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Abstract: Accurate and reliable detection of apples in complex orchard environments remains a challenging task due
to varying illumination, cluttering backgrounds, and overlapping fruits. In this paper, the difficulties were tackled
with a novel edge-enhanced detection framework proposed to integrate dynamic image smoothing, entropy-based
edge amplification, and directional energy-driven contour extraction. An adaptive smoothing filter was adopted with
a sigmoid-based weighting function to selectively preserve edge structures while suppressing noise in homogeneous
regions. The input of Red Green Blue (RGB) image was subsequently transformed into the Hue, Saturation, and
Value (HSV) color space to exploit hue information, thereby improving color-based feature discrimination. The
introduction of a hybrid entropy-weighted gradient scheme helped strengthen edge detection, that is, the local image
entropy modulated gradient magnitudes to emphasize structured regions. A global threshold was then applied to
refine the enhanced edge map. Ultimately, continuous apple contours were extracted using a direction-constrained
energy propagation approach, in which connected edge pixels were traced according to compass orientations, thus
ensuring accurate contour assembly even under occlusion or low contrast. Experimental evaluations confirmed
that the proposed framework substantially improved the accuracy of boundary detection across diverse imaging
conditions; its potential application in automated fruit detection and precision harvesting was therefore highlighted.

Keywords: Apple detection; Adaptive smoothing; Entropy-weighted gradient; Edge enhancement; Directional
energy contour tracing

1 Introduction

Image processing is a rapidly evolving field that plays a vital role in numerous applications, including medical
imaging, remote sensing, surveillance, and computer vision. It encompasses a diverse set of methodologies developed
to improve and examine, segment, and interpret visual information from digital images. Traditional image processing
methods often struggle with challenges, such as intensity inhomogeneity, noise, and low contrast, which limit their
effectiveness in real-world scenarios. To address these challenges, scholars have proposed high technologies in
models and algorithms that deploy region-based segmentation, active contour models, and deep learning. These
methods enhance the meticulousness and durability of the image processing, especially when there is a complicated
environment. The introduction of Graphics Processing Units (GPU) optimized computation has greatly increased
the speed of processing related to deep learning-based methods, thus enabling the application of real time more
easily. The combination of statistical modeling, convolutional processing, and artificial intelligence persists to spur
innovations and provides more accurate and less energy-consuming solutions to various imaging issues [1–5].

Based on the progress of the image processing, recent research activities have engaged in the use of incredible
image smoothing algorithms to increase the quality of the image formation and at the same time it retains the vital
edge information by giving a fair amount of discussion. Common problems with traditional smoothing techniques
include smoothing of important structures or the presence of stair case artifacts. In order to deal with these issues, new
techniques are introduced such as edge-aware smoothing model and gradient reconstructions. To take an example,
Zeng et al. [6] suggested the weighted sparse gradient reconstruction, which keeps its sharp edges and smooths the
flat areas efficiently. This was further elaborated by Matsuoka and Okuda [7], who reduced the gradient0 in the
objective smaller stair casing effects and included new constraints to address this issue and resulted in increased
robustness. Yada and Sarawadekar [8] were able to formulate multiple-scale edge-smoothing filter in the context
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of the dehazing of images, which can adapt to different densities of the haze, hence showing better visual clarity.
Besides, Al-Ameen [9] proposed an algorithm based on directional variance specifically dedicated to digital image
smoothing which softly suppresses noise with a directional awareness.

