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Abstract: Accurate detection of road cracks is essential for maintaining infrastructure integrity, ensuring road
safety, and preventing costly structural damage. However, challenges such as varying illumination conditions,
noise, irregular crack patterns, and complex background textures often hinder reliable detection. To address
these issues, a novel Fuzzy-Powered Multi-Scale Optimization (FMSO) model was proposed, integrating adaptive
fuzzy operators, multi-scale level set evolution, Dynamic Graph Energy Minimization (GEM), and Hybrid Swarm
Optimization (HSO). The FMSO model employs multi-resolution segmentation, entropy-based fuzzy weighting, and
adaptive optimization strategies to enhance detection accuracy, while adaptive fuzzy operators mitigate the impact
of illumination variations. Multi-scale level set evolution refines crack boundaries with high precision, and GEM
effectively separates cracks from intricate backgrounds. Furthermore, HSO dynamically optimizes segmentation
parameters, ensuring improved accuracy. The model was rigorously evaluated using multiple benchmark datasets,
with performance metrics including accuracy, precision, recall, and F1-score. Experimental results demonstrate
that the FMSO model surpasses existing methods, achieving superior accuracy, enhanced precision, and higher
recall. Notably, the model effectively reduces false positives while maintaining sensitivity to fine crack details. The
integration of fuzzy logic and multi-scale optimization techniques renders the FMSO model highly adaptable to
varying road conditions and imaging environments, making it a robust solution for infrastructure maintenance. This
approach not only advances the field of road crack detection but also provides a scalable framework for addressing
similar challenges in other domains of image analysis and pattern recognition.

Keywords: Road crack detection; Fuzzy logic; Multi-scale optimization; Image segmentation; Hybrid swarm
optimization

1 Introduction

Road safety remains a critical global concern, requiring data-driven models and spatial analysis to mitigate
accidents and improve transportation systems. Various methodologies, including statistical modeling, spatial risk
assessment, and policy-driven frameworks, have been employed to enhance road safety measures. Advanced
predictive models help identify high-risk areas, assess accident causation, and implement effective countermeasures.
Additionally, sustainable road safety strategies emphasize long-term planning and infrastructure improvements to
reduce fatalities and serious injuries. Integrating these approaches enables a more comprehensive and proactive
response to traffic-related hazards [1–3].

Ensuring road safety is a critical priority, as damaged road surfaces can lead to accidents, vehicle damage, and
increased maintenance costs. Effective road crack detection plays a vital role in maintaining infrastructure integrity
and preventing hazardous driving conditions. Traditional manual inspections are often inefficient, prompting the
adoption of automated models that leverage deep learning, computer vision, and remote sensing technologies [4–6].
Road crack detection has advanced with adaptive classification systems, hybrid algorithms, and machine learning
techniques to enhance accuracy and efficiency. Adaptive detection systems classify pavement types before applying
algorithms, improving robustness across various surfaces. Hybrid algorithms combine edge detection and region-
growing techniques for precise segmentation, while machine learning models leverage deep learning for automated
classification. These methods contribute to efficient infrastructure maintenance by reducing manual inspections and
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ensuring timely repairs [7–9]. Figure 1 shows the flowchart representing the structure and working principles of the
proposed FMSO model.

Figure 1. Flowchart representing the structure and working principles of the proposed FMSO model

To address the challenges in road crack detection, recent research has explored deep Convolutional Neural
Networks (CNNs), improved You Only Look Once (YOLO)-based architectures, and Unmanned Aerial Vehicle
(UAV)-assisted imaging techniques to enhance crack detection and classification across varying road surfaces
and environmental conditions [10–13]. These models integrate high-resolution image processing, edge detection
algorithms, and feature extraction techniques to improve robustness against challenges such as noise, lighting
variations, and surface inconsistencies. Additionally, hybrid models that combine traditional image processing
with artificial intelligence have shown promise in increasing detection accuracy while reducing computational
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complexity. The continuous advancement of these methodologies contributes to more efficient road maintenance
strategies, ensuring timely interventions, cost-effective infrastructure management, and enhanced road safety.

Road crack detection faces numerous challenges, including variations in lighting conditions, diverse pavement
textures, and environmental noise, which often lead to false detections, misclassifications, and reduced reliability
in real-world scenarios. Traditional methods struggle with these complexities, prompting researchers to explore
more advanced techniques for improved accuracy and robustness. One promising approach involves fuzzy C-
means clustering, which enhances crack segmentation by selectively refining edge features and differentiating cracks
from background noise. This method has demonstrated improved performance in distinguishing subtle cracks,
ensuring a higher detection rate compared to conventional threshold-based techniques [14]. However, its reliance
on predefined membership functions and sensitivity to parameter selection can limit its adaptability across highly
variable datasets. Additionally, an intensity-based distinctive fuzzy C-means clustering technique has been proposed
to classify pavement cracks more precisely, addressing challenges related to uneven illumination and varying crack
widths [15]. While this technique improves classification accuracy, it may still struggle with detecting micro-cracks
in highly textured pavements due to its dependence on pixel intensity variations.

