIoT architecture [11], and it enables a wide variety of 

industrial processes and applications with smart healthcare, smart vehicles, and so on. The (IIoT) is an all-

encompassing network that serves a wide range of industries and individual users. But, it brings up a wide range 
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of new issues relating to safety, security, the economy, and society. To address these issues, we need scalable 

solutions on a grand scale. Due to their limited resources, IoT sensor nodes necessitate security products that utilise 

as little space, power, and money as possible. These fixes should work with the industry's standard in 

communication protocols [12]. As IoT devices generate vast volumes of data across industrial applications, an IIoT 

system is enticing to cybercriminals [13]. The sheer volume of data suggests that traditional methods of data 

processing are inadequate for IoT and IIoT use cases. Thus, machine learning is one of the best computer models 

for incorporating IoT-device intelligence (ML). 

Maintaining proper command of IIoT's massive industrial systems is a challenging endeavour. The ability to 

swiftly and safely understand and analyse vast volumes of data is crucial for computing systems in the modern day 

[14]. In addition, the latency and reliability of data transmission required high system capability and throughput. 

The overall performance of the industrial sector has been vastly improved thanks to "Deep learning (DL) 

algorithms" and models in terms of dependability and reliability. These algorithms show a lot of promise for fixing 

security issues in IIoT [15]. Unfortunately, they lack the necessary accuracy and have a higher computational cost. 

In order to provide a potential answer to attack detection, optimisation methods might be used in the deep learning 

model. 

This paper's contributions are summed up as: 

❖ The perfect must be able to unearth concealed patterns in classify network traffic as either malicious or benign

in order to detect novel or previously undisclosed threats. We've employed a suite of clustering methods to get

here. The results of many clustering algorithms are pooled together using a weighted voting approach to improve

the accuracy with which the class label (malicious/non-malicious) is predicted for a given piece of IIoT network

data. After conducting a thorough performance investigation, weights have been determined for the results of each

clustering method. An unsupervised mechanism capable of identifying voting, which transforms an unlabelled

dataset into a labelled dataset.

❖ A deep learning model for IoT network attack detection is trained using the labelled dataset produced by the

proposed technique. The performance of several deep learning models (optimised LSTM, MLP, and DBN) has

been compared to determine the most effective model for detecting threats in an Internet of Things (IoT) network.

❖ Hybrid optimisation model is used to choose the LSTM's weight appropriately.

The remaining sections of the paper are as shadows: In Part 2, we outline the current research on how to spot

attacks in IIoT networks. The suggested model is described in depth in Section 3. Section 4 discusses the suggested 

model's implementation and the deep learning models that were employed. Section 5 wraps up the report and 

discusses where the research may go from here. 

2. Related Works

A new MANET routing protocol based on reinforcement learning and named reputation opportunistic routing 

by Ryu and Kim [16] is proposed (RORQ). This protocol uses game theory to identify and blacklist rogue nodes 

in a network, allowing for more streamlined traffic flow. So, our approach can more efficiently locate a routing 

path in a hostile network. The simulation results demonstrated that the suggested technique outperformed other 

cutting-edge routing protocols. Gains 82% in average end-to-end delay, and up to 28% in energy efficiency were 

shown by the proposed method over other algorithms in the blackhole to 12% in energy competence were shown 

by the proposed method over other algorithms in the grayhole attack scenario. 

To aid in the finding of jamming attacks, Obeidat et al. [17] developed a model to analyse the operation of 

VANETs while under jamming attacks, and they offer EVA (Enhancement Voting Algorithm) based on global Trust 

are exchanged. Route Error (RERR) and HELLO packets are utilised during the period of route maintenance. 

Because of their crucial role in routing, these packets are also appraised as part of the trust score. Although while 

misbehaving nodes are technically capable of processing these packets, they are less likely to be utilised than their 

well-behaving counterparts. The calculated global trust value is used to define three trust levels that will be used 

to determine the optimal routing decision in the NS3 simulation. Bonnmotion is used to design and analyse 

mobility scenarios, which are then used to probe the properties of mobile multi-hop networks. In order to develop 

a mechanism strategy, the scenarios were spread to the NS3 network simulators. In order to determine how well a 

network performs when subjected to jamming assaults, it is first analysed using a variety of quality-of-service 

(QoS) metrics and throughput (PDR) measures. 

