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Abstract: In the realm of computer vision, image recognition serves as a pivotal task with extensive applications
in intelligent security, autonomous driving, and robotics. Traditional methodologies for image recognition often
grapple with computational inefficiencies and diminished accuracy in complex scenarios and extensive datasets.
To address these challenges, an algorithm utilizing a siamese network architecture has been developed. This
architecture leverages dual interconnected neural network submodules for the efficient extraction and comparison of
image features. The effectiveness of this siamese network-based algorithm is demonstrated through its application
to various benchmark datasets, where it consistently outperforms conventional approaches in terms of accuracy and
processing speed. By employing weight-sharing techniques and optimizing neural network pathways, the proposed
algorithm enhances the robustness and efficiency of image recognition tasks. The advancements presented in
this study not only contribute to the theoretical understanding but also offer practical solutions, underscoring the
significant potential and applicability of siamese networks in advancing image recognition technologies.
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1 Introduction
As an important branch in the field of computer vision, image recognition has always been a hot and difficult

research topic. With the vigorous development of deep learning technology, especially the wide application of
Convolutional Neural Networks (CNNs) in image recognition tasks, traditional image recognition methods are
gradually being replaced by deep learning algorithms. However, in the face of complex and changeable image scenes
and large-scale datasets, traditional deep learning models still face problems such as large computational costs and
poor generalization performance [1]. As a special neural network structure, the siamese networks can effectively
extract the features of the input data and calculate the similarity by sharing weights, showing unique advantages in
image recognition tasks.

This research aims to study the image recognition algorithm based on siamese networks, and improve the
recognition performance and computational efficiency of the algorithm by optimizing the network structure and
improving the training strategy. At the same time, this study also explores the applicability of image recognition
algorithms based on siamese networks in different application scenarios, aiming to provide new ideas and methods
for the development of the image recognition field.

The remaining structure of this study is as follows: Section 2 is a literature review in the field related to this
study; Section 3 is research methods and data preprocessing; Section 4 is model construction; Section 5 is result
analysis; and Section 6 is the conclusion and future research prospect of this study.

2 Literature Review
At first, researchers in the field of image recognition mainly relied on image recognition methods based on

statistical features. For example, Zhou et al. [2] introduced the extraction method of invariant features at the local
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scale of images, and proposed a hybrid multi-scale representation method using pyramids and scale space to improve
the real-time performance of image recognition. Shi and Zhang [3] proposed a method to realize moving target
detection using a single Synthetic Aperture Radar (SAR) image, and proved the effectiveness of the proposed method
with experiments. Galić et al. [4] introduced the use of different machine learning algorithms for image recognition,
including feature extraction, feature selection, classifier design, etc. In general, the image recognition method based
on statistical features involves statistical analysis of image rules, the extraction of features that reflect the essence of
images, and the establishment of recognition models based on decision theory. However, this method has limitations,
such as ignoring the spatial structure relationship of images, and the number of features surges, leading to difficulty
in extraction and classification, especially for images with obvious structural features. The statistical recognition
effect is not good.

With the rise of deep learning technology, the performance of image recognition has greatly improved. Chen [5]
verified the effectiveness of CNNs in image recognition tasks through experiments. A variety of model optimization
strategies were discussed to further improve the performance of CNNs. Qin et al. [6] used the CNN architecture
to design a flower image classification and recognition model based on deep learning, and verified the effectiveness
of the designed flower image classification and recognition model through experiments. The key to the image
recognition method based on deep learning is to automatically extract the image features, and make the model
recognize and classify the image through training and optimization. However, despite the great success of deep
learning-based image recognition methods in the field of image recognition, there are still some challenges [7]. For
example, deep learning methods often rely on large amounts of labeled data for model training. However, in practice,
the sample size of some classes can be very small, making it difficult for deep learning models to fully learn their
features. Therefore, the small-shot learning problem has become an important challenge in the field of deep learning
image recognition. In addition, the generalization performance of deep learning models is also a challenge. Due to
complex structures with a large number of parameters, deep learning models tend to be prone to overfitting, i.e., they
perform well on training data but poorly on test or new data [8].