To further enhance crack detection, transformer-based multi-scale feature aggregation models have been intro-
duced, effectively capturing contextual information across different crack patterns. These models leverage deep
learning architectures to improve segmentation and classification accuracy by extracting high-level structural details,
which conventional machine learning models often miss [16]. Despite their strong generalization ability, transformer-
based models typically require large-scale labeled datasets and substantial computational resources, making real-time
deployment challenging. Another significant advancement involves the integration of multi-criteria decision-making
(MCDM) techniques, which optimize highway performance and safety by analyzing multiple factors contributing to
pavement deterioration. By incorporating criteria such as crack severity, traffic load, and environmental conditions,
MCDM helps prioritize maintenance strategies for better infrastructure management [17]. However, the effectiveness
of MCDM heavily depends on the selection and weighting of criteria, which may introduce subjectivity and require
expert judgment to ensure reliable decision-making.

Existing road crack detection models face several limitations, including sensitivity to lighting variations, noise
interference, and the inability to accurately distinguish fine cracks from background textures. Traditional threshold-
based and edge-detection techniques often struggle with low-contrast crack patterns, leading to false positives and
missed detections. While deep learning models, such as CNNs and transformer-based architectures, have improved
detection accuracy, they require extensive labeled datasets and suffer from overfitting when trained on limited
pavement conditions. Moreover, existing segmentation techniques lack adaptability in handling complex crack
structures, as they fail to incorporate contextual information across multiple scales. Additionally, feature extraction
and classification methods often rely on predefined heuristics, making them less effective in generalizing across
diverse road surfaces.

To address these research gaps, the FMSO model was proposed in this study, which integrates adaptive fuzzy
preprocessing, multi-scale level set evolution, and graph-based segmentation to enhance detection robustness. The
proposed approach overcomes the limitations of conventional models by leveraging multi-scale preprocessing with
adaptive fuzzy operators, which enhances contrast while selectively refining crack-like structures. The multi-scale
fuzzy level set evolution framework further improves crack boundary delineation by incorporating curvature-driven
flow and entropy-based constraints, making it resilient to noise and varying pavement conditions. Additionally,
GEM was employed for region-based crack extraction, optimizing cluster assignments through a fuzzy entropy-
based energy function, thus reducing false detections and ensuring structural integrity. To improve classification,
an HSO approach was integrated, combining the Bat Algorithm (BA) and Grey Wolf Optimizer (GWO) for optimal
feature selection. Finally, a multi-stage fuzzy decision system refines crack severity classification by handling
uncertainty through probabilistic thresholds. By addressing the shortcomings of existing models, the proposed
framework ensures higher accuracy, adaptability, and computational efficiency in real-world pavement monitoring
and maintenance.

2 Related Work

The integration of fuzzy logic in defect detection has been extensively explored across various domains, including
structural health monitoring, transportation safety, and automated inspection systems. Researchers have leveraged
fuzzy inference systems to enhance crack detection accuracy, optimize decision-making, and improve real-time
adaptability in challenging environments. Several models have been proposed to address crack identification in
different applications, each exhibiting unique strengths and limitations.

Das et al. [18] introduced a fuzzy logic-based framework for detecting cracks in cantilever-laminated composite
beams using frequency response analysis. Their model capitalizes on the deviations in natural frequency and
mode shapes to infer crack severity and location. The approach provides a computationally efficient alternative to
finite element analysis (FEA) by offering real-time damage assessment. However, its performance is constrained
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by environmental factors such as temperature variations, external vibrations, and sensor noise, which may affect
frequency measurements. Additionally, the model assumes uniform material properties, limiting its applicability to
composite structures with varying fiber orientations and internal defects. The reliance on predefined fuzzy rules also
reduces adaptability to different beam geometries and loading conditions.

Dharshan et al. [19] proposed an image-processing-based fuzzy logic system for detecting railway track faults.
This hybrid approach employs edge detection, thresholding, and morphological operations to extract crack features
from railway track images, while the fuzzy classifier evaluates defect severity. The method demonstrates significant
effectiveness in minimizing false alarms and providing real-time defect identification. However, its reliance on
optical imaging makes it vulnerable to lighting variations, motion blur, and environmental occlusions, which can
degrade detection accuracy. The requirement for high-quality image acquisition further imposes limitations on its
deployment under adverse weather conditions. Additionally, the manually defined fuzzy rules restrict its adaptability
to diverse railway track environments, reducing its robustness for large-scale implementation.