WSNs are a cornerstone of the (IoT), and Rabhi et al. [18] highlight their susceptibility to routing assaults in 

their presentation of the Routing power (RPL). We also offer a method for identifying three distinct forms of 

assault against RPL, and we highlight some recent research suggestions for doing so. We simulate four network 

scenarios using Contiki-Cooja, one benign and three malicious presenting different phase, where we employed 

WEKA, to determine whether the behaviour was benign or malicious according to the database. In this stage, we 

employ many distinct classification procedures, which collectively allow us to achieve a precision value greater 

than 96%. 
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To identify DDoS bouts in the IoT-CIDDS dataset, Malik et al. [19] suggest a feature engineering and machine 

learning outline. There are two stages to the framework: Our initial step is to create algorithms for dataset 

enrichment, with a focus on using cutting-edge feature engineering for statistical analysis of the dataset's 

probability distribution and feature correlations. Later, using IoT-CIDDS to generate training, validation, and 

testing datasets, we propose an ML model and conduct a complexity analysis of the feature-engineered dataset 

using five machine learning techniques. Performance metrics for training classifiers and evaluating ML models 

include false positive rate, accuracy, precision, recall, area under curve, and computational time. Detecting DDoS 

attacks in standard IoT networks using the 6LoWPAN stack is a challenging problem, but the experimental 

consequences show that significant feature reduction optimises the IDS. 

Based on the DL technology, Alghamdi and Bellaiche [20] describe a cascaded wormhole detection method for 

Internet of Things networks (DTF). Using a federated strategy that ensures data security and privacy at the node 

level, (LSTM) deep learning models were trained. The DTF is based on two trust qualities. Due to its lightweight 

and accurate cascaded and federated learning strategy, the suggested method has achieved an accuracy of 96%. 

Örs and Levi [21] offer a multi-class classifier based on machine learning that can distinguish between six 

different kinds of attacks and normal traffic. Instead of just having a general idea of whether or not attacks are 

happening on a network, our node-based feature extraction and detection approach models the traffic patterns of 

the attackers across a sliding time window, allowing us to pinpoint their exact IP addresses. We also present an 

intrusion detection dataset built from traffic data obtained from real-world IoT devices running 6LoWPAN and 

RPL protocols, which can be used for training and testing our algorithms. In addition to using RPL routing assaults, 

a common method of attack against IoT devices, we also make use of the Mirai botnet. As can be seen from the 

findings, the suggested intrusion detection system has a recall score between 79% and 100% for detecting 6 distinct 

types of attacks. We also deploy the generated model in an implementation across a testbed to demonstrate its 

viability. 

3. Proposed System

3.1 Dataset Explanation 

The LSTM-based discovery is trained with the X-IIOTID: connectivity and device-agnostic intrusion dataset 

for the IIoT [22] dataset. The final version of the dataset has a feature space size of 68 and contains 820834 training 

examples. There are three different kinds of attack labels that can be applied to a target: normal and attack, normal 

and sub-category attack, and normal and sub-sub-category attack. The algorithmic processing pipeline for the 

intelligence layer is depicted in Algorithm 1. 

Algorithm 1. Data pre-processing algorithmic movement 

Input: Raw machine requests D, Target Values 𝑦m,1
Output: 𝛷m×o×n,𝑦m,C

𝑦𝑚,𝐶  ← 𝑂𝐻𝐸(𝑦𝑚; 1)

𝐷 ← 𝑑𝑟𝑜𝑝(𝐷, 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 = [𝐼𝑃, 𝑑𝑎𝑡𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠, 𝑖𝑑𝑠]) 
if 𝐷columns.isNull() and 𝐷columns.dataType in