In order to solve the above problems, researchers have begun to explore new network structures and learning
methods. Among them, the siamese networks have been widely used and explored because of their unique network
structure. For example, Valero-Mas et al. [9] outlined the application of siamese networks in image classification
tasks with a small number of samples, emphasized the importance of ensemble and feature learning in improving
classification performance, and compared the advantages of siamese networks with other methods. He [10] compared
the traditional Visual Geometry Group Network (VGGNet) series model with the siamese VGGNet model. The
siamese VGGNet model made full use of the correlation and difference between image pairs, confirming its
effectiveness in enhancing accuracy and robustness. Ren et al. [11] combined the siamese CNN with Region
Proposal Network (RPN) to solve the problem of untimely network model updates and insufficient training datasets
during online tracking. Siamese networks learn similarity measures between image pairs by sharing weights, which
gives them a significant advantage when dealing with tasks such as small-shot learning and fine-grained image
recognition. In addition, the siamese networks took full advantage of the correlation and difference between image
pairs, improving the accuracy and robustness of recognition.

However, this study of image recognition based on siamese networks is still in the development stage, and there
are still many problems and challenges to be solved and explored. First of all, due to their special network structure,
the siamese networks require more computing resources and time for training and optimization. Secondly, the
siamese networks have high requirements for the quality and preprocessing of the input image pairs; otherwise,
their performance may be affected. In summary, as a new type of network structure and learning method, siamese
networks have a wide range of application prospects in the field of image recognition. However, they still have some
disadvantages and shortcomings, which need to be further explored and optimized. Future research could focus on
how to improve the training efficiency, generalization ability, and performance of the siamese networks in practical
applications.

3 Research Methods and Data Preprocessing
3.1 Siamese Networks

Figure 1 shows the composition of the siamese neural networks. Siamese networks have a special neural network
structure, which mainly consists of two or more identical subnet modules, which share the same weights and
parameters. Each subnetwork receives an input sample and generates a representation vector. These vectors are
then used to calculate the similarity between the input samples. The weight-sharing mechanism between subnets
is mainly reflected in the backpropagation phase. When the weights of one subnet are updated during the training
process, these updates are immediately reflected in the other subnet. This process of synchronous updates ensures
that both subnetworks use the same set of weights when processing different input data.

The siamese networks’ comparison module, which comes after the subnet, receives the eigenvectors from
the subnet as input and compares their similarity to determine the relationship between the input samples. The
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comparison module employs several methods to calculate the similarity between eigenvectors. Common methods
include Euclidean distance, cosine similarity, inner product, etc. In addition, more complex neural network layers or
functions can be used to calculate the similarity or difference between feature vectors, such as multilayer perceptrons
(MLPs), CNNs, etc.

Figure 1. Structure of the siamese networks

Finally, the output module of the siamese networks is responsible for translating the output of the comparison
module into the final decision-making result. The output module can also be customized to meet the needs of the
specific task. For example, in a target tracking task, the output module may output the target location and size. In a
face recognition task, the output module may output the identity information of the face, and so on.

Structurally, conventional neural networks typically consist of only one network that processes a single input
sample and outputs the corresponding predictions. The siamese networks consist of two or more subnets that share
weights and parameters, which are suitable for tasks that require the similarity comparison of two input samples.
Functionally, the main role of the siamese networks is to calculate the similarity between two input samples, while
conventional neural networks focus more on the prediction and classification of a single input sample. In addition,
because of their special structure, the siamese networks are also suitable for small- or single-shot learning. That is,
they can maintain good performance even when the training data is limited.

Siamese networks have a wide range of applications in the field of computer vision, especially in tasks involving
comparing the similarity of two input samples. The following is a brief introduction to some of their application
scenarios in computer vision:

(a) Face recognition [12]: In the face recognition task, by inputting a pair of face images, the siamese networks
can learn to extract the image features, and judge whether the two images are the same person’s face by calculating
the similarity between the features. This method is particularly effective for dealing with face images with different
angles, lighting conditions, and variations in expression [13].

(b) Image retrieval: In the image retrieval task, given a query image, the system can find images similar to it in
a large image database. By learning the feature representation of the image, the siamese networks can accurately
calculate the similarity between the query image and the image in the database, thereby selecting the image with the
highest similarity to return.