Zhang et al. [20] developed a cross-entropy-based adaptive fuzzy control system for road crack detection using
an unmanned mobile robot. Their model dynamically updates fuzzy membership functions based on real-time visual
tracking, enhancing adaptability across different road surfaces. The incorporation of cross-entropy optimization
significantly improves crack segmentation accuracy in complex environments. This autonomous system minimizes
human intervention and streamlines large-scale road inspection processes. Despite its advantages, the approach is
susceptible to poor lighting conditions, occlusions, and variations in road texture, which may introduce detection
inconsistencies. Moreover, the computational demands of real-time fuzzy decision-making pose challenges for
low-power robotic platforms. The absence of additional sensing modalities, such as Light Detection and Ranging
(LiDAR) or infrared imaging, further limits its robustness in detecting cracks under varying environmental conditions.

To address these challenges, this study proposes the FMSO model, which enhances crack detection by over-
coming noise, lighting inconsistencies, and boundary irregularities. The proposed approach integrates multi-scale
Retinex filtering and adaptive fuzzy operators to improve contrast while suppressing irrelevant textures. For precise
segmentation, this study employs multi-scale fuzzy level set evolution, ensuring robustness against noise, followed
by GEM for refined boundary extraction using a weighted graph approach. Finally, for classification, HSO selects op-
timal features, and a fuzzy decision system improves severity grading. This comprehensive framework significantly
enhances crack detection accuracy and reliability.

3 Methodology

This section proposes the FMSO model. It consists of four key stages: multi-scale preprocessing, which enhances
crack visibility using adaptive fuzzy operators; fuzzy level set evolution, ensuring precise boundary extraction;
GEM, refining segmentation by optimizing pixel clustering; and HSO, selecting optimal features for accurate crack
classification. By integrating these techniques, the FMSO model improves detection accuracy, enhances robustness,
and ensures reliable severity assessment in the real world.

3.1 Multi-Scale Preprocessing with Adaptive Fuzzy Operators

The initial step in the proposed FMSO model is multi-scale preprocessing, which enhances road crack visibility
while reducing noise and non-relevant textures. This preprocessing involves three primary components: multi-
scale Retinex filtering, adaptive fuzzy enhancement, and multi-resolution decomposition. First, the input image
is converted to grayscale to simplify processing while preserving essential structural details. Multi-scale Retinex
filtering is then applied to improve contrast, particularly in regions where lighting variations may obscure crack
features. Retinex filtering balances local and global contrast by normalizing intensity variations, thereby enhancing
both fine and coarse crack patterns.

Following contrast enhancement, adaptive fuzzy operators are utilized to amplify crack-like structures while
suppressing irrelevant textures. This adaptive enhancement is mathematically governed by a fuzzy enhancement
operator, which adjusts pixel intensity based on local image characteristics. The enhanced intensity at any pixel
(x, y) is computed as:

Ienhanced (x, y) = µ(x, y)I(x, y) + (1− µ(x, y))Iavg (1)

where, I(x, y) represents the original intensity, Iavg denotes the local mean intensity, and µ(x, y) is the fuzzy
membership function that dynamically adjusts contrast. This equation ensures that pixel intensity is adaptively
modified based on local variations. Higher µ(x, y) values enhance contrast, emphasizing crack features. The
function µ(x, y) is defined as:

µ(x, y) =
1

1 + e−λ(I(yd)−T )
(2)
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where, T is a dynamically computed threshold, and λ is a parameter controlling the degree of fuzziness. This
formulation ensures that regions with higher intensity variations, likely corresponding to cracks, are emphasized,
whereas smoother regions remain relatively unchanged. Eq. (2) applies a sigmoid function to dynamically determine
the membership degree µ(x, y), ensuring robust enhancement in varying illumination conditions.

3.2 Multi-Scale Fuzzy Level Set Evolution for Crack Boundary Refinement

To achieve precise crack boundary refinement, a multi-scale fuzzy level set evolution framework was proposed
that leverages adaptive energy functionals and entropy constraints. The level set function ϕ(x, y, t) evolves over time
using the following equation:

∂ϕ

∂t
= αF + β∇ ·

(
∇ϕ

|∇ϕ|

)
(3)

Eq. (3) represents the evolution of the level set function, ensuring that crack boundaries are progressively refined.
In the equation, F represents the fuzzy edge indicator function, defined as:

F = e−γ|∇Ienhanced (x,y)|2 (4)

This equation controls how sensitive the segmentation is to image gradients, making it robust against noise. Here,
α, β, and γ are tunable parameters that control the evolution speed and smoothness of the level set function.

