
Information Dynamics and Applications
https://www.acadlore.com/journals/IDA

Crowd Density Estimation via a VGG-16-Based CSRNet Model
Damla Tatlıcan1 , Nafiye Nur Apaydin1 , Orhan Yaman1* , Mehmet Karakose2

1 Department of Digital Forensics Engineering, College of Technology, Firat University, 23119 Elazig, Turkey
2 Department of Computer Engineering, Faculty of Engineering, Firat University, 23119 Elazig, Turkey

* Correspondence: Orhan Yaman (orhanyaman@firat.edu.tr)

Received: 03-13-2025 Revised: 04-14-2025 Accepted: 04-25-2025

Citation: D. Tatlıcan, N. N. Apaydin, O. Yaman, and M. Karakose, “Crowd density estimation via a VGG-16-based
CSRNet model,” Inf. Dyn. Appl., vol. 4, no. 2, pp. 66–75, 2025. https://doi.org/10.56578/ida040201.

  2025 by the author(s). Licensee Acadlore Publishing Services Limited, Hong Kong. This article can be downloaded for free, and
reused and quoted with a citation of the original published version, under the CC BY 4.0 license.

Abstract: Accurate crowd density estimation has become critical in applications ranging from intelligent urban
planning and public safety monitoring to marketing analytics and emergency response. In recent developments,
various methods have been used to enhance the precision of crowd analysis systems. In this study, a Convolutional
Neural Network (CNN)-based approach was presented for crowd density detection, wherein the Congested Scene
Recognition Network (CSRNet) architecture was employed with a Visual Geometry Group (VGG)-16 backbone. This
method was applied to two benchmark datasets—Mall and Crowd-UIT—to assess its effectiveness in real-world
crowd scenarios. Density maps were generated to visualize spatial distributions, and performance was quantitatively
evaluated using Mean Squared Error (MSE) and Mean Absolute Error (MAE) metrics. For the Mall dataset, the model
achieved an MSE of 0.08 and an MAE of 0.10, while for the Crowd-UIT dataset, an MSE of 0.05 and an MAE of 0.15
were obtained. These results suggest that the proposed VGG-16-based CSRNet model yields high accuracy in crowd
estimation tasks across varied environments and crowd densities. Additionally, the model demonstrates robustness in
generalizing across different dataset characteristics, indicating its potential applicability in both surveillance systems
and public space management. The outcomes of this investigation offer a promising direction for future research in
data-driven crowd analysis, particularly in enhancing predictive reliability and real-time deployment capabilities of
deep learning models for population monitoring tasks.
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1 Introduction

Crowds are predominantly observed in public and private spaces where people interact, engage in leisure activities,
travel, and exchange information, such as shopping malls, cinemas, concerts, sports halls, public transportation, traffic,
schools, and hospitals. Crowd density varies depending on the number of people present. For instance, in rural areas,
due to the limited space and lower population density, crowd intensity remains low. In contrast, in metropolitan cities,
the combination of large urban areas and high population density results in significantly higher crowd concentrations.
Crowd density detection offers multiple benefits. For example, in areas with high crowd density, early intervention
can help prevent security threats, such as public disturbances or fights, by enabling timely precautions. In the event of
natural disasters, it facilitates effective search and rescue operations. In traffic management, red light durations can be
adjusted based on the presence of vehicles, optimizing traffic flow. In shopping malls, crowd density detection allows
for the identification of frequently visited stores, enabling strategic placement of less-visited stores next to high-traffic
ones to attract more customers and increase revenue. Additionally, analyzing customer behavior in highly visited
stores helps determine which products are frequently purchased together, allowing for strategic shelf placement to
enhance marketing strategies. Moreover, crowd density detection can be utilized to monitor gatherings and implement
preventive measures to mitigate the spread of infectious diseases. Due to these advantages, crowd density detection
remains a crucial research area, with various studies continuing to be conducted in the literature.