[string,int] then 

𝐷𝑐𝑜𝑙𝑢𝑚𝑛𝑠  ← 𝐷𝑐𝑜𝑙𝑢𝑚𝑛𝑠 . 𝑓𝑖𝑙𝑙𝑁𝑢𝑙𝑙(𝐷𝑐𝑜𝑙𝑢𝑚𝑛𝑠 . 𝑚𝑜𝑑𝑒())
else 

𝐷𝑐𝑜𝑙𝑢𝑚𝑛𝑠 ← 𝐷𝑐𝑜𝑙𝑢𝑚𝑛𝑠 . 𝑓𝑖𝑙𝑙𝑁𝑢𝑙𝑙(𝐷𝑐𝑜𝑙𝑢𝑚𝑛𝑠 . 𝑚𝑒𝑑𝑖𝑎𝑛())
end if 

if 𝐷𝑐𝑜𝑙𝑢𝑚𝑛𝑠.data Category is string then

𝐷𝑐𝑜𝑙𝑢𝑚𝑛𝑠 = labelEncoder (𝐷𝑐𝑜𝑙𝑢𝑚𝑛𝑠)
end if 

𝜑𝑚 × 𝑛 ←  𝐷 

𝜑𝑙 ← 𝑔𝑟𝑜𝑢𝑝𝐵𝑦(𝑙)

𝛷𝑚×𝑜×𝑛 ←⋃𝜙𝑙
𝐶

return 𝛷𝑚×𝑜×𝑛 , 𝑦𝑚,𝐶
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3.2 Preparing Datasets 

In order to use the obtained dataset for training and prediction, it must first undergo pre-processing. Columns 

like IP addresses, dates, and ids that aren't strictly necessary are taken out of the dataset. All NaN and null values 

are replaced with the median of the related columns [23]. Columns containing strings can have their values 

converted to numbers using label encoding. Take the dataset represented by 𝜑_(mn) where columns have been 

removed and null values have been substituted. Each class label l is transformed using the group by operation G. 

𝜙𝑙 = 𝐺𝑙(𝜙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠×𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)∀𝑙 ∈ 𝐶 (1) 

where, C represents a group of unique intended audiences. Moreover, it can be partitioned into a large number of 

timesteps, each of size o. For the last batch of training data, mon may be expressed as mon=C l. The string data 

type in each target class must be converted into a one-hot encoded vector. The dataset has C distinct classes, one 

of which is the initial target class, y. It's unmistakable that y is a string data type and that its form is (m,1). Changing 

y with a single pass of OHE, 

𝑦𝑚,𝐶 ≔ 𝑂𝐻𝐸(𝑦𝑚,1) (2) 

This stands for the assignment operator. The following is one representation for the hot encoded vector y (m,C): 

𝑦𝑚,𝐶 =

[

0
0
⋮
1
0]

⋯

[

0
0
⋮
0
1]

(3) 

3.3 Data Preparation 

It is necessary to do feature engineering on the ensemble model to guarantee that the data is of the appropriate 

distribution before it can be functional to machine requests. Imagine a sudden influx of machine-generated queries 

D. 

𝐷 = {𝐷𝑀1 , 𝐷𝑀2 , 𝐷𝑀3 , . . , 𝐷𝑀𝑖 , … , 𝐷𝑀𝑚} (4) 

𝐷𝑀𝑖 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑗 , … . , 𝑎𝑛} (5) 

∀1 ≤ 𝑖 ≤ 𝑚, ∀1 ≤ 𝑗 ≤ 𝑛 

where, DMi is the data being communicated by the machine, and aj is a single feature or characteristic of that data, 

and n is the total number of features. For at unit time period, active computers can create a request to send to the 

terminus node. The sending devices will provide you with these queries in the format of 

𝜏𝑡 = {𝑡1, 𝑡2, … , 𝑡𝑘, … , 𝑡𝑜} (6) 

∀1 ≤ 𝑘 ≤ 𝑜, 𝜏𝑡 ⊆ 𝐷

Following is a description of the form of the feature spaces for the associated machine data. 