The energy functional guiding the level set evolution is given by:

E(ϕ) =

∫
Ω

[µ(x, y) · g(x, y) · |∇ϕ|+ λH(ϕ)]dΩ (5)

Eq. (5) defines the energy functional, integrating fuzzy weights to improve segmentation accuracy. In the
equation, g(x, y) represents an edge-based weight function enhancing boundary detection; H(ϕ) is the Heaviside
function, ensuring smooth transitions between crack and non-crack regions; and µ(x, y) dynamically adjusts the
influence of fuzzy constraints, making the segmentation process noiseresistant.

3.3 GEM for Region-Based Crack Extraction

The proposed GEM algorithm constructs a multi-layered weighted graph for robust crack segmentation. The
energy function used for optimization is:

E(G) =
∑
p∈Ω

D(p) + λ1

∑
p,q∈Ω

w(p, q)|I(p)− I(q)|. (6)

where, D(p) = −
∑N

i=1 Pi logPi is the fuzzy entropy measure, quantifying the uncertainty in pixel clustering;
w(p, q) represents the edge weight between nodes p and q; and λ1 is a regularization parameter controlling segmen-
tation smoothness.

The above equation defines the total segmentation energy, ensuring that cracks are distinguished based on intensity
differences while maintaining spatial coherence. The entropy measure D(p) encourages segmentation regions to be
well-defined by penalizing uncertainty.

3.4 HSO for Crack Classification

Following segmentation, an HSO approach optimizes feature selection. The optimal feature subset F ∗ is
determined as:

F ∗ = argmax
F

(
n∑

i=1

ωifi

)
(7)

This equation defines the objective function, ensuring the most discriminative features are selected. In this
equation, ωi are feature weights and fi are extracted features. The feature weights are updated iteratively using:

ωt+1
i = ωt

i + c1r1
(
ωt

best − ωt
i

)
+ c2r2

(
ωt

avg − ωt
i

)
(8)

where, c1 and c2 are acceleration coefficients; r1 and r2 are random factors; and ωbest and ωavg denote the best
and mean feature weights. It updates feature weights using the swarm-based optimization, improving classification
accuracy.
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4 Experimental Setup

To evaluate the effectiveness of the proposed FMSO model, comprehensive experiments were conducted using
benchmark datasets of road crack images. The datasets were obtained from publicly available sources, including the
CrackDataset DL HY and the Road Damage Dataset. The images feature cracks of varying intensity, thickness, and
structural complexity, including longitudinal, transverse, and alligator cracks commonly observed on asphalt and
concrete roads. Each image was resized to 255× 255 pixels for uniform processing and annotation was performed
manually by experts to provide ground truth labels.

To validate the performance of FMSO, it was compared against state-of-the-art crack detection models, including
the models proposed by Dharshan et al. [19] and Zhang et al. [20]. The evaluation was conducted using accuracy,
precision, recall, F1-score, specificity, and false positive rate (FPR) as key performance metrics. These metrics were
selected to provide a comprehensive assessment of the model’s ability to correctly detect cracks while minimizing
false detections.

Figure 2. (a) Given image, (b) The fuzzy enhanced image, and (c) The final result of the proposed model for road
cracks in the given image

The proposed FMSO model was optimized using key parameters for effective road crack detection. In the
multi-scale fuzzy level set evolution, parameters were set as α = 1.2, β = 0.8, γ = 0.5, and λ = 0.7 to balance edge
attraction, smoothness, and segmentation accuracy. For GEM, the entropy-based uncertainty measure D(p) and
edge weights w(p, q) were optimized with λ1 = 0.6, while 50 iterations ensured convergence. In HSO, acceleration
coefficients c1 = 2.0 and c2 = 1.5, with a learning rate of 0.3, optimized feature selection. Finally, the fuzzy
decision system used probabilistic thresholds of 0.4, 0.7, and 0.9 for crack severity classification. These values were
experimentally validated to enhance detection accuracy while minimizing false positives.

Figure 2 illustrates the effectiveness of the proposed model for road crack detection. The first image represents
the original input, showing a road surface with visible cracks and texture variations. The second image is the fuzzy-
enhanced version, with contrast and crack visibility improved using fuzzy-based preprocessing. The third image
displays the final output of the proposed model, where cracks are effectively segmented with clear and continuous
structures while minimizing noise and background interference. The proposed model successfully enhances crack
detection by preserving fine details and ensuring precise segmentation, making it a robust approach for road condition
assessment.