Despite the wide range of applications, crowd density detection still faces several challenges, particularly in
scenarios involving high crowd density, severe congestion, and varying illumination or perspective conditions. To
address these problems, various approaches have been proposed in the literature, ranging from traditional image
processing techniques to modern deep learning-based methods.
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Table 1 provides a comparative overview of several studies concerning crowd density detection. The methods
employed in these studies range from traditional machine learning algorithms, such as random forests and regression
models, to deep learning architectures, including CNN-based and attention-based models. While classical models
offer advantages in terms of simplicity and interpretability, they often fall short in effectively extracting features from
densely populated images.

Table 1. Some studies for crowd density detection

References Year Purpose of the Studies Advantages Disadvantages
Wei et al. [1] 2019 In this study, a novel algorithm was

proposed to address the counting of
fastmoving crowds by utilizing deep
cumulative feature learning, support

vector regression, and
spatiotemporal features.

Handles motion
features and uses

temporal
information.

Computationa lly
intensive and less
effective in static

scenes.

Zhang et
al. [2]

2015 In this study, a label distribution
learning method was introduced for

crowd counting in public video
surveillance.

Performs well
under varying
density levels.

Limited
performance with

perspective
distortion.

Chen et al. [3] 2012 In this study, a multi-output
regression model was developed for

crowd counting in spatially
localized regions.

Effective in
structured and

partitioned
scenes.

Less accurate in
highly dense

scenarios.

Chen et al. [4] 2013 In this study, age and crowd density
estimation were performed by
transforming high-dimensional

feature vectors into low-dimensional
scalar values. To achieve this, a
cumulative feature space was

utilized to reduce data imbalance.

Handles
highdimensional
data and reduces

imbalance.

Information loss
during reduction
and sensitivity to
feature selection.

Pham et al. [5] 2015 In this study, a random forest-based
model was developed to estimate

crowd density in scenes with dense
human crowds.

Robust to noise
and outliers and

interpretable.

May
underperform in

real-time
applications;

limited spatial
modeling.

Tomar et
al. [6]

2022 In this study, a dynamic
kernel-based CNN-Linear

Regression (LR) model was
proposed for human counting in

crowd scenes. This model is
specifically designed to address the
overlapping issues in dense crowds.

Tackles overlap
issues; dynamic
kernel improves

learning.

Requires large
datasets for
training and

complex
parameter tuning.

Abdullah &
Jalal [7]

2023 In this study, a fuzzy classifier
(neurofuzzy classifier) and a
semantic segmentation-based

method were developed for crowd
tracking and anomaly detection in

intelligent surveillance systems.
The method aims to monitor

behaviors in crowded areas and
detect anomalies.

Interpretable
decision-making;
good for anomaly

detection.

Sensitive to noise;
limited scalability

in large scenes.

Tripathy &
Srivastava [8]

2021 In this study, an Attention-based
MultiStream (AMSCNN)-CNN was

developed for video-based crowd
counting, considering both spatial

and temporal features.

Captures both
spatial and

temporal features
effectively.

High
computational
cost; real-time
deployment is
challenging.
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References Year Purpose of the Studies Advantages Disadvantages
Xiong et

al. [9]
2017 In this study, a model was

developed for crowd counting in
videos that captures temporal and
spatial information, enabling more

accurate predictions.

Improves
accuracy in

dynamic scenes.

Limited
performance in

still images;
temporal data
dependency.

Maktoof et
al. [10]

2023 In this study, different models from
the You Only Look Once version 5
(YOLOv5) family were compared to

detect human crowds more
accurately.

High detection
accuracy and

real-time
capability.

Struggles in
extremely dense
scenes; limited

counting ability.

Maktoof et
al. [11]

2023 In this study, a real-time system
combining YOLOv5 and Kernel

Correlation Filter (KCF) algorithms
was developed for detecting and

counting human crowds.

Efficient realtime
tracking and

detection.

Accuracy drops
in highly

occluded scenes.

Deng et
al. [12]

2024 In this study, a new dataset was
presented in the field by performing
human crowd counting from videos.

Enriches the field
with new data

sources.

