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Abstract: Open-source intelligence in aerospace technology often contains lengthy text and numerous technical
terms, which can affect classification accuracy. To enhance the precision of classifying such intelligence, a
classification algorithm integrating the Bidirectional Encoder Representations from Transformers (BERT) and
Extreme Gradient Boosting (XGBoost) models was proposed. Initially, key features within the intelligence
were extracted through the deep structure of the BERT model. Subsequently, the XGBoost model was utilised
to replace the final output layer of BERT, applying the extracted features for classification. To verify the
algorithm’s effectiveness, comparative experiments were conducted against prominent language models such as
Text Recurrent Convolutional Neural Network (TextRCNN) and Deep Pyramid Convolutional Neural Network
(DPCNN). Experimental results demonstrate that, for open-source intelligence classification in aerospace
technology, this algorithm achieved accuracy improvements of 1.9% and 2.2% over the TextRCNN and DPCNN
models, respectively, confirming the algorithm’s efficacy in relevant classification tasks.
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1 Introduction

The classification of open-source intelligence in aerospace technology is the initial step in the field of
aerospace intelligence. Enhancing the classification accuracy of aerospace technology open-source intelligence
through advanced machine learning techniques has become an urgent issue in the field of aerospace intelligence
studies.

Earlier studies on the classification of aerospace technology open-source intelligence primarily focused on
traditional machine learning methods [1]. For instance, a server-client model for the aerospace text classification
system was developed by combining the Bayesian algorithm and web technology [2]. A classification method
for aerospace intelligence based on the Support Vector Machine (SVM) was investigated, proposing a multi-
classification process to handle various categories of data [3]. However, these methods often required manual
feature engineering, and the representation of text did not accurately capture inter-textual relationships, resulting
in suboptimal classification accuracy. The extensive development and application of deep learning techniques
have significantly improved text classification performance. A TextRCNN-A algorithm based on the attention
mechanism was proposed, which effectively captures contextual information and mitigates word ambiguity [4].
These findings highlight that accurately capturing contextual semantic information is crucial for enhancing
classification accuracy in the classification of aerospace technology open-source intelligence.

Traditional text vector representation methods, such as the bag-of-words model [5], included approaches
like one-hot encoding and the term frequency-inverse document frequency (TF-IDF) model [6]. However, these
models failed to consider word-to-word associations and produced high-dimensional vectors, often leading to
sparsity issues in matrices. Later, neural network-based text vectorisation models were introduced. For instance,
the Word2Vec model [7] represents word relationships, while the Global Vectors for Word Representation
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(GloVe) model [8] leverages global statistical information to obtain word vectors through matrix decomposition.
Despite their advantages, these models exhibit limitations in representing polysemous words. As a solution,
the Elmo model [9, 10], which dynamically adjusts pre-trained word vectors based on actual contextual data,
enables the learning of complex lexical features, including syntax and semantics. The Transformer model
[11, 12], incorporating an encoder-decoder and attention mechanism, offers the significant advantage of high
parallelisation efficiency. The BERT model, based on the Transformer architecture, provides advanced word and
sentence representation capabilities [13, 14]. BERT provides a straightforward interface for downstream natural
language processing tasks while also serving as a pre-trained language model [15] for document vectorisation,
demonstrating substantial transferability.

Through analysis of the textual data in aerospace technology open-source intelligence, it has been observed
that the texts are often lengthy and contain numerous specialised terms unique to the field. These characteristics
limit classification accuracy, as existing models for classifying aerospace technology open-source intelligence
are generally unable to effectively focus on specialised terminology or extract the core content features from
intelligence data. To address this, a hybrid model based on BERT and the XGBoost model was proposed in this
study for the classification of aerospace technology open-source intelligence. BERT was employed to extract key
features from the intelligence data, and these features were subsequently classified using the XGBoost model,
which is known for its effective classification performance, thereby enhancing the accuracy of classification
results.

2 Classification of Aerospace Technology Open-Source Intelligence Based on BERT-XGBoost
2.1 Overall Structure of the BERT-XGBoost Hybrid Model

The proposed classification method for aerospace technology open-source intelligence based on the
BERT-XGBoost hybrid model consists of two primary components: feature extraction of aerospace technology
open-source intelligence based on BERT, and feature classification based on XGBoost. After vectorising
the intelligence data, it was input into the BERT model, where the output was a fixed-length feature vector
representing the aerospace technology open-source intelligence.