Expanding on the foundations of image smoothing and segmentation [10, 11], the field of object detection
in remote sensing and agricultural imagery has seen substantial growth through the integration of deep learning
techniques. Researchers have increasingly turned to convolutional neural networks and object detection frameworks
like You Only Look Once (YOLO) to address challenges such as small object detection, varying lighting conditions,
and complex backgrounds. Bai et al. [12] and Yi et al. [13] proposed significant improvements in remote sensing
applications by reviewing and enhancing YOLO-based models for small object detection. Similarly, Zhang et al. [14]
and Wang et al. [15] introduced customized YOLOv5-based frameworks for greenhouse tomato and apple fruit
detection, respectively; their studies demonstrated the effectiveness of the frameworks in structured agricultural
environments. In addition, Kılıçarslan et al. [16] employed hybrid transfer learning and multi-level feature extraction
techniques to distinguish apple varieties with high accuracy. Despite the remarkable progress achieved through the
above deep learning-based object detection and classification methods, several limitations persist. Many YOLO-
based models, while efficient, often struggle with accurately detecting very small or densely clustered objects
in high-resolution remote sensing images, thus leading to missed detection or false positives. In agricultural
scenarios, these models could be sensitive to occlusions, overlapping fruits, and seasonal variations in appearance,
which may degrade their abilities of generalization across different datasets. Furthermore, the reliance on large
annotated datasets poses a challenge in domains where labeled data are scarce or labor-intensive to obtain. From a
computational standpoint, the deployment of deep models in real-time or resource-constrained environments remains
difficult, especially when model complexity increases. These challenges underline the need for robust and adaptive
segmentation as well as smoothing techniques.

In this research paper, we proposed an entropy-weighted gradient and directional edge-enhancement-based model
for accurate apple detection in natural orchard scenes. The model functioned through a structured pipeline beginning
with adaptive smoothing to suppress background noise while retaining essential image features. It then calculated
entropy-weighted gradients to emphasize regions with high information content, particularly around the edges of the
object [17, 18]. These enhanced gradients were processed through a directional edge amplification mechanism to
strengthen the continuity of the apple boundaries. Finally, an energy-based contour tracing strategy was applied,
leveraging both local edge strength and orientation to delineate apple regions accurately, in spite of the occurrence
of occlusions, overlapping branches, and varying lighting conditions.

Unlike traditional methods or popular deep learning frameworks like YOLO, which often require extensive labeled
datasets and computational resources, our model emphasizes interpretability and data efficiency. By integrating
entropy-guided edge analysis with directional reinforcement and fuzzy-driven energy minimization, we provide a
rule-based mechanism that performs competitively in challenging real-world orchard environments without requiring
massive training efforts. This makes the proposed model especially suitable for low-resource settings where annotated
data and GPU support may be limited. Furthermore, YOLO-based models may struggle with occlusions and non-
uniform illumination unless retrained on orchard-specific datasets, whereas our approach explicitly incorporates
these structural and contextual variances through handcrafted entropy and edge metrics.

The novel contributions of the proposed model are summarized as follows:
• Entropy-weighted gradient computation: A new handcrafted approach that assigns local entropy as a weight

to gradient magnitudes, is introduced to enable context-aware edge emphasis. Unlike previous works that apply
uniform edge enhancement or use fixed weighting schemes, our entropy-guided computation dynamically
adapts to local texture variations, hence providing superior differentiation of object boundaries in cluttered
backgrounds.

• Directional edge enhancement mechanism: A novel directional filtering technique is proposed to enhance
edge continuity along dominant orientations. While direction-aware edge processing is not new, our model
uniquely combines it with entropy-weighted cues to retain boundary consistency under heavy occlusion and
illumination noise; this creates a scenario in which traditional methods and even some Convolutional Neural
Network (CNN) may underperform.

• Energy-based contour tracing algorithm: A robust contour detection strategy is formulated with a fuzzy
energy minimization principle, which balances local edge strength and gradient directionality. This differs
from classical snakes or graph-cut methods by integrating contextual entropy cues and fuzzy logic rules,
resulting in high boundary adherence with minimal false positives.

• Fuzzy feature extraction: A fuzzy logic-based mechanism is employed to extract uncertainty-aware features
that capture both intensity variation and contextual texture. This enhances the ability of the model to discern
subtle boundaries and structure in low-contrast regions. By leveraging fuzzy membership functions, the
model ensures robustness to noise and illumination changes, thus outperforming crisp thresholding or hard
segmentation techniques.
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• Computational efficiency and scalability: The model is lightweight, interpretable, and highly parallelizable.
Compared to deep models like YOLOv5 that require pre-trained weights and fine-tuning on apple datasets,
our approach runs in real time with minimal memory usage and achieves comparable segmentation accuracy
without deep learning infrastructure.

