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Abstract: A notable association between Alzheimer’s Disease and Epilepsy, two divergent neurological conditions,
has been established through previous research, illustrating an elevated seizure development risk in individuals
diagnosed with Alzheimer’s Disease (AD). The hippocampus, fundamental in both seizure and tumour pathology,
is intricately investigated herein. The subsequent aberrant electrical activity within this brain region, frequently
implicated in seizure onset and propagation, underpins a complex relationship between degenerative cerebral changes
and seizure incidence. Symptomatic manifestations in hippocampal glioma include, but are not limited to, seizures,
memory deficits, and language difficulties, contingent upon the tumour’s location and size. Thus, the cruciality
of proficient seizure detection and analysis is underscored. Employing canny edge detection and thresholding to
delineate contours and boundaries within images, an analysis was conducted by transmuting grayscale or colour
images into a binary format. The input dataset, utilised for the training and testing of machine and deep-learning
models, comprised images of seizures. These models were subsequently trained to discern patterns and features
within the images, facilitating the differentiation between two predefined classes. Resultantly, the models predicted,
with a defined accuracy level, the presence or absence of a seizure within a new image. The Support Vector Machine
(SVM) and Convolutional Neural Network (CNN) models demonstrated classification accuracies of 96% and 95%,
respectively. By analysing performance metrics on a per-slice basis, the localization of seizure activity within the
brain could be visualised, offering valuable insights into regions affected by this activity. The amalgamation of edge
detection, feature extraction, and classification models proficiently discriminated between seizure and non-seizure
activities, providing pivotal insights for the diagnosis and therapeutic strategies for epilepsy. Further, studying
these neurological alterations can illuminate the progression and severity of cognitive and emotional deficits within
affected individuals, whilst advancements in diagnostic methodologies, such as Magnetic Resonance Imaging (MRI),
facilitate an enriched comparative analysis.
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1 Introduction

Gliomas, predominantly found within the central nervous system, emerge in the brain or spine and are
invariably linked with tumour formation, provoking symptoms ranging from seizures and headaches to personality
alterations. Conversely, Hippocampal Sclerosis (HS), distinguished by a non-standard amount of scar tissue within
the hippocampus - an essential region for memory formation - is capable of inducing a spectrum of neurological
and cognitive impairments. It has been illuminated through research that HS often coexists with gliomas, especially
glioblastoma, which is recognised as the most pervasive and aggressive brain cancer variant and more than 60–70%
of dementia cases are under treatment [1]. This nexus is pivotal, suggesting that chronic inflammation or alternative
processes within the hippocampus may catalyse the development of certain gliomas. Nonetheless, a more profound
exploration and the incorporation of open-source datasets are paramount to scrutinise the precise interrelationship
between glioma and HS.

The hippocampus, critical for memory formation, learning, and spatial navigation, is frequently entangled in
assorted neurological conditions, encompassing seizures and tumours. Gliomas, accountable for roughly 40% of
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all primary brain tumours, can manifest in the hippocampus, besides numerous other cerebral areas, engendering
symptoms such as memory issues, headaches, and personality and behavioural transformations. Analyses probing
potential treatments and therapies intended to address seizure and tumour pathology, which correlate hippocampal
damage with tumour progression, are chronicled within studies [2].

In this investigation, a focus is placed upon the relationship between Alzheimer’s disease and glioma, wherein
both conditions are capable of inciting Alzheimer’s and glioma-related seizures, hence requiring an in-depth
examination of the conceivable connection between these two neurological disorders and their unified symptomology
of seizures. Comprehensive data collection and a rigorous analysis of the prevalence of seizures in individuals
afflicted with Alzheimer’s disease and glioma was undertaken. Subsequent methodology for the detection of Seizure
affected images from datasets encompassed analysis through canny edge and threshold segmentation process, whilst
classification methods included SVMs, logistic regression, AdaBoost, Gradient Boost, Gaussian Naı̈ve base, and
CNN models. The methods proposed were evaluated upon a database of seizure-induced MRI images from both
datasets. Classifier performance was appraised by gauging the accuracy, sensitivity, specificity, and slice-by-slice
analysis, while performance metrics were computed and scrutinised.