(c) Target tracking [14]: In the target tracking task, the siamese networks can identify and continuously track the
targets in the video sequence. By comparing the targets in the current and previous frames, the networks can learn
how the object appears and predict its position in subsequent frames. This approach is very effective for dealing with
challenging problems such as complex backgrounds, occlusions, and target deformations.

3.2 Data Preprocessing
In this study, three sets of public datasets were used: MNIST, Fashion-MNIST and CIFAR10.
Among them, MNIST and Fashion-MNIST have the same data format and scale. Both datasets contain 60,000

training samples and 10,000 test samples. Each sample is rendered in a 28x28 pixel grid with a single grayscale
channel. As shown in Table 1, the MNIST is a classic handwritten digital image dataset, with ten categories from 0 to
9 corresponding to handwritten digital images from 0 to 9. However, ten categories from 0 to 9 in the Fashion-MNIST
dataset correspond to different kinds of clothing. This is the main difference between those two datasets. Compared
with MNIST, the image content of Fashion-MNIST is more diverse, complex, and challenging. In this experiment,
60,000 original training samples were divided into 48,000 training samples and 12,000 validation samples.

The CIFAR10 dataset contains ten types of objects, with label values ranging from 0 to 9. The CIFAR10
dataset consists of 50,000 training samples and 10,000 test samples, each of which is a 32x32-pixel RGB image. In
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this experiment, 50,000 original training samples were divided into 40,000 training samples and 10,000 validation
samples. During preprocessing, the image was normalized to the range of [0,1] and a channel dimension was added.

Table 1. Dataset categories and object correspondence

Categories
Datasets MNIST Fashion-MNIST CIFAR10

0 0 T-shirt/top Plane
1 1 Trouser Car
2 2 Pullover Bird
3 3 Dress Cat
4 4 Coat Deer
5 5 Sandals Dog
6 6 Shirt Frog
7 7 Sneaker Horse
8 8 Bag Boat
9 9 Ankle boots Truck

Figure 2. Visualization results of (a) MNIST; (b) Fashion-MNIST; and (c) CIFAR10 image pairs

The siamese networks built in this experiment have two shared-weight subnets, providing inputs for two network
models. This leads to the concept of positive and negative pairs. Positive pairs refer to images in the same
category, while negative ones refer to images in different categories. In order to visually verify whether the image
pair generation process in this experiment works normally, the generated image pair was randomly selected and
visualized once. Subgraph (a), Subgraph (b) and Subgraph (c) of Figure 2 show the visualization. It can be observed
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that for each pair of images, the same class is labeled as POS and the different classes are labeled as NEG.

4 Modelling
4.1 Algorithmic Framework

As shown in Figure 3, the two subnets are referred to as subnets A and B. Both subnets share the same structure
and weights. Each subnet starts with multiple convolutional layers that extract features from the input image.
Convolutional layers filter images through convolutional operations to capture local spatial features. The convolution
operation is usually followed by an activation function, such as the ReLU function, to increase the nonlinearity of
the network. The pooling layer is used to reduce the dimensionality of the feature map while retaining important
feature information. After multiple convolutional and pooling layers, a flattened layer is typically used to flatten the
multidimensional feature map into a one-dimensional vector to input into a fully connected layer. The fully connected
layer is used to map feature vectors to the sample space, generating a feature representation of each sample. After
the feature vectors extracted by the subnet pass through the comparison and output modules, the similarity value
between the image pairs is finally output.

Figure 3. Framework of the siamese networks

4.2 Subnet Module
In this study, the classical CNN structure LeNet-5 was used as the subnet of the siamese networks. LeNet-5 is

an earlier CNN structure proposed by Yann LeCun et al. in 1998 for processing smaller images. Figure 4 shows the
basic structure of LeNet-5 as siamese network subnets.

Figure 4. Siamese networks based on the LeNet-5 subnet
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4.3 Comparison Module
The similarity metric function of the comparison module is used to accurately calculate the similarity between

the eigenvector outputs of the two subnetworks. This module measures the similarity or distance between vectors
through a specific algorithm or measurement method. Common similarity measures include Euclidean distance,
cosine similarity, etc. In this study, Euclidean distance serves as a comparison module, and the formula for calculation
is as follows:

d =

√√√√ n∑
i=1

(xi − yi)
2 (1)

where, xi is the i-th coordinate of the eigenvector x, with i = 1, 2 . . . n; yi is the i-th coordinate of the eigenvector
y, with i = 1, 2 . . . n; and d(x, y) is the distance between the two eigenvectors x and y.