No new method
proposed; limited

to data
contribution.

Conventional CNN-based models often fail to effectively extract features from highly congested scenes, resulting in
poor performance in detecting individuals within dense crowds. Therefore, in this study, CSRNet, a CNN architecture
specifically designed for crowd counting and density map estimation, was proposed. The proposed method integrates
a VGG-16-based frontend with an extended convolutional backend, enabling CSRNet to capture multi-scale spatial
features effectively without losing resolution. This allows for accurate localization and counting of individuals even in
complex and densely crowded scenarios. The primary objective of this study is to develop a fast and accurate crowd
density detection model capable of robustly estimating the number and positions of people in an image, particularly
under challenging conditions. Another aim of this work is to contribute to the advancement of the existing CSRNet
model in the literature. Moreover, due to the limited number of existing studies utilizing the Crowd-UIT dataset, this
work is expected to serve as a valuable reference for future research efforts.

2 Methodology
2.1 Dataset

In this study, the Mall and Crowd-UIT datasets from the literature were used [13].
2.1.1 Mall dataset

The Mall dataset consists of low-resolution, crowded human images captured in a shopping mall. This dataset
contains 2,000 images, with the number of people in each image provided in a CSV file along with the image name
and corresponding person count. Figure 1 presents sample images from the Mall dataset along with the CSV file.

Figure 1. Mall dataset (a) Original images (b) CSV file
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2.1.2 Crowd-UIT dataset
The Crowd-UIT dataset consists of ten videos [12]. Using these videos, ten different repositories have been

created for each video. In this study, only repositories 1 and 2 from the Crowd-UIT dataset were used. Each repository
contains frames from the videos and the locations of people in those frames as JSON labels. The first repository
contains 145 images, while the second repository contains 144 images. Figure 2 presents the sample image and the
JSON file for repository 1, while Figure 3 presents the sample image and the JSON file for repository 2.

Figure 2. Sample image for repository 1 of the Crowd-UIT dataset and corresponding JSON tag

2.2 Method

The proposed method in this study was applied separately to the repositories in the Mall and Crowd-UIT datasets
to obtain results. After training, the resulting model was tested on sample images. The block diagram of the proposed
method is shown in Figure 4.

As shown in Figure 4, the images and labels from the dataset were first fed as input to the VGG-16 model.
VGG-16 was used to extract the basic features and subsequently generate feature maps. These feature maps were
then passed to the convolutional layers of CSRNet, where more complex operations were performed to detect the
density [14–20]. Following this, the information from a larger area was captured by passing the feature maps through
dilated convolution layers. After these steps, density maps were generated. The resulting density maps were then
upsampled to higher resolution through upsampling operations. To determine the accuracy of the model and compare
it with other studies, MSE and MAE metrics were calculated. These values were used to assess the model’s learning
process and performance.

The MSE and MAE metrics are given in Eq. (1) and Eq. (2):

MAE =
1

N

N∑
i=1

|Xi −X| (1)

MSE =
1

N

N∑
i=1

(Yi − Yi)
2 (2)
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Figure 3. Sample image for repository 2 of the Crowd-UIT dataset and corresponding JSON tag

Figure 4. Block diagram of the proposed CSRNet model

2.2.1 MDensity maps
Density maps visualize the concentrations of people in images, clearly showing which areas of the crowd are

more densely populated. The model predicts the human density in specific areas of the given image and provides this
as a density map. These maps are generated through convolutional operations via deep learning models. In the maps,
blue colors represent areas with low density. As the density increases, the colors transition to yellow and orange. The
regions with the highest crowd density are shown in red. The working principle of the density map is illustrated in
Figure 5.