In the overall structure of the hybrid model, aerospace technology open-source intelligence texts, along
with their respective classification labels, were used to train the BERT classification model. The model was
iteratively adjusted using gradient descent to achieve high classification accuracy. Given that the original BERT
model’s output layer produces a class label for each text, a modification was made by replacing the final output
layer with a linear output layer, while maintaining the parameters in the preceding layers, to extract feature
vectors.

After the BERT model encoded aerospace technology open-source intelligence into feature vectors, these
feature vectors, along with the corresponding classification labels, were then fed into the XGBoost model for
further training. Since XGBoost is an ensemble algorithm based on decision trees [16, 17], the input feature
vectors were structured into trees. Once the initial tree was constructed, subsequent trees were employed to
correct errors in the existing trees. The process of tree construction halted when no further improvement was
observed in the model’s classification outcomes. The total score of the leaf nodes across all trees corresponded
to the evaluation score for each classification category [18], and the category with the highest score was selected
as the final classification.

By using the XGBoost model to classify feature vectors extracted by BERT, the hybrid model was better
able to capture the underlying relationships between the data and labels, resulting in more efficient classification
performance.

2.2 Feature Extraction of Aerospace Technology Open-Source Intelligence Based on BERT

The classification of aerospace technology open-source intelligence is significantly influenced by the
presence of numerous specialised terms. As the multi-head self-attention mechanism can effectively focus on
key information within a text, enabling the identification of specialised terms in intelligence data, the BERT
model—incorporating the multi-head self-attention mechanism—was utilised to extract features from aerospace
technology open-source intelligence, thereby achieving more accurate text classification. The structure of the
model’s feature extraction process is illustrated in Figure 1. A single piece of aerospace technology open-source
intelligence data was input into the BERT model, which then processed the data and output a corresponding text
feature vector. This feature vector was subsequently used as the input for the XGBoost model in the hybrid
model.
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Figure 1. Structure of the model’s feature extraction process

Figure 2. Visualisation result of one head

The BERT model contains bidirectional Transformer encoding layers, which are effective at capturing
bidirectional relationships within sentences. The Transformer encoding layer employs the multi-head self-
attention mechanism to enhance the diversity of attention [19]. Multi-head self-attention considers various
semantic contexts, enabling different integration patterns of target word vectors with other word vectors in the
text. Its computation formula is as follows:

MultiHead(Q,K, V ) = Concat(head1, ..., headi, ...)∗WO (1)

where, headi = Attention (Qi,Ki, V i) = softmax((Qi ·KT )/dk)∗V i; headi represents the output vector of
the i-th head; Concat (·) denotes a concatenation function that horizontally combines matrices; WO is a weight
matrix that assigns weights to the output vectors; Qi,Ki, and V i are matrices formed by linearly mapping input
vectors; dk is the dimension of the K vector.

The multi-head attention mechanism can apply multiple linear transformations and dot-product computations
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iteratively to achieve the multi-head structure. This approach enables the model to learn contextual information
in various subspaces, thus capturing key information in the text more comprehensively. For example, the
Chinese phrase in Figure 2 and Figure 3, which means “The U.S. Army accelerated the development of
laser weapons,” was used to visualise attention, demonstrating the ability of multi-head attention to capture
contextual information. The visualisation results are shown in Figure 2 (one head) and Figure 3 (two heads).

Figure 3. Visualisation result of two heads

In Figure 2 and Figure 3, differently coloured blocks represent the results of distinct attention heads. The
darker the shade of a particular colour, the higher the attention value, indicating a stronger dependency between
the characters at each end of the line. As shown in Figure 2 (one head), the character “激” is only able to learn
dependencies with itself. In contrast, in Figure 3 (two heads), the character “激” captures dependencies with
both characters of “激” and “光”, thereby demonstrating that multi-head attention can extract information across
various representational subspaces.

Table 1. Key parameters of the XGBoost model

Parameter Value Description
Booster Gbtree Model selection for each iteratione

Num eslass 5 Number of categoriese
Max depth 8 Maximum depth-of each tree
Objective Multi:

softmax
Definition-of theloss function

Gamma 0.1 Minimum decrease-in-loss function fornode
classificatione

Subsample 0.6 Proportion of samples randomly’selected per tree
Colsample

bytree
0.7 Control-of therropgrtion-of columns

randomly-selected for-each tree
Eta 0.1 Weight reduction-atreach step to

improyemodel-stability

These results indicate that the multi-head self-attention mechanism effectively focuses on specialised
terminology in aerospace technology open-source intelligence, enhancing feature extraction within the model.
This process prepares the features for subsequent classification using the XGBoost model.