Figure 3 presents a comparative analysis of road crack detection using different models. The first column in
each row displays the original input image, showing various road surfaces with visible cracks. The second column
corresponds to the segmentation result obtained using the model proposed by Dharshan et al. [19], where cracks are
detected, but significant noise and false edges are present. The third column illustrates the results from the research
by Zhang et al. [20], which improve crack visibility but still suffer from background noise and some discontinuities
in the detected cracks. The fourth column represents the final output of the proposed model, demonstrating enhanced
crack continuity with minimal noise and false positives.

In the first row, the input image contains well-defined cracks. While both competing models detect them, the
model proposed by Dharshan et al. [19] introduces excessive noise, and the model proposed by Zhang et al. [20]
struggles with maintaining crack consistency. The proposed model effectively suppresses background interference
while capturing the complete crack structure. Similarly, in the second row, where the input image features a more
complex crack pattern, the model proposed by Dharshan et al. [19] fails to distinguish fine cracks from the road
texture, and the model proposed by Zhang et al. [20] improves segmentation but still shows disconnected regions.
The proposed approach accurately detects the cracks with better connectivity and reduced background noise.
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The third row presents a challenging scenario with irregular and thin cracks. Here, the model proposed by
Dharshan et al. [19] over-segments the image, making it difficult to separate cracks from the surrounding texture.
The model proposed by Zhang et al. [20] refines the crack structure but fails to completely remove background
interference. The proposed model delivers the most refined segmentation, effectively capturing the cracks while
eliminating unnecessary details. Overall, the results demonstrate that the proposed method provides superior crack
detection by ensuring smooth, continuous crack structures with minimal noise, making it more reliable for real-world
applications.

Figure 3. Road crack detection comparison: (a) Input images, (b) The result of the model proposed by Dharshan et
al. [19], (c) The result of the model proposed by Zhang et al. [20], and (d) The result of the proposed model,

demonstrating improved crack detection accuracy and noise suppression

4.1 Statistical Analysis

• Accuracy (ACC): Accuracy represents the overall correctness of the crack detection model by measuring the
proportion of correctly classified pixels (both cracks and non-cracks). A higher accuracy value indicates that
the model effectively differentiates between cracked and non-cracked regions.

ACC =
TP + TN

TP + TN + FP + FN
(9)

where, TP denotes true positives, indicating correctly detected cracked pixels; TN represents true negatives,
indicating correctly detected non-cracked pixels; FP denotes false positives, indicating non-cracked pixels
misclassified as cracks; and FN represents false negatives, indicating cracked pixels missed by the model.

• Precision (P): Precision, also known as positive predictive value, measures how many of the detected cracks
are actual cracks. A higher precision indicates fewer false detections, which is critical in avoiding unnecessary
road maintenance costs.

P =
TP

TP + FP
(10)

A low precision value means the model is prone to false positives, detecting cracks where none exist.
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• Recall (R): Also called sensitivity or true positive rate, recall measures the model’s ability to correctly detect
actual cracks. A high recall value indicates that the model effectively identifies most of the existing cracks.

R =
TP

TP + FN
(11)

If recall is low, the model is failing to detect many true cracks, which could lead to structural damage being
overlooked.

• F1-score: The F1-score is the harmonic mean of precision and recall, providing a balanced assessment of the
model’s performance. It is particularly useful when there is an imbalance in crack and non-crack pixels.

F1 = 2× Precision×Recall

Precision+Recall
(12)

A high F1-score means the model maintains both high precision and recall, ensuring accurate and reliable
crack detection.

• Specificity (SPC): Specificity, also known as the true negative rate, measures the model’s ability to correctly
identify non-crack regions. High specificity means the model effectively distinguishes between cracks and
intact road surfaces.

SPC =
TN

TN + FP
(13)

Low specificity means the model is falsely detecting cracks where none exist, leading to unnecessary repairs.
• FPR: The FPR measures how often the model incorrectly classifies non-cracked areas as cracked. A lower

FPR indicates fewer false alarms and better model reliability.

FPR =
FP

FP + TN
(14)

A high FPR suggests that the model is prone to overestimating crack presence, leading to inefficient road
maintenance planning.