4.4 Output Module
In most scenarios, the output module tends to be a simple classifier, such as a logistic regression or softmax

layer. When the siamese networks are used for image recognition or verification tasks, the output module outputs
the probability that two input images belong to the same category. In this study, the sigmoid function was used as an
output module to output the similarity values of the two images.

4.5 Training Module
In the training module of the siamese networks, the loss function and optimizer work together to drive the learning

and optimization processes of the network. The loss function is responsible for quantifying the difference between
the model prediction and the actual label, providing a clear optimization goal for network training. According to the
loss function gradient, the optimizer updates the network parameters through a certain algorithm, thereby gradually
reducing the loss value and improving the prediction performance of the model. This process ensures that the model
can gradually approach the optimal state during the training process, and improves the ability to judge the similarity
between samples.

Table 2. Adam update rules

Adam Update Rules

(a) Calculation of the gradient for the t
time step gt = ∇θJ (θt−1)

(b) Calculation of the exponential moving
average of the gradient mt = β1mt−1 + (1− β1) gt

(c) Calculation of the exponential moving
average of the gradient squared vt = β2vt−1 + (1− β2) g

2
t

(d) A deviation correction is made for mt m̂t = mt/ (1− βt
1)

(e) A deviation correction is made for vt v̂t = vt/ (1− βt
2)

(f) Update of the parameters θt = θt−1 − α ∗ m̂t/(
√
v̂ + ε)

(a) Loss function
The design of the loss function is usually related to the specific task. In the classification task of the siamese

networks, binary cross-entropy or contrastive loss functions are usually used. In this study, a contrastive loss function
was used to encourage the networks to produce similar and distant feature representations for similar and dissimilar
samples, respectively. The formula for calculation is as follows:

Loss =
1

N

N∑
i=1

(1− yi) · d2 + yi ·max(margin− d, 0)2 (2)

where,N represents the number of samples; yi represents the label of the i-th sample pair, which is 0 or 1 ; d represents
the sample similarity value predicted by the networks; and margin is the given hyperparameter. A value of 1 was
taken. This indicates that when d is greater than or equal to 1, the sample pairs are very similar, and the loss value is
0. When yi = 1 (i.e., the samples belong to the same class), the loss function is only

∑
yi ·max(margin− d, 0)2.

When d is smaller (i.e., the predicted similarity value is smaller), the loss function is larger. When yi = 0 (i.e., the
samples belong to different classes), the loss function is only

∑
(1− yi) · d2. When d is larger (i.e., the predicted

similarity value is smaller), the loss function is larger.
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(b) Optimizer
The Adaptive Moment Estimation (Adam) optimizer, which combines the advantages of AdaGrad and RMSProp

optimization algorithms, comprehensively considers the first-order (i.e., the mean of the gradient) and the second-
order (i.e., the uncentralized variance of the gradient) moment estimations of the gradient to calculate the update
step size [15].

Table 2 lists the Adam update rules, where gt represents the gradient of time t;β1 and β2 represent the exponential
decay rate, with the default β1 = 0.9 and β2 = 0.999;mt and νt represent the weighted average and biased deviation
of the gradient, with m0 = 0 and v0 = 0, respectively; m̂t and v̂t are the deviation correction of mt and vt; θt is the
parameter at time t; θt+1 is the update parameter at t+ 1;α and ε are the initialization parameters, with the default
learning rate α = 0.001 and ε = 10−8 to avoid the divisor becoming 0 .

5 Result Analysis
In this study, the experimental environment was configured on a system running the Windows operating system,

equipped with an Intel Core i7 processor. The development environment utilized was PyCharm, operating under
Python version 3.10. This setup was further enhanced by integrating the TensorFlow deep learning framework, which,
in conjunction with CUDA and cuDNN, facilitated accelerated computational performance. These technological
integrations were pivotal in establishing an efficient and stable platform for conducting image recognition experiments.

5.1 Results of the Comparative Experiment
Figure 5 shows the results of 50 training sessions on the siamese networks based on LeNet-5 (SN-LeNet-5) of

the MNIST dataset. After 50 training sessions, the accuracy of the training, validation and test sets reached 99.95%,
98.83% and 99.11%, respectively.