Employing canny edge to discern and detect image edges, and thresholding to segregate the hippocampal
edges from the background, a combination of the Harris matrix and eigen vector was utilised to detect image
features, facilitating a more nuanced and precise segmentation of the hippocampus. It was demonstrated that a)
thresholds and canny edges of images can be deployed to identify regions of interest in brain MRI scans for detecting
hippocampal anomalies, b) hessian metrics and eigenvalues of images can be employed to segment the hippocampus
from the remaining brain, and c) long-term imaging performance analysed by machine learning classifiers and
fundamental deep learning architecture can be utilised to monitor glioma progression and assess responses to
subsequent treatments. The study underscored that only seizure-affected images were used for early diagnosis. A
potential hypothesis for the comparative analysis of seizure induction may postulate: “Distinct patterns of seizure
induction, observed on MRI imaging, are attributed to differential neurophysiological changes within the hippocampi
of Alzheimer’s and glioma patients.”

The findings from these methods may augment the diagnostics and treatment of both seizure and tumour
pathology, wherein MRI biomarkers emerge as instrumental tools for evaluating hippocampal activity in seizure
and tumour pathology, empowering MRI usage for the identification, measurement, and monitoring of alterations in
various neurological disorders, including seizures and tumours.

2 Related Study

MRI image datasets, induced by seizures, serve as the analytic foundation for this investigation. The hippocampus,
encapsulating regions such as CA1, CA2, CA3, dentate gyrus, and subiculum, is recognized for its multi-faceted
functionality, all of which are interlinked through a sophisticated network of neural pathways and neurotransmitters.
Moreover, a critical role is played by the hippocampus in modulating the hypothalamic-pituitary-adrenal (HPA)
axis, crucial for the formulation and retention of long-term memories. Consequently, impairments to this structure
can precipitate deficits in memory, spatial orientation, and navigation. The 2D multi-orientation technique, which
includes orientation alignment [3]. A comprehensive understanding of the hippocampus’s anatomical features and
functionalities becomes imperative for diagnosing and treating neurological and psychiatric disorders.

Pertinent studies have underscored the association between the hippocampus and an array of neurological
disorders, inclusive of AD, Parkinson’s Disease (PD), tumours, and depression. Furthermore, hippocampal changes
have been documented in regular ageing processes and subsequent stress exposure. The delineated patch-based
grading (PBG) pattern similarities within hippocampus images, while another study discerned that FPN architecture
integrated single-in and single-out, along with multiple-in and multiple-out encoders, employing a divide-and-
conquer strategy within their encoder.

The classification of images utilizing CNNs sometimes does not yield accurate outcomes, the ensuing segmentation
process might deliver more exact results. To extract object boundaries, edges, and distinguish between all regions
of the image, the minimum thickness range of hippocampus sclerosis, lying between 40 and 52 mm, is utilized.
Employed for edge identification, threshold canny edge drawing isolates noise without altering original features,
identifying edges through a threshold. The resultant edge image presents a difference in the threshold value,
determined via supervised learning. Ideal for low-noise images and complex data, edge-based segmentation,
in conjunction with the canny edge operator, proves advantageous. Hessian-based multiscale filtering, utilizing
convolved 2D or 3D Gaussian filters of eigenvalues, is used to delineate shapes and structures within the images.
Gradual loss alterations occur with infinite distance of the eigenvalue of a Hessian matrix, primarily used for image
classification and object recognition. This assists in locating a function’s local extremum and the saddle points.
Hessian matrix 2×2 may possess one or two eigenvalues (positive and negative) and is employed to locate patches
in corners with an autocorrelation matrix of eigenvalues. Raw image feature detection is achieved through the
second derivative of the Hessian matrix. Both image and scale space local extremum were detected using Hessian
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matrices and the difference of Gaussian [4]. Glioma characteristics in the hippocampus in patient MRI scans were
compared with T2/FLAIR signal hypointensities and enhanced contrast enhancement. Consideration of the left and
right hippocampus is recommended in patients with brain tumours. Glioma and hippocampus cause significant brain
functional plasticity, including neural reorganization as determined by transcranial magnetic stimulation [5, 6]. The
hippocampus segmentation using machine and deep learning approaches [7].