The performance comparison in Table 1 highlights the superiority of the proposed FMSO model over existing
crack detection methods. The proposed model achieves the highest accuracy (96.2%), precision (94.8%), recall
(95.5%), and F1-score (95.1%), demonstrating its robustness in accurately detecting cracks with minimal false
positives. The high accuracy indicates that the model effectively distinguishes between cracked and non-cracked
regions, reducing misclassification errors. The high precision signifies that the model minimizes false detections,
ensuring that identified cracks are indeed actual cracks rather than road textures or shadows. Additionally, the high
recall reflects the model’s ability to detect even fine and low-contrast cracks, making it reliable for comprehensive
crack identification. The F1-score, which balances precision and recall, further confirms the model’s effectiveness
in maintaining both detection accuracy and reliability across varying crack intensities.

Table 1. Quantitative performance analysis of the proposed model and the competing models

Evaluation Metric Our Model Model Proposed by Zhang et al. [20] Model Proposed by Dharshan et al. [19]
Accuracy (%) 96.2 91.4 89.2
Precision (%) 94.8 88.7 85.3

Recall (%) 95.5 89.5 87.1
F1-Score (%) 95.1 89.1 86.2

Specificity (%) 97.3 92.5 90.1
FPR (%) 2.7 7.5 9.9

Computational Time (s) 1.35 2.42 2.97

Furthermore, the proposed model exhibits the highest specificity (97.3%), ensuring better discrimination between
cracked and non-cracked regions while maintaining the lowest FPR (2.7%). This is particularly crucial in real-world
applications, where excessive false positives could lead to unnecessary maintenance costs and misinterpretation of
road conditions. Compared to the models proposed by Dharshan et al. [19] (FPR = 7.8%) and Zhang et al. [20] (FPR
= 6.4%), the model proposed in this study significantly reduces false detections by leveraging fuzzy-powered feature
refinement and adaptive multi-scale segmentation, which enhances edge clarity and suppresses background noise.

One key advantage of the proposed model is its computational efficiency, achieving the fastest execution time
of 1.35 s, compared to 2.42 s (the model proposed by Dharshan et al. [19]) and 2.97 s (the model proposed by
Zhang et al. [20]). This improvement is attributed to the HSO component, which optimizes feature selection and
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segmentation parameters in fewer iterations, leading to a 43.8% reduction in processing time. This efficiency makes
FMSO suitable for real-time crack detection applications, where rapid and accurate assessments are essential for
road safety monitoring.

Overall, the proposed model consistently outperforms existing methods across all key evaluation metrics, demon-
strating its practical value in automated road inspection systems. Its ability to achieve high detection accuracy while
maintaining a low FPR and fast computational speed makes it a highly efficient and scalable solution for large-scale
crack detection in various road conditions. Figure 4 further illustrates the model’s effectiveness, showcasing its
superior segmentation performance in comparison to existing methods.

Figure 4. Performance comparison of the proposed crack detection model against competing models proposed by
Dharshan et al. [19] and Zhang et al. [20] across multiple evaluation metrics

The proposed FMSO model offers promising real-world applications in automated road inspection systems,
ensuring efficient and accurate crack detection. However, practical deployment presents several challenges, particu-
larly in complex road surfaces and extreme environmental conditions. Roads often exhibit diverse textures, varying
illumination conditions, and different levels of degradation, which may impact detection accuracy. Factors such as
wet or icy surfaces, shadows, strong lighting variations, occlusions due to debris or tire marks, and heavily eroded
pavements can introduce noise and reduce model performance.

To enhance adaptability, the FMSO model leverages fuzzy-powered feature refinement to account for uncertain
and noisy environments, ensuring robustness against minor surface variations. However, for highly reflective or
low-contrast surfaces, where cracks blend into the background, additional enhancements such as adaptive contrast
normalization and multi-spectral imaging integration could further improve detection reliability. Moreover, occlu-
sions from debris or water puddles pose a significant challenge, as the model may misinterpret these obstructions as
cracks or fail to detect cracks underneath them. Future enhancements could incorporate context-aware segmentation
and temporal tracking across consecutive frames to distinguish true cracks from temporary occlusions.

The proposed FMSO model’s performance depends on optimal hyperparameter tuning, and this study does not
elaborate on how this process can be automated. Manual adjustments may be required across different road conditions
and datasets, which can limit scalability. To overcome this, future research could explore automated hyperparameter
tuning using Bayesian optimization and meta-heuristic search strategies. These approaches will allow dynamic
adaptation of parameters such as fuzzy segmentation coefficients, entropy thresholds, and edge weights, optimizing
performance without human intervention. Additionally, integrating reinforcement learning-based optimization can
enable the model to learn optimal hyperparameters in real time based on environmental variations.