Figure 5. Iterative plot of MNIST on SN-LeNet-5

Table 3 shows the test performance comparison of the recognition methods based on the K-proximity method,
Histogram of Oriented Gradients (HOG) and neural networks on the MNIST handwriting dataset in recent years. The
applied SN-LeNet-5 exhibits superior recognition performance compared to other methods, surpassing the Lenet-5
model by 0.06%.
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Table 3. Comparison of the test accuracy

Method Accuracy (%)
Lenet-5 [16] 99.05

HOG_PCA [17] 98.39
HOG_SVM [18] 97.25
SNN_STPD [19] 98.4

CNN [20] 98.99
CNN_SVM [21] 99.10

SN-LeNet-5 99.11

Table 4 shows the time required for the identification of MNIST datasets by the SN-LeNet-5 and the traditional
LeNet-5 networks. The time used by the two methods in the table was accumulated after performing a test of 10,000
images. The SN-LeNet-5 demonstrates a faster recognition speed.

Table 4. Comparison of time performance

Method Test Time (s)
Lenet-5 9.37

SN-LeNet-5 4.04

Figure 6 shows the output results of the SN-LeNet-5 model on the handwritten digital image test set. In the
figure, the label directly above each pair of images indicates their similarity values. The closer the similarity value
is to 1, the greater the similarity between the pair of images, which may belong to the same category. The closer the
similarity value is to 0, the greater the difference between the images, which may belong to different categories. It
can be seen from the visualization results that the similarity prediction values of the siamese networks for image pairs
in different types and in the same class are very close to 0 and 1, respectively, indicating that the model performs
well on the test set.

Figure 6. Visualization of the test results of the MNIST dataset

5.2 Analysis of Model Generalization
Figure 7 and Figure 8 show the iterative plots of the siamese network model based on LeNet-5 on the Fashion-

MNIST and CIFAR10 datasets, respectively. The accuracy of the Fashion-MNIST on the test set reached 91.65%
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after 100 training times on the siamese networks. The CIFAR10 dataset did not reach complete convergence after
1,000 times of training on the networks. Therefore, it was trained 500 times on the basis of 1,000 times. The
accuracy of the final model on the test set reached 81.64%.

Figure 7. Iterative plot of Fashion-MNIST on SN-LeNet-5

Figure 8. Iterative plots of CIFAR10 on SN-LeNet-5

Table 5 shows the results and running times of the Fashion-MNIST and CIFAR10 datasets on the siamese
network model based on LeNet-5. It can be seen from the results that the siamese network model based on LeNet-5
constructed in this experiment has good generalization ability on these two datasets. This means that the model may
also have some power to process new or unseen data.

Table 5. Algorithm performance of the siamese networks on Fashion-MNIST and CIFAR10

Datasets Training Accuracy (%) Validation Accuracy (%) Test Accuracy (%) Training Time (s/epoch) Test Time (s)
Fashion-MNIST 98.56 91.66 91.65 18.73 3.73

CIFAR10 87.46 82.53 81.64 27.32 4.35

Figure 9 and Figure 10 show the output results of the siamese network model based on LeNet-5 for the Fashion-
MNIST and CIFAR10 test sets, respectively. According to the visualization results, based on the similarity value of
the output image pairs, a high accuracy can be obtained to determine whether the images belong to the same class,
showing that the constructed model has good generalization ability on these two datasets.
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Figure 9. Visualization of the test results of the Fashion-MNIST dataset

5.3 Analysis of Parameter Sensitivity
Parameter sensitivity analysis is a key process to evaluate the sensitivity of model performance to different

parameter settings. This chapter delves into the key parameters in the siamese networks and analyzes their impact
on model performance, aiming to provide specific guidance for model optimization.
5.3.1 Analysis of learning rates

In this experiment, a siamese network model based on the LeNet-5 architecture was used to train the MNIST
dataset. In order to optimize the training process of the model, different learning rate settings were tried, namely,
0.0001, 0.001, and 0.01. During the training, a batch size of 64 was set, meaning that 64 samples were processed
each time the weights were updated. The number of iterations was set to 50 rounds to ensure the full convergence of
the model. Through this series of settings, it is expected to find the most suitable learning rate to achieve the best
model performance.