CSRNet is a deep learning model specifically designed for estimating crowd density. Its most distinctive feature
lies in its utilization of dilated convolutional layers, which enable effective crowd counting, particularly in densely
populated scenarios. In this study, the VGG-16 architecture was employed as the frontend of the CSRNet model.
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VGG-16 is a pre-trained deep CNN, originally trained on the ImageNet dataset, and is widely used for feature
extraction due to its strong generalization capability. For the purposes of this study, only the convolutional layers
of VGG-16 were retained, while the fully connected layers were removed. This modification allows the model to
accept input images of arbitrary sizes and produce corresponding density maps, making it suitable for practical crowd
analysis applications. The convolutional blocks in VGG-16 extract hierarchical features, where the early layers learn
low-level visual information such as edges and textures, while the deeper layers capture high-level semantic features.
This progressive feature representation enhances the model’s capability in recognizing and interpreting complex
crowd patterns. The architecture of the modified VGG-16 frontend and CSRNet backend is illustrated in Figure 6.

Figure 5. Working principle of the density map

Figure 6. Architecture of the VGG-16 model

The CSRNet backend comprises five consecutive dilated convolutional layers, each designed to expand the
receptive field without reducing the feature map resolution. By increasing the dilation rate, these layers effectively
aggregate more contextual information while maintaining the integrity of fine-grained spatial details—a critical factor
in the dense crowd analysis.

In addition to these core components, the following layers were utilized:
• Convolutional layers: Feature maps were extracted from the input by applying a set of learnable filters. The

size of these filters determines the level of detail captured in the feature maps.
• MaxPooling layers: The feature maps were downsampled by selecting the maximum value from subregions,

thus preserving the most salient features while reducing computational complexity.
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• Sequential layer configuration: Layers were structured sequentially to streamline the architectural design,
allowing for organized and efficient forward propagation.

This enhanced architecture allows the model to process images of varying sizes and to make accurate and real-time
predictions even in complex and crowded environments. All these layers and the input-output values are shown in
Figure 7.

Figure 7 provides a comprehensive visualization of the layer-by-layer architecture of the CSRNet model enhanced
with VGG-16 as the frontend. The diagram outlines the exact input and output dimensions of each layer, starting
from the input layer and continuing through the convolutional and pooling blocks of VGG-16, followed by the dilated
convolutional layers and the final output layer. The frontend, consisting of five convolutional blocks (Block1 to
Block5), is derived from VGG-16 and is responsible for feature extraction. These blocks utilize multiple Conv2D
layers followed by MaxPooling2D layers, which progressively reduce the spatial resolution while increasing the
depth (i.e., number of feature maps), capturing both low- and high-level features effectively. After the VGG-16
blocks, the backend (CSRNet) begins with a set of dilated convolutional layers (represented in the model with three
Conv2D layers post-Block5), which preserve spatial resolution while expanding the receptive field. This allows the
model to integrate broader contextual information for precise density estimation. The final sequential layer produces
a single-channel output representing the predicted density map. This detailed structure illustrates how the model
maintains a balance between spatial accuracy and semantic richness, enabling robust performance in dense crowd
counting tasks.

Figure 7. Layers and input-output values of the CSRNet model enhanced with VGG-16

3 Results
3.1 Mall dataset results

Figure 8 presents a test example of the model created using the Mall dataset.
This dataset only provides the number of people along with the images and does not give the locations of the

people. Therefore, the model attempts to predict the locations of people on its own.
The results of the proposed method for the MALL dataset were compared with the studies in the literature in

Table 2.
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Figure 8. Test example on the MALL dataset (a) Original image (b) Density detection image

Table 2. Comparison of the MALL dataset results with existing studies

References Methods MSE MAE
Wei et al. [1] Boosting DAL-SVR 9.57 2.40

Zhang et al. [2] IIS-LDL 12.1 2.69
Chen et al. [3] Multi-output ridge regression (MORR) 15.7 3.15
Chen et al. [4] CA-RR 17.7 3.43
Pham et al. [5] Patch-based Gaussian kernel 10.0 2.50
Tomar et al. [6] DKCNN-LR 2.76 1.65

Abdullah & Jalal [7] Semantic segmentation-based crowd tracking method 4.34 2.57
Tripathy & Srivastava [8] AMS-CNN 3.08 2.47

Xiong et al. [9] ConvLSTM Bidirectional ConvLSTM 7.6 2.10
VGG-16 + CSRNet (proposed model) 0.08 0.10

Upon examining Table 2, it can be seen that the CSRNet model enhanced with VGG-16 achieves significant
success in crowd density prediction, with an MSE of 0.08 and an MAE of 0.10, outperforming other methods in the
literature.