237



2.3 Feature Classification of Aerospace Technology Open-Source Intelligence Based on XGBoost

The XGBoost model can process features in parallel at a granular level. Compared to softmax and linear
classifiers, the XGBoost model leverages data features more effectively to fit the data. Therefore, XGBoost was
utilised to classify feature vectors extracted by the BERT model. XGBoost operates within a gradient-boosting
framework, aiming to minimise the residuals of the k-th tree. The objective function was solved using the
second-order Taylor expansion as follows:

Obj(t) ≈
n∑

i=1

l
(
yi, yi(t−1)

)
+ gift(xi) +

1

2
hift2(xi)

]
+Ω(ft) + constant (2)

where, l
(
yi, yi(t−1)

)
represents the loss between the true and predicted values; gi and hi are coefficients in

the second-order Taylor expansion and are known constants during the training of the k-th tree; ft(xi) is the
prediction of the k-th tree; Ω(ft) denotes the tree complexity term to prevent excessive tree growth during
training; constant represents the sum of all constant terms in the expansion.

The XGBoost model includes numerous parameters, and proper tuning is essential for effective model
training. The primary parameters are listed in Table 1. The“Booster” parameter was set to gbtree, indicating a
tree structure suitable for feature classification in this study. Given that there are five categories in the aerospace
technology open-source intelligence data, the“Num class” parameter was set to 5. “Max depth,” which
indicates tree depth, is typically between 5 and 10; in this study, a value of 8 was selected. The multi-classification
objective determines the“Objective” parameter to be multi:softmax, while other parameters were configured
according to standard settings.

Algorithm 1 Training process of the BERT-XGBoost hybrid model applied to aerospace technology open-source
intelligence classification
Input dataoriginal: raw text data of aerospace technology open-source intelligence; modelpre: pre-trained
model BERT-Base, Chinese; Output test set error rate: Testerror; modelBERT: the BERT model after training;
modelXGBoost: the XGBoost model after training;

1: model = Load(modelpre);∥Load the pre-trained Chinese model
2: data,label =DataProcessing(dataoriginal);∥Data pre-processing
3: datainput =DataVectorization(modelpre,data);∥Handle the text data for input into the BERT model
4: datatrain,datadev,datatest = SplitData(datainput);∥Split the dataset
5: modelBERT = Train(model,datatrain,datadev)
6: features =OutputFeature(datatrain,modelBERT) ; ∥BERT outputs feature vectors in categories from the

training set
7: training the XGBoost model modelXGBoost with features;
8: set the maximum number of iterations epochs;
9: set the initial best error rate besterror;

10: initial epoch = 0;
11: repeat
12: Train(datatrain,datadev,modelBERT);∥Train the BERT model
13: features =OutputFeature(datatest,modelBERT);∥BERT outputs feature vectors for the test set
14: result = Prediction(features,modelXGBoost);∥XGBoost outputs classification result
15: testerror =ComputError( result);∥Compute the error rate on the test set
16: if testerror＜ = besterror then
17: besterror← testerror;
18: Save(modelBERT);
19: features =OutputFeature(datatrain,modelBERT);
20: training the XGBoost model modelXGBoost with features;
21: Save(modelXGBoost);
22: end if
23: Save(testerror);
24: until (epoch＞epochs).

Given the complexity of feature vectors extracted by the BERT model from aerospace technology open-
source intelligence, the XGBoost model was selected for classifying these vectors to better account for the
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impact of these complex features on classification accuracy. The aerospace technology open-source intelligence
data were vectorised and represented as x, which was then used to train the BERT model, ultimately outputting
the feature vector Outputvec. The original classification label y and the feature vector produced by BERT
together formed the input for the XGBoost model, denoted as Inputx. The final classification result was output
by the XGBoost model. The specific formulas are as follows:

Outputvec = BERT (x) (3)

Inputx = ( Outputvec, y) (4)

Outputfinal = XGBoost(Inputx) (5)

The pseudocode for the training process of the hybrid model is shown.

3 Experimental Analysis
3.1 Experimental Data

The experimental data used in this study consist of publicly available scientific and industrial information
texts provided by a platform, sourced from various national defence technology websites. The total dataset
contains 61,027 entries, primarily categorised into aerospace, shipbuilding, ordnance, aviation, and electronics
industries. Following the preprocessing methods outlined [20], irrelevant information in the aerospace
technology open-source intelligence datawas removed, and the cleaned text content was utilised for subsequent
classification tasks.