2 Literature Review

In recent years, several studies have explored entropy-based and learning-driven image seg-mentation and
enhancement methods, thus contributing significantly to applications in biomedical imaging, agriculture, and object
grading.

Gupta et al. [19] proposed a deep learning-enhanced automated mitochondrial segmentation framework for
Focused Ion Beam Scanning Electron Microscope (FIB-SEM) images using an entropy-weighted ensemble of
multiple convolutional neural networks. The approach assigns adaptive weights based on entropy to improve
segmentation confidence and accuracy. This method achieved high precision in segmenting complex cellular
structures. Nonetheless, the primary drawback of the model is its high computational complexity and the need to
consider extensive and high-quality annotated data sets, which would be inapplicable in real-time processing or
environment where computer resources are insufficient.

Gill and Khehra [20] also proposed a segmentation of apple image using Teaching Learning Based Optimization
(TLBO) with minimum cross entropy thresholding. The model is able to partition boundaries of an apple satisfactorily
even in different lighting situations. It is unique because it is optimized to choose the threshold and makes it robust
to variations in image brightness. Although this model works well, it could falsely recognize objects or noise around
the apple as an apple, in particular when the apple overlaps or there are some occluding elements. The process of
optimization is computationally costly, thus impairing its real-time applicability.

According to Wang et al. [21], multi-featured grading model of apples combined the benefits of entropy-based
weighting-mechanism and multi-layered perceptron (MLP). The model densely extracted and incorporated several
features including color, texture, and shape; apple grades were then classified with an MLP. Although the hybrid
structure enhanced grading error rates in terms of different lighting conditions, surface features, leaves, stems, and
close fruits, some misclassifications were presented as part of the non-apple features which are similar to those of the
apple. Moreover, the model depended on handcrafted feature extraction, which prevents its generalization to unseen
apple varieties and backgrounds.

All these studies demonstrated the opportunities of combining entropy and learning so as to build a metal
framework for better image processing. Despite satisfactory results in performance, the drawbacks of the combination
include complexity of calculations, misidentification of non-targeted items, and over-reliance on manually crafted
features; all these require more robust and adaptable solutions in real-world scenarios.

3 Proposed Model

On the basis of the advantages and identified deficiencies of the models previously examined, a new entropy-
based framework of image segmentation was proposed and implemented in this study to support robust and accurate
detection of objects, especially apple objects, by bounding boxes. The proffered model incorporated an entropy-
weighted feature separation unit of the kind with the help of a purified module. It also provided fuzzy energy that
was functional to improve the precision of the segmentation with a reduction in the amount of confusing non-targets,
which could be leaves, branches, and clusters of fruits. As illustrated in Figure 1, by leveraging adaptive local entropy
and statistical similarity, the model could accurately delineate object boundaries and generate reliable bounding boxes
even under noisy, low-contrast, and occluded conditions. Furthermore, a lightweight computational structure was
adopted to ensure rapid inference and enabled the model to function effectively in real-time farming scenarios and
smart farming systems.

3.1 Preprocessing and Smoothing

Let the input RGB image be denoted by: I(x, y) ∈ RM×N×3 where and represent the spatial dimensions, height
and width, of the image, and the third dimension corresponds to the Red, Green, and Blue (RGB) color channels. This
image undergoes a two-step preprocessing procedure: (i) adaptive smoothing; and (ii) color space transformation.
3.1.1 Adaptive smoothing function

Instead of applying a traditional Gaussian filter, which tends to blur edges and fine details, we introduce a
nonlinear adaptive smoothing mechanism that selectively smooths homogeneous regions while preserving edge
information. The smoothed image is computed as:

Is(x, y) =
1

K(x, y)

∑
(m,n)∈Ω

I(x+m, y + n) · ϕ(∆I(m,n)) (1)
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where, is a local neighborhood window centered around pixel, typically a square region (e.g., or).
The term represents the absolute intensity difference between the central pixel and its neighboring pixel within

the window:

∆I(m,n) = |I(x, y)− I(x+m, y + n)|

To control the contribution of each neighboring pixel based on its similarity to the center pixel, we introduce a
sigmoid weighting function:

ϕ(∆I) =
1

1 + eα(∆I−T )

Here, control the sharpness of the transition in the sigmoid function, higher values lead to more selective filtering,
a threshold that defines the sensitivity to intensity differences. Pixels with intensity values close to the center will
yield higher weights while those with large differences, likely representing edges, will have lower weights.