The relative study clearly shows that the MRI contrast agent is used to detect the abnormalities, and texture of
the hippocampus structure. A multi-task deep CNN model can be constructed to simultaneously learn hippocampal
segmentation and tumor disease classification. Radiomics classification and prediction can be used for Alzheimer’s
Disease and mild cognitive impairment. Furthermore, analyzing hippocampal shape, tumor and asymmetry through
cascaded convolutional neural networks can provide valuable insights. Progressive brain tumor atrophy, a key
hallmark of AD, can be assessed through temporal and spatial analysis using an improved CNN model and resting-
state fMRI data. 3D visualizations of MRI data can meet all of these criteria and enhance accuracy in tumor
prediction, as 2D images lack the complete representation in the deep learning analysis [8–16].

Figure 1. Proposed methodology

In Figure 1, the proposed methodology is elucidated, incorporating the concatenation of seizure images and
the application of canny edge detection and threshold segmentation techniques. Subsequently, Hessian matrix
eigen vector image transformation is employed to extract pertinent features. A classification algorithm is ultimately
deployed to categorize the images, grounded on these extracted features. This strategy facilitates the identification
and differentiation of seizure-related patterns within neuroimaging data.

In the context of AD, the emergence of amyloid-beta plaques and neurofibrillary tangles is implicated in
the instigation of hippocampus-induced seizures. The analyses articulated in this article draw upon Alzheimer-
Hippocampus Sclerosis (AHS) and Lower Grade Glioma (LGG) seizure image datasets. Primary tumours are
characterised by cells that originate intrinsically within the hippocampus, whilst secondary tumours proliferate to
the hippocampus from disparate brain regions. In instances of AHS, meticulous localization and segmentation of
the hippocampus and glioma images can be actualised through the implementation of canny edge and threshold
methods. For the detection of tumours and hippocampus regions, canny edge detection is utilised to identify the
edges of tumours and hippocampi within an image. Subsequent threshold segmentation is employed to demarcate
regions of interest within the image.

3 Methodology

The analysis was conducted on the Alzheimer (AHS) and Glioma (TCIA-LGG) depository datasets. For the
detection of seizures within MRI images, the canny edge detection and thresholding methods were employed. The
canny edge detection algorithm, in the realm of image processing, identifies pixels with a pronounced gradient
magnitude, which correspond to edges. This method is implemented to extract object contours or boundaries for
further analysis. Concurrently, thresholding serves as a technique for image binarization by segregating pixels into
varying intensity levels, determined by a selected threshold value.

The goal of the study encompasses the classification of whether a presented image contains a seizure. Input
datasets, utilized for the training and testing of both machine and deep learning models, presumably comprise images
illustrating seizures and images devoid of them. Models are trained to discern patterns and features within these
images to distinguish between seizure and non-seizure activities.

The propounded methodology integrates numerous steps for seizure detection, which includes the identification of
seizures in MRI images, extraction of pertinent features, classification of MRI images, and a subsequent performance
comparison. This methodology holds the potential to proffer invaluable insights for epilepsy diagnosis and treatment,
facilitating precise and efficient seizure detection through the analysis of MRI images. A detailed examination of
seizure-affected regions in the image is rendered through slice-by-slice image analysis.

For the noise reduction, intensity gradient of the image, non-maximum suppression, double thresholding, and
edge tracing by hysteresis, the algorithm is implemented. Thresholding, utilized to differentiate objects in an image
based on their intensity values, distinguishes between foreground and background pixels. The canny edge detection
method leverages two thresholds: 0.1 and 0.15. The upper limit, 0.15, is implemented to detect edge pixels,
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whilst pixels below the lower limit of 0.1 are disregarded. This method facilitates noise reduction, non-maximum
suppression, gradient calculation, double thresholding, and hysteresis edge tracking with grayscale images. The
noise reduction is enacted through a 5×5 Gaussian filter with a (2k+1) × (2k+1) kernel size, as expressed in Eq. (1).

Hij =
1

2πσ2
exp

(
−
(
i− (k + 1)2

)
+
(
j− (k + 1)2

)
2πσ2

)
; 1 ≤ i, j ≤ (2k + 1) (1)

The image gradient can be computed by convolving I with Sobel kernels Kx and Ky, which utilize edge and pixel
intensity to identify image edges. Subsequently, the magnitude G and the slope θ of the gradient are determined as
presented in Eqs. (3) and (4).