Statistical analysis revealed a substantial disparity in the data volume across categories. Therefore, two
experimental groups—balanced and imbalanced datasets—were designed for comparison. In the balanced
dataset, each category (aerospace, shipbuilding, ordnance, aviation, and electronics industries) contains 4,053
entries, and the total number of entries is 20,265. In the imbalanced dataset, the data volumes are 13,454,
15,804, 4,053, 20,846, and 6,870 entries, respectively, for a total of 61,027. The experimental data were split
into training, validation, and test sets in an 8:1:1 ratio.

3.2 Experimental Procedure

During model training, comparative experiments were conducted based on variations in the length of
feature vectors extracted by BERT. Considering the significant differences in data volume across categories,
experiments were designed for both balanced and imbalanced datasets. Finally, the hybrid model was compared
with other mainstream language models on the same dataset to evaluate its classification performance.
3.2.1 Training of the hybrid model

In this study, the BERT module within the hybrid model uses the“BERT-Base, Chinese” model, with a
network structure comprising 12 layers, 768 hidden neurons, a 12-head attention mechanism, and a total of 110
million parameters. During model training, the imbalanced dataset was utilised. The model parameters were set
as follows: a dropout rate of 0.1, 3 epochs, and a learning rate of 5e−5. The extracted feature vectors were input
into the XGBoost model to obtain accurate classification results. The training loss and accuracy for BERT, as
well as the training error rate for XGBoost, are illustrated in Figure 4 and Figure 5.

From Figure 4, it can be observed that after more than 5,400 iterations, the loss and accuracy for both
the training and validation sets of the BERT model exhibit smaller fluctuations and gradually stabilise. The
accuracy on the validation set remains nearly constant, indicating that the model has achieved optimal training
fit. As shown in Figure 5, the training error rate of the XGBoost model is relatively low from the beginning of
training, likely due to the BERT model’s ability to accurately extract features from the aerospace technology
open-source intelligence data, which allows the XGBoost model to achieve good classification performance in
subsequent stages. The final accuracy of the hybrid model on the test set reached 90.01%, representing a 1.5%
improvement compared to the accuracy obtained when using the BERT model alone under the same parameters.
This result indicates that the combination of BERT and XGBoost contributes to enhanced classification accuracy
for aerospace technology open-source intelligence.

Since the length of the text feature vectors extracted by the BERT module in the hybrid model varies,
the amount of information also differs, potentially affecting classification accuracy. Therefore, a comparative
experiment was conducted to explore how classification accuracy changes with different feature vector lengths.
The results are shown in Figure 6.
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Figure 4. Training loss and accuracy of the BERT module in the hybrid model

Figure 5. Training error rate of the XGBoost module in the hybrid model

Figure 6. Classification accuracy of the model with different text feature vector lengths
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As shown in Figure 6, as the length of the extracted text feature vectors increases, the classification accuracy
of the model initially rises and then fluctuates downward. The highest classification accuracy, reaching 90.02%,
is achieved when the feature vector length is approximately 110. When the feature vector length exceeds
120, it is speculated that the excessive length may lead to feature saturation, thereby impacting the model’s
classification performance and causing the accuracy to exhibit a fluctuating decline.

3.3 Comparison of Balanced and Imbalanced Datasets

To investigate the impact of dataset balance on the classification of aerospace technology open-source
intelligence, experiments comparing F1-scores under balanced and imbalanced datasets were designed. Based
on the findings in Section 3.2.1, the best classification accuracy is achieved when the feature vector length
extracted by the BERT module is 110 dimensions. To conduct a comprehensive comparison, feature vector
lengths both greater than and less than 110 dimensions were selected for experimentation, setting maximum
text feature vector lengths to 100, 110, and 128 dimensions, respectively. The test set accuracy of the hybrid
model on both balanced and imbalanced datasets is shown in Figure 7. The accuracy of the hybrid model is
higher under the imbalanced dataset compared to the balanced condition, likely due to the larger data volume
in the imbalanced dataset, which may have enhanced the model’s learning effectiveness and, consequently,
its classification accuracy. The F1-score, a metric used to evaluate model performance, was also used for
comparison, with results shown in Table 2. For the categories “ordnance industry” and “electronics
industry,” the F1-scores were higher under the balanced dataset than under the imbalanced dataset. This is
likely because these categories have the least data, and the presence of larger data volumes in other categories
under the imbalanced condition may have introduced classification interference. In contrast, for the categories
“aviation industry” and“shipbuilding industry,” the F1-scores were higher under the imbalanced dataset,
likely because the larger data volumes for these categories under the imbalanced condition allowed for more
comprehensive model training and richer feature learning, resulting in higher F1-scores.