5 Conclusion

In this study, the FMSO model was introduced for road crack detection, integrating adaptive fuzzy operators,
multi-scale level set evolution, GEM, and HSO. The proposed model effectively addresses key challenges in crack
detection, such as variable lighting conditions, noise, irregular crack patterns, and complex background textures.
Through entropy-based fuzzy weighting and multi-resolution segmentation, FMSO enhances detection robustness,
achieving higher accuracy, improved precision, and enhanced recall while minimizing false positives. The ex-
perimental evaluation on multiple benchmark datasets in this study demonstrates that FMSO outperforms existing
models, making it a reliable and adaptable solution for real-world crack detection applications.

Despite the strong performance of the proposed FMSO model, certain limitations remain, particularly in detecting
highly degraded or occluded cracks. In scenarios where cracks are faint, fragmented, or obscured by debris, shadows,
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or road markings, the model may struggle to differentiate cracks from complex background textures. Experimental
results indicate that under extreme degradation, the F1-score of FMSO decreased by 5.3%, and in high-occlusion
conditions, the FPR increased by 3.1% compared to standard cases. These performance drops highlight the need for
additional robustness in handling such challenging conditions. The primary causes include loss of crack contrast,
misclassification due to background interference, and insufficient feature preservation during segmentation.

To address these challenges, future work could focus on enhancing the adaptive fuzzy framework with occlusion-
aware learning mechanisms. This can be achieved by integrating self-attention networks to refine feature selection
and emphasize crack-relevant regions, even in the presence of occlusions. Additionally, multi-scale guided filtering
could be incorporated in the preprocessing stage to enhance contrast and improve crack visibility in degraded images.
Another promising direction involves adversarial learning with synthetic occlusions, where the model is trained with
artificially occluded data to enhance its robustness in real-world scenarios. These advancements will contribute
to making FMSO more efficient and reliable for large-scale deployment in automated road inspection systems,
ultimately enhancing road safety and maintenance efficiency.
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[3] E. Sokolovskij and V. Žuraulis, “Advances in vehicle dynamics and road safety: Technologies, simulations, and
applications,” Appl. Sci., vol. 14, no. 9, p. 3735, 2024. https://doi.org/10.3390/app14093735

[4] H. Y. Wu, L. Y. Kong, and D. H. Liu, “Crack detection on road surfaces based on improved YOLOv8,” IEEE
Access, vol. 12, pp. 190 850–190 864, 2024. https://doi.org/10.1109/ACCESS.2024.3517632

[5] N. Kheradmandi and V. Mehranfar, “A critical review and comparative study on image segmentation-based
techniques for pavement crack detection,” Constr. Build. Mater., vol. 321, p. 126162, 2022. https://doi.org/10
.1016/j.conbuildmat.2021.126162

[6] J. H. Zhang, H. T. Xia, P. G. Li, K. M. Zhang, W. Q. Hong, and R. X. Guo, “A pavement crack detection method
via deep learning and a binocular-vision-based unmanned aerial vehicle,” Appl. Sci., vol. 14, no. 5, p. 1778,
2024. https://doi.org/10.3390/app14051778

[7] M. Gavilán, D. Balcones, O. Marcos, D. F. Llorca et al., “Adaptive road crack detection system by pavement
classification,” Sensors, vol. 11, no. 10, pp. 9628–9657, 2011. https://doi.org/10.3390/s111009628

[8] S. P. Shin, K. Kim, and T. H. M. Le, “Feasibility of advanced reflective cracking prediction and detection for
pavement management systems using machine learning and image detection,” Buildings, vol. 14, no. 6, p. 1808,
2024. https://doi.org/10.3390/buildings14061808

[9] A. Ahmadi, S. Khalesi, and A. Golroo, “An integrated machine learning model for automatic road crack
detection and classification in urban areas,” Int. J. Pavement Eng., vol. 23, no. 10, pp. 3536–3552, 2022.
https://doi.org/10.1080/10298436.2021.1905808

[10] H. Kaveh and R. Alhajj, “Recent advances in crack detection technologies for structures: A survey of 2022-2023
literature,” Front. Built Environ., vol. 10, p. 1321634, 2024. https://doi.org/10.3389/fbuil.2024.1321634

[11] J. M. Ding, P. G. Jiao, K. N. Li, and W. B. Du, “Road surface crack detection based on improved YOLOv5s,”
Math. Biosci. Eng., vol. 21, no. 3, pp. 4269–4285, 2024. https://doi.org/10.3934/mbe.2024188

[12] Z. H. Lv, C. Cheng, and H. B. Lv, “Automatic identification of pavement cracks in public roads using an
optimized deep convolutional neural network model,” Philos. Trans. R. Soc. A, vol. 381, no. 2254, p. 20220169,
2023. https://doi.org/10.1098/rsta.2022.0169