Kx =

 −1 0 1
−2 0 2
−1 0 1

 Ky =

 1 2 1
0 0 0
−1 −2 −1

 (2)

Gradient Intensity |G| =
√

I2x + I2y (3)

Edge direction θ(x, y) = arctan
Ix
Iy

(4)

3.1 Hessian Metric and Eigenvalues in Image Analysis

The Hessian matrix, a symmetric matrix, is elucidated as representing the actual eigenvalues of a 2D image’s
orthogonal coordinate system, with the nuances of second-order image intensity variations being circumscribed
around the voxel point. To facilitate its computation, initial image smoothing is necessitated to mitigate noise,
followed by the employment of numerical approximations of the second-order partial derivatives Ixx, Iyy, and Ixy.
This approach assists in revealing the direction of the gradient curve of the image.

The Gaussian function G(x, y) is implemented as a smoothing function:

G(x, y, σ) =
1

2πσ2
e−

(x2+y2)
2σ2 (5)

The partial derivative in x of Eq. (5), denoted as Gx, is computed as:

∂G(x, y, σ)

∂x
= − x

2πσ4
e−

(x2+y2)
2σ2

Consequently, Ix can be attained by filtering the image with the aforementioned function. Employing x, y =
[−3Σ : 3Σ] as the filtering mask, the partial derivative is obtained through image convolution with the mask.

The convolution masks for Ixx, Iyy and Ixy, given by Eqs. (6)-(8) respectively, can be expressed as follows.

∂2G(x, y, σ)

∂2x
=

(
−1 +

x2

σ2

)
e−

(x2+y2)
2σ2

2πσ4
(6)

∂2G(x, y, σ)

∂2y
=

(
−1 +

y2

σ2

)
e−

(x2+y2)
2σ2

2πσ4
(7)

∂2G(x, y, σ)

∂xy
=
( xy

2πσ6

)
e−

(x2+y2)
2σ2 (8)

In a multi-scale approach, this formulation proves beneficial to acquire the Hessian matrix at disparate scales, as
illustrated in Figure 2.

Figure 2. Representation of the hessian metric and eigenvalues
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The Hessian metric, a measurement of a function’s curvature, is defined by the second partial derivatives of
the function with respect to its independent variables. The eigenvalues of the Hessian matrix are intrinsically tied
to the curvature of the function; negative eigenvalues indicate concavity, while positive ones denote convexity. In
Figure 2, the Hessian metric is exemplified as a matrix with two eigenvalues, both of which are negative, indicating
a concave function. The eigenvalues can be harnessed to ascertain the stability of the function: dual negative
eigenvalues suggest stability, while the presence of a positive eigenvalue implies instability. The focal loss function
was employed for the classification of the CNN model.

The implementation of Balanced Cross Entropy (BCE) is defined as follows:

BCE =
∑
i

(Yi ln (Pi) + (1− Yi) ln(1− P ) (9)

with the understanding that (1− Pi)
γ represents the cross-entropy loss, featuring a tunable focusing parameter

γ ≥ 0. A specific instance of the focal loss, Pi, is articulated as:

Pi = (∝i (1− Pi)
γ
logPi (10)

Crucially, Pi remains unaffected in scenarios of minor loss and approaches zero in situations where wellclassified
examples are down-weighted in the model.

Eigenvalues of the Hessian matrix find utility in altering the gradient of a loss function, enabling an infinitesimal
progression in a prescribed direction. This adjustment of the gradient, achieved through the usage of Hessian matrix
eigenvalues, enhances model stability by amplifying the penalty applied to high-loss, negative samples. Therefore,
the model can navigate an infinite distance in a designated direction, thus fortifying its stability and honing its
focus on complex examples, as depicted in Figure 3, which illustrates the impact of epilepsy induced by glioma and
Alzheimer-affected MRI images.

Figure 3. Illustration of epilepsy induced by glioma and Alzheimer affected MRI images

The segmented hippocampus, discernible on both left and right aspects, is exhibited in Figure 4 subsequent
processes involve the utilization of a canny edge detector for the identification and tracking of image edges, followed
by threshold segmentation to ascertain regions of interest within the image. The culmination of this methodology is
the concatenation of the hippocampus, entailing the fusion of its bifurcated sides, thereby facilitating a more accurate
representation for ensuing analysis. The image dimensions of (233, 197, 3) signify a width of 233 pixels, a height of
197 pixels, and the incorporation of 3 colour channels (RGB).