3.2 Crowd-UIT dataset results

Figure 9 shows the test result with an example image after applying the proposed method to the Crowd-UIT
dataset.

Figure 9. Test example on the Crowd-UIT dataset (a) Original image (b) Density detection image

The Crowd-UIT dataset not only contains images of crowded scenes but also includes precise location annotations
for each individual. These annotations were directly utilized during the training phase of the proposed method,
enabling more precise learning of spatial patterns associated with crowd distribution. By incorporating positional
labels into the supervised learning process, the model could effectively minimize the loss function by explicitly
correlating input image features with ground-truth spatial positions. This significantly improved the optimization
process during training, as the model received clear, structured signals about where people are located, rather than
only how many people are in the scene. As a result, it could better localize individuals even in densely populated
scenes or in areas with high background complexity.
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Table 3 presents a comparative analysis of the Crowd-UIT dataset results with existing studies in the literature. As
shown, there are very few prior works utilizing the Crowd-UIT dataset, and all the known studies are summarized in
Table 3. Due to this scarcity, the findings of this study are anticipated to contribute as a meaningful benchmark for
future researchers working on crowd analysis.

Table 3. Comparison of the Crowd-UIT dataset results with existing studies

References Methods MSE MAE Accuracy

Deng et al. [12]

FairMOT 5232.8 50.4 -JDE 439425.5 445.5

Maktoof et al. [10]

YOLOv5s

- -

93.22%
YOLOv5m 90.96%
YOLOv51 96.41%
YOLOv5x 96.53%

Maktoof et al. [11] YOLOv5 + KCF - - 97.61%
VGG-16 + CSRNet (proposed model) 0.05 0.15 -

Upon examining Table 3, it can be seen that the CSRNet model enhanced with VGG-16 achieves significant
success in crowd density prediction, with an MSE of 0.05 and an MAE of 0.15, outperforming other studies in the
literature.

In conclusion, the Crowd-UIT dataset includes crowd images along with annotated human positions. Since the
proposed method was trained with these positional annotations, it was able to more accurately detect individuals
regardless of crowd density. In contrast, the Mall dataset only provides the total number of people in each image
without their exact positions. Therefore, the proposed method had to autonomously identify individuals in the scenes.
However, as illustrated in the test image shown in Figure 8, due to the high scene complexity in the Mall dataset—such
as lighting angles and the presence of non-human objects like trees—the method was not as successful as it was on
the Crowd-UIT dataset. Therefore, when compared to the Mall dataset, the Crowd-UIT dataset yielded better results
due to its higher image clarity and the availability of directly annotated human positions.

4 Conclusions

In this study, crowd density detection was performed using the CSRNet model enhanced with VGG-16 on the
Mall and Crowd-UIT datasets. The model was applied separately to each dataset, and the results were obtained.
The density maps generated by the model effectively visualized areas with high crowd density. The MSE and MAE
metrics obtained in the model showed very low values. For the Mall dataset, an MSE of 0.08 and an MAE of 0.10
were achieved. For the Crowd-UIT dataset, an MSE of 0.05 and an MAE of 0.15 were obtained. When comparing the
Crowd-UIT dataset with the Mall dataset, better results were observed in the Crowd-UIT dataset due to the clearer
images and the direct labeling of people’s positions. The low error values provided by the CSRNet model enhanced
with VGG-16 demonstrate that the model performs better than existing methods in the literature for crowd density
detection. Since other algorithms have higher error metrics, it is evident that the CSRNet model enhanced with
VGG-16 is an effective method for crowd density detection.
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