To normalize the result and ensure proper scaling, we use a normalization factor:

K(x, y) =
∑

(i,j)∈Ω

ϕ(∆I(i, j)) (2)

This formulation allows the filter to perform edge-preserving smoothing: flat (low-texture) regions are smoothed
aggressively while edges and boundaries are preserved, due to their larger intensity variations.

Input RGB Image I(x, y)

Adaptive Smoothing

RGB to HSV Conversion

Extract Hue Channel H(x, y)

Gradient Magnitude Computation

Local Entropy Computation

Entropy-Weighted Edge Map

Directional Energy Computation

Optimal Direction Selection

Apple Contour Detection

Figure 1. Workflow diagram of the proposed entropy-weighted directional energy model for apple contour
detection

3.1.2 Color space transformation
After applying the adaptive smoothing filter, the resulting image was converted from the RGB color space to the

Hue-Saturation-Value (HSV) color space, which separated chromatic content (hue) from intensity and colorfulness.
This transformation facilitated tasks like segmentation, edge detection, and classification, as hue is often more robust
to lighting variations. The transformation is expressed as:

HSV (x, y) = rgb 2 hsv (Is(x, y)) (3)
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Based on the HSV representation, we can derive the hue channel, which captures the prevailing color wavelength
of wavelength per pixel:

H(x, y) = HSVH(x, y)

The information of this hue is applied later in feature extraction or classification. It will fall under the specific
application.

The edges need to be detected in the image with improved tolerance of noise and lighting variations that should
be detected by the above algorithm. We used a fusion method which provides both gradient information and local
entropy. This fusion would exaggerate non-weak edges with respect to both gradient and structure, being complex
in the distribution of local intensity.

3.2 Gradient Magnitude and Local Entropy Computation

As the first step in extracting relevant features of an image, we first computed the gradient magnitude with
different intensities at every pixel point and reflected the intensity variation strength. The areas that had sharp sides
were emphasized. The gradient magnitude is mathematically expressed as:

G(x, y) =
√

Ix(x, y)2 + Iy(x, y)2 (4)

where, Ix(x, y) and Iy(x, y) denote the partial derivatives of the image intensity I in the horizontal and vertical
directions, respectively. These derivatives are commonly approximated using Sobel filters, which convolve the input
image with predefined kernel masks designed to emphasize horizontal and vertical intensity transitions.

Once the gradient information was obtained, we proceeded to estimate the local entropy within a neighborhood
around each pixel. Entropy is a statistical measure that quantifies the degree of randomness or the complexity of
intensity values, which are often used to detect textured or information-rich regions in an image. The value of local
entropy at the position (xm, y − n) is calculated using the following expression:

H (xm, yn) = −
L−1∑
k=0

pk (xm, yn) log (pk (xm, yn) + ϵ) (5)

where:
• pk(x, y)is the normalized histogram (i.e., probability distribution) of intensity level k within a local window

centered at pixel (x, y),
• L is the total number of possible intensity levels in the image (e.g., L= 256 for 8-bit grayscale images),
• ϵ is a small positive constant (e.g., ϵ = 10−8) added to prevent the logarithm from becoming undefined when
pk(x, y) = 0.

A higher entropy value H(x, y) typically corresponds to regions with greater intensity variation, hence indicating
the presence of textures, edges, and object boundaries. This metric is especially useful in tasks like image
segmentation, where the distinction between homogeneous and heterogeneous regions is crucial.