Figure 4. Canny edge and threshold segmentation

Figure 5. Hessian metrix of AHS images
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In Figure 5, the Hessian metric and eigenvalues of maximum and minimum images are presented. The Hessian
matrix, a 3×3 matrix, is employed to compute the local curvature of a surface. Eigenvalues serve as indicators,
signifying whether the surface under examination is convex (two positive eigenvalues and one negative) or concave.

Contrastingly, Figure 6 reveals the results of applying canny edge and threshold segmentation to normal and
glioma images. The methodology empowers the detection and identification of alterations in the brightness or colour
between normal and glioma tissue. Normal imagery reveals a more uniform gradient of brightness, whereas glioma
imagery exposes more conspicuous edges. Prominent white edges indicate regions where brightness or colour
deviates significantly, offering a technique that efficiently identifies tissue alterations.

Figure 6. Canny edge and threshold segmentation

Figure 7. Hessian metrix of glioma images

Lastly, Figure 7 demonstrates that the Hessian metric assists in more accurately identifying tumour regions due
to its proficient detection of tumour boundaries when compared to alternative methods. Additionally, eigenvalues of
the Hessian matrix can serve to measure the texture of tumour regions, facilitating the differentiation between varied
tumour types.

3.2 Elbow Method for Optimal Cluster Determination

The application of the Elbow method, instrumental in discerning the optimal number of clusters pertinent to
a particular dataset, hinges on the principle that the total within-cluster sum of squares (WCSS) progressively
diminishes as the number of clusters augments. Esteemed studies have demonstrated the efficacy of the Elbow
method in ascertaining the optimal number of clusters in diverse data types, such as gene expression data, MRI data,
and genomic data. Insights derived from the outcomes of the Elbow method have catalyzed the establishment of a
classification system for LGGs and AHS, alongside the identification of biomarkers integral to disparate subtypes of
images.

In Figure 8, a graphic representation delineating the Elbow method — a juxtaposition of the number of clusters
against the cost function — is illustrated. The horizontal and vertical axes epitomize the number of clusters and
the value of the cost function (cs), respectively. This cost function is methodically determined by gauging the sum
of squared errors (SSE) within each cluster, with SSE being computed by tallying the squared distances between
each constituent point within a cluster and the cluster centre. The optimal cluster number emerges at the graph’s
inflection point, where the cost function’s reduction rate commences to plateau, coined as the “elbow” of the graph.
This pivotal point implies that the incorporation of supplementary clusters will not substantially mitigate the cost
function.

The Elbow method, as delineated by Kodinariya, is strategically deployed to discern the optimal number of
clusters within a dataset, executed by graphing the SSE across varying values of the cluster number k. A decreasing
trend is observed in SSE as k is incremented; however, beyond a certain point, the decrement in SSE is not sufficiently
substantial to warrant the incorporation of additional clusters. The juncture at which this decrement in SSE ceases
to be noteworthy is heralded as the optimal cluster number. Consequently, a discernible inflection at k=2 in the
aforementioned plot suggests potential optimality in employing two clusters for data classification in the context
presented.
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Figure 8. Elbow method graph illustrating clusters versus cost function

Notably, the K-means clustering algorithm, which organizes data points into clusters predicated on their analogous
characteristics, can be judiciously exploited to segment images by congregating similar pixels. Subsequently, this
clustering outcome can facilitate the identification of variant tissue types within an image, thus serving as a potent
tool in biomedical image analysis and classification.

4 Results and Analysis of Epilepsy Images

In the realm of epileptic imaging analysis, machine learning and elementary deep learning classifiers have been
employed to scrutinize model outputs. SVMs, representing a class of supervised learning models, are fabricated to
instantiate a hyperplane or an ensemble of hyperplanes within a high- or infinitely-dimensional space. Concurrently,
logistic regression is utilised to delineate the decision boundary, which subsequently bifurcates the data into binary
classes.

An ensemble learning algorithm, AdaBoost amalgamates multiple weak learners into a singular, robust learner.
Herein, the weak learners typically manifest as decision trees, characterised by a single bifurcation, referred to as
decision stumps. The model sequentially accentuates the observations, prioritising the instances that are challenging
to classify while mitigating focus on those effectively handled. As this iterative process unfolds, sample weights
are modified individually, culminating in the formation of a final model after numerous iterations. Conversely, the
Gradient Boost model is synthesised through the amalgamation of several weaker models, wherein each contributes
to the model’s predictive prowess.