𝐷𝑀𝑖 , 𝑡𝑘 = 1 × 𝑛 (7) 

𝜏𝑡 = {(1 × 𝑛), (1 × 𝑛), … }1×0 (8) 

The size of the set t may be calculated as on. In order to acquire the final dataset fit for model predictions, 𝜏𝑡 is

transformed to 1. The second dimension of the modified dataset 𝜏𝑡 represents the whole-time step, while the third

dimension represents a number of characteristics. The model’s specifications for the input shape inform the 

implementation of data preparation. It's important to remember that the size of the dataset being transmitted, 𝜏𝑡,
does not change. 
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3.4 Ensemble Learning Model with DL 

The idea behind ensemble learning is that better performance may be achieved by combining the outcomes of 

many learning models. Independent ensemble building and coordinated ensemble construction are two 

implementations of the ensemble learning paradigm that can provide numerous projected outputs. The goal of the 

independent ensemble construction approach is to generate multiple results that can be joint using the ensemble 

technique by independently executing a learning algorithm multiple times on different training data subsets or by 

independently executing different learning models on the same dataset. In contrast, when building a coordinated 

ensemble. 

The suggested model makes use of weighted voting to combine the results of many base learning models in an 

independent ensemble creation method. To predict a class label for each data vector in the given unlabelled dataset 

is the primary goal of the proposed ensemble learning model. As a result, we have relied on clustering methods to 

foretell the labels assigned to data matrices. Small Batch K-Means, Fuzzy C-Means, and OPTICS clustering were 

employed as the foundational learning models for the suggested model. Each clustering method will produce a 0 

or 1 as its predicted output, with 0 representing benign traffic and 1 representing malicious traffic. Two groups, 

one containing benign data and the other containing harmful data, are created by combining the anticipated output 

from each clustering method, for each data entry, using weighted voting using equation 3. 

Using a weighted voting system, the findings of many clustering algorithms are combined to create a single, 

more accurate forecast for the data. This is called an independent ensemble construction approach, 

𝑉 =∑(𝑃𝑖 ∗ 𝑊𝑖)

3

𝑖=1

(9) 

where, Wi stands for the weights connected to the clustering method's base prediction Pi. Eventually, we get to the 

formula for predicting the class label V: 

𝑉̂ = {
1   𝑖𝑓 𝑉 > 0.5
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(10) 

The suggested model's clustering approach, Small Batch K-Means, had its weights linked with the projected 

value adjusted to 0.25 for both OPTICS and Fuzzy C-Means after extensive performance investigation. Algorithm 

2 depicts the whole procedure for applying the ensemble learning model to transform an unlabelled dataset into a 

labelled one. 

Algorithm 2. Working of Ensemble Learning Perfect 

1: Input: 

2: 𝐷UL: Unlabelled Dataset

3: FS: Feature set from Algorithm 1 

4: Begin 

5: Create an unfilled list 𝐷L
6: Set 𝑊1 = 𝑊2 = 0:25 & 𝑊3 = 0:50 7: 

for each data-entry 𝑑UL in 𝐷UL do 8: 𝑃1 
= 𝑀𝐵𝐾𝑚𝑒𝑎𝑛𝑠(𝐹𝑆(𝑑𝑈𝐿))
9: 𝑃2 = 𝑂𝑃 𝑇 𝐼𝐶𝑆(𝐹𝑆(𝑑𝑈𝐿))
10: 𝑃3 = 𝐹𝐶𝑚𝑒𝑎𝑛𝑠(𝐹𝑆(𝑑𝑈𝐿))
11: 𝐶𝑎𝑙. 𝑉 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞. 3 
12: 𝑖𝑓 𝑉 > 0: 5 𝑡ℎ𝑒𝑛 
13: 𝑆𝑒𝑡 𝑉̂ = 1 
14: 𝑒𝑙𝑠𝑒 
15: 𝑆𝑒𝑡 𝑉̂ = 0 
16: 𝑒𝑛𝑑 𝑖𝑓 
17: 𝐴𝑝𝑝𝑒𝑛𝑑 (𝑑𝑈𝐿; 𝑉̂) 𝑖𝑛 𝐷𝐿 
18: 𝑒𝑛𝑑 𝑓𝑜𝑟 
19: 𝑟𝑒𝑡𝑢𝑟𝑛 𝐷𝐿: 𝐿𝑎𝑏𝑒𝑙𝑙𝑒𝑑 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 
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Figure 1. Neural network construction (a) LSTM NN (b) Multilayer Perceptron NN (c) DBN. 