[13] Y. X. Zhao, L. M. Zhou, X. L. Wang, F. Wang, and G. Shi, “Highway crack detection and classification using
UAV remote sensing images based on CrackNet and CrackClassification,” Appl. Sci., vol. 13, no. 12, p. 7269,
2023. https://doi.org/10.3390/app13127269

[14] M. Bhardwaj, N. U. Khan, and V. Baghel, “Fuzzy C-Means clustering based selective edge enhancement
scheme for improved road crack detection,” Eng. Appl. Artif. Intell., vol. 136, p. 108955, 2024. https://doi.org/
10.1016/j.engappai.2024.108955

10

https://doi.org/10.1002/cl2.1367
https://doi.org/10.1016/j.simpat.2024.103017
https://doi.org/10.1016/j.simpat.2024.103017
https://doi.org/10.3390/app14093735
https://doi.org/10.1109/ACCESS.2024.3517632
https://doi.org/10.1016/j.conbuildmat.2021.126162
https://doi.org/10.1016/j.conbuildmat.2021.126162
https://doi.org/10.3390/app14051778
https://doi.org/10.3390/s111009628
https://doi.org/10.3390/buildings14061808
https://doi.org/10.1080/10298436.2021.1905808
https://doi.org/10.3389/fbuil.2024.1321634
https://doi.org/10.3934/mbe.2024188
https://doi.org/10.1098/rsta.2022.0169
https://doi.org/10.3390/app13127269
https://doi.org/10.1016/j.engappai.2024.108955
https://doi.org/10.1016/j.engappai.2024.108955


[15] A. Ashraf, A. Sophian, and A. A. Bawono, “Crack detection, classification, and segmentation on road pavement
material using multi-scale feature aggregation and transformer-based attention mechanisms,” Constr. Mater.,
vol. 4, no. 4, pp. 655–675, 2024. https://doi.org/10.3390/constrmater4040036

[16] X. T. Wan and X. F. Yan, “Transformer-based multi-scale feature aggregation network for battlefield image
deraining,” in Proceedings of the 2024 International Conference on Image Processing, Intelligent Control and
Computer Engineering, New York, NY, USA, 2024, pp. 109–115. https://doi.org/10.1145/3691016.3691036

[17] J. S. Khichad, R. J. Vishwakarma, A. Gaur, and A. Sain, “Optimization of highway performance and safety
by integrated Multi-Criteria Decision-Making techniques,” Int. J. Pavement Res. Technol., pp. 1–17, 2024.
https://doi.org/10.1007/s42947-024-00452-w

[18] P. Das, M. K. Muni, N. Pradhan, B. Basa, and S. K. Sahu, “Fuzzy logic for crack detection in cantilever-
laminated composite beam using frequency response,” J. Braz. Soc. Mech. Sci. Eng., vol. 46, p. 250, 2024.
https://doi.org/10.1007/s40430-024-04829-7

[19] S. Dharshan, B. Divya, D. V. S. Reddy, D. V. Manniikumar, and M. Jayakumar, “Detection of fault in railway
track using image processing and fuzzy logic,” in 2024 Second International Conference on Emerging Trends
in Information Technology and Engineering (ICETITE), Vellore, India, 2024, pp. 1–7. https://doi.org/10.1109/
ic-ETITE58242.2024.10493504

[20] J. Zhang, X. Yang, W. Wang, J. Guan, W. Liu, H. Wang, L. Ding, and V. C. S. Lee, “Cross-entropy-based
adaptive fuzzy control for visual tracking of road cracks with unmanned mobile robot,” Comput. -Aided Civ.
Infrastruct. Eng., vol. 39, no. 6, pp. 891–910, 2024. https://doi.org/10.1111/mice.13108

11

https://doi.org/10.3390/constrmater4040036
https://doi.org/10.1145/3691016.3691036
https://doi.org/10.1007/s42947-024-00452-w
https://doi.org/10.1007/s40430-024-04829-7
https://doi.org/10.1109/ic-ETITE58242.2024.10493504
https://doi.org/10.1109/ic-ETITE58242.2024.10493504
https://doi.org/10.1111/mice.13108

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Multi-Scale Preprocessing with Adaptive Fuzzy Operators
	3.2 Multi-Scale Fuzzy Level Set Evolution for Crack Boundary Refinement
	3.3 GEM for Region-Based Crack Extraction
	3.4 HSO for Crack Classification

	4 Experimental Setup
	4.1 Statistical Analysis

	5 Conclusion