Figure 7. Classification accuracy of the hybrid model on different dataset types

Table 2. Comparison of F1-scores across different categories and dimensions

Category 100 Dimensions 110 Dimensions 128 Dimensions
Balanced
F1-score

Imbalanced
F1-score

Balanced
F1-score

Imbalanced
F1-score

Balanced
F1-score

Imbalanced
F1-score

Aerospace
industry

0.894 0.886 0.891 0.882 0.878 0.884

Ordnance
industry

0.903 0.861 0.899 0.860 0.900 0.862

Electronics
industry

0.886 0.825 0.888 0.829 0.857 0.833

Aviation
industry

0.853 0.887 0.856 0.891 0.823 0.881

Shipbuilding
industry

0.893 0.921 0.893 0.924 0.883 0.919

Note: In the table header,“100 dimensions,”“110 dimensions,” and“128 dimensions” refer to the length of the text feature vectors
extracted by the BERT module.

A comprehensive analysis of the hybrid model’s accuracy on the test set and the F1-scores for each category
reveals that the F1-score differences between the balanced and imbalanced datasets are not significant. However,
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the test set accuracy is consistently higher for the imbalanced dataset compared to the balanced dataset. This
result indicates that the imbalanced dataset is more advantageous for the model’s ability to learn the features of
aerospace technology open-source intelligence texts.

3.4 Comparison of the Hybrid Model with Mainstream Language Models

Before the hybrid model proposed in this study, substantial research was conducted on language models,
including models such as TextCNN based on Convolutional Neural Networks (CNNs) and TextRNN based
on Bidirectional Long Short-Term Memory (BiLSTM). Using the datasets described in previous sections, key
hyperparameters were set uniformly for several mainstream language models: dropout rate of 0.5, 20 iterations,
learning rate of e-3, and maximum text length of 256. The performance of these mainstream language models
on the aerospace technology open-source intelligence classification task was then compared with that of the
proposed hybrid model. In addition to the identical parameter settings mentioned, the BERT module in the
hybrid model was set to extract feature vectors with a maximum length of 110 dimensions, as concluded in
Section 3.2.1.

The accuracy results on the test set for the BERT XGBoost, BERT, TextRCNN, DPCNN, TextRNN,
TextCNN, FastText, and Transformer models were 90.01%, 88.50%, 88.16%, 87.83%, 87.27%, 85.54%, 85.06%,
and 80.57%, respectively. It can be observed that the BERT XGBoost hybrid model achieves the highest
accuracy on the test set compared to other mainstream models. Furthermore, the classification accuracy of the
hybrid model is 1.5% higher than that of the BERT model alone, indicating that the hybrid model provides
better classification performance and enhances the classification accuracy of aerospace technology open-source
intelligence. Additionally, the F1-scores of each model across different categories were compared, as shown in
Table 3.

Table 3 demonstrates that the BERT XGBoost hybrid model achieves the highest F1-scores across all
five categories, indicating that its classification performance is superior in these categories. In summary, the
comparison of accuracy on the test set and F1-scores across categories shows that the hybrid model outperforms
other mainstream language models. This finding suggests that the hybrid model is more suitable for classifying
aerospace technology open-source intelligence texts and improves classification performance in this domain.

Table 3. Comparison of F1-scores for models across these categories

Category F1-scores of Each Model
BERT XGBoost BERT TextRCNN DPCNN TextRNN TextCNN FastText Transformer

Aerospace
industry 0.898 0.890 0.869 0.876 0.871 0.850 0.850 0.773

Ordnance
industry 0.862 0.846 0.852 0.844 0.834 0.807 0.804 0.677

Electronics
industry 0.860 0.814 0.821 0.812 0.794 0.792 0.774 0.726

Aviation
industry 0.904 0.886 0.882 0.877 0.874 0.854 0.852 0.808

Shipbuilding
industry 0.924 0.917 0.922 0.916 0.913 0.898 0.893 0.887

4 Conclusion

The primary focus of this study is to address the classification of aerospace technology open-source
intelligence. Given the lengthy nature of these texts and the presence of numerous specialised terms, a
classification method based on the BERT-XGBoost hybrid model was proposed. The BERT model was
employed to extract features from the open-source intelligence texts, and the XGBoost model was utilised
to classify these features. A comparison of accuracy with several mainstream language models on the same
dataset verified that the hybrid model effectively enhances classification accuracy for aerospace technology
open-source intelligence. However, this study did not investigate the impact of image data present in the
dataset on classification performance, and the dataset used was relatively small. In future work, it is intended
to integrate image data into the hybrid model to enrich sentence feature representations. Additionally, the
classification performance of the hybrid model will be explored on larger-scale datasets.
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