 

Labeled data may be produced with the help of the suggested ensemble model. In order to train various deep 

learning models, the created labelled dataset is put to use. Through performance analysis, we choose a model that 

is effective in detecting malicious assaults in an IIoT network using LSTM networks [24], MLPs [25], and DBNs 

[26]. Figure 1 depicts the underlying architectures from which the various deep neural network models were 

constructed. To detect unidentified network attacks at the edge layer, the trained DL model can be organised at the 

fog layer. This study uses a hybrid optimisation model to determine the LSTM's weight optimally, as will be shown 

below.  

 

3.4.1 The HCPSO algorithm 

In this paper, we suggest a fresh hybrid algorithm called the Hybrid Cat-Particle Swarm Optimization (HCPSO) 

algorithm. We integrate the CSO and PSO that are recognised as good metaheuristic algorithms. We employ the 

entire CSO scheme procedure in the HCPSO algorithm, with a few tweaks here and there. Similar to PSO, the 

algorithm stores both the global and local optimal positions. After that, we use of the specified dimension in 

searching mode, and the best new contender is picked to take its place. This hybridization attempts to achieve a 

faster-convergent algorithm without significantly increasing its execution time. All steps of the HCSPO algorithm 

are labelled as follows. 

Then, in the range [0,1], generate a vector of N searchers' initial positions (X) and speeds (V). 

 

𝑋 = [

𝑥11 𝑥12 ⋯ 𝑥1𝐷
𝑥21 𝑥22 ⋯ 𝑥2𝐷
⋮
𝑥𝑁1

⋮
𝑥𝑁2

⋱ ⋮
⋯ 𝑥𝑁𝐷

] , 𝑥𝑘𝑑 ∈ [0,1] (11) 

 

𝑉 = [

𝑣11 𝑣12 ⋯ 𝑣1𝐷
𝑣21 𝑣22 ⋯ 𝑣2𝐷
⋮
𝑣𝑁1

⋮
𝑣𝑁2

⋱ ⋮
⋯ 𝑣𝑁𝐷

] (12) 

 

where, 𝐷 is the number of items types. 

1. Convert the position (𝑋) into MBKP-MC solution term (𝑌) using Equation (14). 

 

𝑌 = [

𝑦11 𝑦12 ⋯ 𝑦1𝐷
𝑦21 𝑦22 ⋯ 𝑦2𝐷
⋮
𝑦𝑁1

⋮
𝑦𝑁2

⋱ ⋮
⋯ 𝑦𝑁𝐷

] (13) 

 

𝑦𝑘𝑑 = 𝑟𝑜𝑢𝑛𝑑(𝑥𝑘𝑑 ∗ (𝑏𝑑 − 𝑎𝑑)) (14) 

 

2. Verify all of the limitations. Make sure that all the solutions are an infeasible area which means all the 

solutions must meet the MBKP-MC constraints. Consider each solution's fitness value (total profit) and rank them 

accordingly. Divide the individuals into seeking and tracing modes. 

3. Individuals who are actively seeking something. Create copies based on their own the best position C k 

Equation (15) and modify the selected dimension based on the best global solution Cg Equation (16). 

 

𝑥𝑗,𝑑
′ = 𝐶𝑘,𝑑 ,   𝑑 = 1,2, …𝐷 (15) 
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𝑥𝑗,𝑑
′ = 𝐶𝑔,𝑑 ± 𝑆𝑅𝐷 ∗ 𝑟 ∗ 𝐶𝑔,𝑑 (16) 

 

4. If individuals are in tracing mode. Update the velocity and position based on PSO movement as formulated 

in Equation (17) - Equation (18) 

 

𝑉𝑖(𝑡 + 1) = 𝜔𝑉𝑖(𝑡) + 𝑐1𝑟1 (𝐶𝑔(𝑡) − 𝑋𝑖(𝑡)) + 𝑐1𝑟1(𝐶𝑖(𝑡) − 𝑋𝑖(𝑡)) (17) 

 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1) (18) 

 

Combine the cats in both the searching and tracing modes, making sure that no spots are beyond the range [0,1]. 