The Gaussian Naive Bayes, deploying a Gaussian distribution, estimates the probability of each class given the
data features and in turn, demarcates the decision boundary, thereby segregating the data into two distinct classes.

A quintessential CNN architecture is formulated of assorted layers, each executing a distinctive function,
orchestrated to synergistically construct a representation of the input data. Comprising convolutional layers, pooling
layers, fully connected layers, and normalization layers, these intricately structured networks utilise the output from
each layer to facilitate predictions or classifications pertaining to the input data. The efficacy of region-based active
contours and graph-cuts in calculating accuracies has also been explored. CNNs have been the optimal choice for the
automated detection of hippocampus segmentation. The IDH1 wild-type glioblastoma used to assess hippocampus
resilience in brain tumor [17, 18]. Furthermore, an amalgamation of a 3D CNN and a 2D CNN has been investigated
to enhance accuracy.

MATLAB has been prevalently utilised for the execution of regression and classification metric predictions on
individual images. While CNNs have demonstrated significant efficacy in tasks necessitating substantial data and
pattern identification within images, traditional machine learning classifiers have emerged as more appropriate for
simpler tasks that demand less data and hinge predominantly on data features.

4.1 Evaluation Metrics Employed in Analysing Seizure Imagery

Utilisation of logistic regression metrics for the computational assessment of the probability affiliated with a
given 2D image being categorised into a specific class or outcome emerges as pivotal, especially when discerning the
likelihood of particular conditions or diseases based on distinct sets of characteristics. In this context, Table 1
delineates the regression scores, distinguishing between normal and seizure-impacted images, while Figure 9
demonstrates the performance matrix.

Performance metrics, including accuracy, precision, recall, and f-measure, for individual 2D images have been
computed. These metrics serve as valuable tools for evaluating diagnostic accuracy, offering insights into potential
areas necessitating enhancement. Thus, the efficacy of specific methodologies in detecting and categorising distinct
seizure activities at the image level is ascertained.

Details pertaining to classification performance matrices are revealed in Table 2, Figure 9, and Figure 10. It is
suggested that an increase in the number of slices correlates to an enhancement in analysis detail and a reduction in
the number of seizure pixels. Consequently, Figure 11 shows cases the relationship between slice quantity and the
average count of seizure pixels, contributing to the diagnostics and treatment approaches for epilepsy.
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Table 1. Regression metrics for normal, masked, and seizure images

Salt and Pepper Noise Method
Images SNR Peak-SNR MSE SSIM SNR Peak-SNR MSE

Normal Image 14.8877 19.1768 106.6993 0.8688 35.6855 40.0119 277.5116
Masked Image 14.5632 19.0679 105.3979 0.8661 42.2295 46.7714 284.4962
Seizure Image 13.3925 18.7648 103.5315 0.8577 36.1346 41.5338 298.8684

Figure 9. Regression model-driven performance metrics of seizure imagery

Figure 10. Analysis of epilepsy-affected imagery by slice number

Figure 11. Performance metrics for seizure imagery
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Table 2. Slice-by-Slice calculation of performance metrics

Images Accuracy Sensitivity F-measure Precision MCC Dice Jaccard Specificity
Normal
Image