Table 6. Training accuracy under different learning rates

Learning Rates 0.0001 0.001 0.01
Training Accuracy (%) 99.75 99.95 98.10

Subgraphs (a) and (b) of Figure 11 show the iteration plots with different learning rates. Table 6 shows the
accuracy of the training set at each learning rate.

At a learning rate of 0.0001, the convergence speed of the model appears to be relatively slow. However, after a
long period of training, it finally achieves a high accuracy rate of 99.75%. Although this result is already quite good,
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Figure 10. Visualization of the test results of the CIFAR10 dataset

it may be necessary to find a better balance given the time and efficiency of training.
When the learning rate increases to 0.01, the convergence speed of the model significantly accelerates, and the

training process becomes faster. However, this setting causes the model to oscillate significantly during the training
process, leading to instability when updating the weights. Finally, although the model can converge, its accuracy is
relatively low at 98.10%, indicating that it may be more likely to fall into the local optimal solution under the high
learning rate, which affects its generalization ability.

After experimenting with various learning rates, it was found that when the learning rate was set to 0.001, the
model reached a good balance between convergence speed and accuracy, as shown in Figure 5. This setting not
only keeps the model at a fast convergence speed, but also does not show obvious oscillation during training. In the
end, the model achieved the highest accuracy rate of 99.95%, proving that it can achieve excellent performance and
accuracy with an appropriate learning rate.

Table 7. The final training accuracy and time under different batch sizes

Batch Size 32 64 96
Training Accuracy (%) 99.93 99.95 99.83
Training Time (s/epoch) 34.76 17.36 16.80

5.3.2 Analysis of batch size
In order to analyze the influence of batch size on the training process and model performance during the

experiment, three different batch sizes of 32, 64 and 96 were selected and trained under the same experimental
conditions. Figure 12 and Table 7 show the experimental results.
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(a)

(b)

Figure 11. Iterative plots with learning rates of (a) 0.0001; and (b) 0.01

According to the experimental results, as the batch size increases, the training time per epoch gradually decreases
from 34.76 seconds to 16.80 seconds. However, although the training speed further improves when the batch size is
96, the final accuracy of the model decreases slightly to 99.83%. When the batch size is 64, not only is the training
speed faster, but the accuracy of the model reaches the highest (99.95%). Furthermore, a comparative analysis of
Figure 12 and Figure 5 reveal that the loss values for batch sizes of 32 and 96 converge more slowly compared to a
batch size of 64, and fail to reach the minimum loss value. These results demonstrate that the experimental setup can
achieve high model accuracy and fast loss convergence while maintaining training speed when the batch size is 64.
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(a)

(b)

Figure 12. Iterative plots with batch sizes of (a) 32; and (b) 96

6 Conclusions and Prospects
This study focuses on the image recognition of the siamese networks. After introducing the importance and

challenges of image recognition, the relevant research progress was reviewed. Then, the structure and weight-
sharing mechanism of the siamese neural networks were introduced in detail, and the data preprocessing method
was described. On this basis, a siamese network model based on LeNet-5 was constructed, including a subnet,
a comparison module, an output module and a training module. Finally, the result analysis shows that the
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constructed siamese network model realizes image recognition on the MNIST, Fashion-MNIST and CIFAR-10
datasets. Comparative experiments show that the siamese networks have higher accuracy and faster recognition
speed than other traditional algorithms. In addition, the siamese networks have good recognition performance on
different datasets, which fully proves their strong generalization ability. Finally, the parameter sensitivity analysis
was carried out, and the influence of learning rate and batch size on model performance was discussed, providing an
important basis for model optimization.

Although some progress has been made in the research on image recognition based on siamese networks, this
study has some limitations. Future research could focus on semi-supervised and unsupervised learning to overcome
the dependence on large amounts of annotated data, enabling the siamese network to better adapt to different data
scenarios. Real-time performance and efficiency optimization could also become important areas of research. This
would make it easier for siamese networks to handle large amounts of data by making the algorithms better and the
hardware faster. Furthermore, the research on multimodal fusion could open up new development opportunities for
siamese networks. It is expected that the recognition performance and generalization ability of the siamese networks
could be further improved by fusing information from different modalities.
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