It is necessary to change the solution by means of Equation if it is larger than the search space (19). 

 

𝑥𝑘 =

{
 

 
𝑥𝑘 −min (𝑥𝑘)

max(𝑥𝑘) − min (𝑥𝑘)
,    𝑖𝑓 min(𝑥𝑘) < 0

𝑥𝑘
max (𝑥𝑘)

,                         𝑖𝑓 max(𝑥𝑘) > 1
 (19) 

 

5. Convert the new position (𝑋) into the MBKP-MC solution term (𝑌). Check all the constraints and then 

evaluate the fitness value. 

6. Update the best individual position 𝐶k and the best global position 𝐶g. 

7. Check the termination criterion. If the criterion is reached, then the algorithm is stopped and the final solution 

is 𝐶g. But, if the criterion is not reached, go back to step 6. 

 

4. Results and Discussion 

 

4.1 The Evaluation Metrics 

 

The following equations are used to evaluate the model's presentation using some of the most used metrics. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (20) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (21) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (22) 

 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (23) 

 

Table 1 presents the validated results of proposed model. Figures 2 to 5 provide the graphical analysis of various 

metrics.  

 
Table 1. Comparative investigation of test consequences 

 

Algorithm Precision Recall F-score Accuracy 

KNN 87.21 80.15 80.43 80.10 

SVM 84.32 85.93 83.45 85.71 

MLP 92.43 92.15 91.68 92.10 

DBN 93.48 92.44 91.81 92.46 

LSTM 90.21 89.54 89.03 89.52 

Optimized Ensemble 96.61 94.52 93.24 94.53 
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Figure 2. Graphical analysis in accuracy 

 

 

 

Figure 3. Precision analysis 

 

 

 

Figure 4. Comparative analysis of proposed model 
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Figure 5. F1-score analysis 

 

In the analysis of accuracy, KNN achieved 80%, SVM achieved 85%, MLP achieved 92%, DBN achieved 92%, 

LSTM achieved 89.52% and projected model achieved 94.53%. The reason for better presentation is that the 

weight of the LSTM is optimized by HCPSO. When comparing with all models, SVM achieved poor performance 

on precision, i.e., 84.32%, where the MLP, DBN, LSTM achieved nearly 90% to 94% of precision and finally, the 

proposed model achieved 96.61%. When the models are tested with recall and F-score, the KNN achieved 80%, 

SVM achieved 83% to 85%, MLP achieved 92%, DBN achieved 92%, LSTM achieved 89% and proposed 

ensemble model achieved 93% of F-score and 94.52% of recall. 

 

5. Conclusion 

 

We provide a model that may transform an unlabeled network dataset into a labelled one, allowing for the 

prediction of previously undiscovered attacks. The AI-based ensemble model that aided the intelligence layer in 

predicting the output label is evaluated using accuracy, F1-score. The projected ensemble learning model converts 

the dataset into a labelled dataset so that it may be used to train a DL model. Improved versions of the LSTM, 

MLP, and DBN deep learning models were used to increase classification accuracy in the study. With an attack 

detection accuracy of 95% on the analysed dataset, the results show that optimised LSTM performs better than the 

other two DL models in identifying malicious assaults in an IIoT network. To identify new threats, the proposed 

unsupervised ensemble-based learning algorithm analyses unlabeled IIoT network data. In a fog computing setup, 

this concept may be used in the cloud. In order to use deep learning models for network intrusion detection, the 

proposed method labels network traffic. The trained network may be installed at the fog layer to analyse the 

network traffic of edge devices and identify them, with frequent updates in the cloud to account for new assaults. 

The stress on fog and on power- devices may be decreased by employing a fog computing architecture. 

Implementing the suggested model on a real-world IoT network using a fog computing architecture would allow 

us to further investigate its efficacy and complexity. The study also introduces a hybrid optimisation algorithm for 

pinpointing the optimal LSTM weight when it comes to intrusion detection. When trained on the labelled dataset 

provided by the proposed method, the improved LSTM outperforms the other models with a finding accuracy of 

95%, as exposed in the research. 
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