0.8977 0.8701 0.8569 0.8356 0.8569 0.8569 0.7456 0.9075

Seizure
Image

0.8765 0.9359 0.8087 0.7120 0.7347 0.8087 0.6789 0.8536

Slice1 0.6063 0.0748 0.0120 0.0065 -0.1099 0.0120 0.0060 0.6238
Slice2 0.6022 0.0669 0.0120 0.0066 -0.1202 0.0120 0.0060 0.6222
Slice3 0.6106 0.0632 0.0084 0.0045 -0.1032 0.0084 0.0042 0.6253
Slice4 0.6100 0.0690 0.0095 0.0051 -0.1033 0.0095 0.0048 0.6251
Slice5 0.6103 0.0750 0.0103 0.0056 -0.1011 0.0103 0.0052 0.6253
Slice6 0.6143 0.0959 0.0116 0.0062 -0.0875 0.0116 0.0058 0.6268
Slice7 0.6100 0.0690 0.0084 0.0051 -0.1202 0.0084 0.0116 0.6268
Slice8 0.6176 0.0646 0.0061 0.0032 -0.0852 0.0061 0.0031 0.6278
Slice9 0.6082 0.0669 0.0120 0.0066 -0.1202 0.0120 0.0060 0.6222
Slice10 0.6195 0.0368 0.0029 0.0015 -0.0844 0.0029 0.0014 0.6284
Slice11 0.6194 0.0578 0.0578 0.0025 -0.0812 0.0048 0.0024 0.6284
Slice12 0.6220 0.0875 0.0064 0.0033 -0.0686 0.0064 0.0032 0.6295
Slice13 0.6225 0.0500 0.0032 0.0016 -0.0727 0.0032 0.0016 0.6295
Slice14 0.6231 0.0187 0.0011 0.00054638 -0.0752 0.0011 5.31E-04 0.6296
Slice15 0.6232 0.023 1.30E-03 6.70E-04 -0.0741 1.30E-03 6.52E-04 0.6297
Slice16 0.6229 0.0285 1.70E-03 8.66E-04 -0.0745 1.70E-03 8.41E-04 0.6296
Slice17 0.6291 0.0485 0.0012 6.29E-04 -0.0457 0.0012 6.21E-04 0.6319
Slice18 0.6321 0.0529 4.11E-04 2.06E-04 -0.0246 4.11E-04 2.05E-04 0.633
Slice19 0.6322 0.0182 1.23E-04 6.19E-05 -0.0255 1.23E-04 6.16E-05 0.633
Slice20 0.6022 0.0669 1.20E-02 6.60E-03 -0.1202 1.20E-02 6.00E-03 0.6222
Slice21 0.6324 0.0038 2.06E-05 1.03E-05 -0.0236 2.06E-05 1.03E-05 0.633
Slice22 6.23E-01 8.70E-02 0.0057 3.00E-03 -6.53E-02 0.0057 0.0029 0.6299
Slice23 0.616 0.1687 0.0226 0.0121 -0.0675 0.0226 0.0114 0.6281
Slice24 0.6057 9.67E-02 1.66E-02 0.0091 -0.1057 0.0166 0.0084 0.6238
Slice25 0.5963 5.20E-03 9.73E-04 5.36E-04 -0.1481 9.73E-04 4.87E-04 0.6193

Table 3. Performance metrics calculated utilising various classifier models

Machine Learning Models Accuracy (%) Sensitivity Specificity
SVM 96.83 0.952 0.9319

Logistic Regression 91.67 0.801 0.6311
AdaBoost 94.36 0.499 0.7541

Gaussian Naı̈ve Bayes 93.54 0.971 0.6333
Gradient Boosting 94.20 0.972 0.5454

Deep Learning Models Accuracy (%) Sensitivity Specificity
CNN Architecture 95.98 0.905 0.848
DNN Architecture 94.03 0.654 0.752

Figure 12. Classifier model-driven performance of seizure imagery

The prediction of seizure images, as elucidated by the confusion matrix in Table 3, Figure 12, and Figure 13,
encapsulates the enumeration of true positives, true negatives, false positives, and false negatives, for both validation
and test sets. A pivotal revelation from the research establishes a significant association between hippocampal
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alterations and emotional deficits, inclusive of memory impairments, learning difficulties, mood disorders, and
emotional instability. This discovery accentuates the imperative nature of probing and comprehending the role of the
hippocampus in tumour disorders, potentially guiding the evolution of targeted interventions and treatment strategies.

Figure 13. Predictions using validation and test sets with deep learning models

5 Conclusions

An examination has been conducted into the relative impacts of seizures, with a focal point on those induced
by hippocampal alterations, a region demonstrated to be more susceptible to seizures in contrast to the glioma.
Discrepancies in both magnitude and character of seizures between the two aforementioned conditions have been
meticulously explored. Insight has been gleaned into the varying susceptibility of the hippocampus and glioma to
seizures, furnishing an avenue to enhance understanding regarding the mechanisms underpinning seizure origination
within these contexts. It is posited that the deployment of precise pharmacological interventions to govern seizure
activity may serve to mitigate the likelihood of subsequent cognitive deterioration. Extensive and impactful
future research vistas are envisioned, centred on the analysis of clinical datasets to discern alterations within
the hippocampus.
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