3.3 Entropy-Weighted Edge Enhancement for Apple Detection

Accurate edge extraction is essential for distinguishing apple boundaries from complex orchard backgrounds.
We combine gradient magnitude with local entropy to form an entropy-weighted edge strength measure to improve
robustness. In this context, entropy, complementing the local intensity variation captured by the gradient magnitude,
is used as a measure of uncertainty or textural richness. The entropy-weighted formulation is expressed as:

Ecustom (x, y) = G(x, y) ·
(
H(x, y)

maxH

)β

(6)

where:
• G(x, y) denotes the gradient magnitude at pixel (x, y), typically computed using Sobel or Prewitt operators

as G(x, y) =
√
(Ix)

2
+ (Iy)

2, where Ix, Iy are partial derivatives of the image intensity,
• H(x, y) represents the local entropy, computed over an m × m neighborhood window centered at (x, y).

Formally, if pi denotes the probability of gray-level i in the neighborhood, then

H(x, y) = −
L∑

i=1

pi log (pi) ,

where, L is the number of gray levels. The window size m balances locality and stability: smaller windows (e.g., m
= 5) capture fine details, while larger windows (e.g., m = 15) provide robustness against noise. In this work, m = 9
was empirically chosen as a trade-off between precision and stability.
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• max H is the maximum entropy value observed across the image, serving as a normalization factor to ensure
that H(x, y)/maxH ∈ [0, 1],

• β is a tunable exponent (e.g., β = 1.5) that regulates the contribution of entropy; higher β emphasizes
texture-rich areas, while β = 1 yields a linear influence.

This theoretically grounded formulation allows regions of high uncertainty; for instance, apple surfaces with
reflections, blemishes, and fine textures to be emphasized, while suppressing responses in smoother regions such as
sky or soil. Therefore, apple contours remain stable against illumination variation and background clutter.

To obtain a binary edge representation, a global threshold τE is applied. For reproducibility, τE can be determined
adaptively, e.g., by Otsu’s method, which minimizes intra-class variance, rather than being set manually:

EB(x, y) =

{
1, if Ecustom (x, y) ≥ τE

0, otherwise
(7)

This step ensures a principled extraction of edges and yields a clean structural outline of apples to serve as a
foundation for subsequent contour-based segmentation, object detection, and quality assessment.

3.4 Directional Energy Computation for Contour Tracing

After generating the binary edge map EB(x, y), the next step involves extracting the contours of objects such as
apples by tracing the connected edge pixels. This is achieved by analyzing the directional energy propagation, which
refers to the presence of edge pixels in specific directions around a given location.

For each edge pixel (x, y) ∈ EB , we examined its 8-connected neighbors in standard compass directions: North
(N), North-East (NE), East (E), South-East (SE), South (S), South-West (SW), West (W), and North-West (NW). The
directional energy in a given direction θ is defined as:

Dθ(x, y) = EB

(
x+ δθx, y + δθy

)
(8)

where, δθx and δθy are the direction-specific offsets associated with direction θ. These offsets guide the traversal to
neighboring pixels; for instance:

• θ = E ⇒ (δx, δy) = (1, 0)
• θ = NE ⇒ (δx, δy) = (1,−1)
• θ = S ⇒ (δx, δy) = (0, 1), etc.
Mathematically, the continuity of the contour can be ensured by maximizing a connectivity functional:

θ∗(x, y) = argmax
θ

[Dθ(x, y) · wθ] ,

where, Dθ(x, y) ∈ {0, 1} and wθ is a directional weight. For isotropic tracing, wθ = 1. For directional smoothing,
weights can be biased according to the gradient orientation at (x, y), ensuring that tracing aligns with the dominant
edge direction. This formalization makes the method reproducible and adaptable to other datasets.

The pixel in the optimal direction θ∗(x, y) is then selected as the next point on the contour. This process is
iteratively applied until a closed loop is formed as in the case of closed objects like apples or until a stopping condition
is met.

3.5 Bounding Box Generation for Object Localization

Once the complete contour Ck of an object, e.g., apple, is extracted, we compute the axis-aligned bounding box
(AABB) that minimally encloses the contour:

Bk =

(
min
x

Ck,min
y

Ck,max
x

Ck,max
y

Ck

)
.

This definition ensures rigor by providing a mathematically minimal enclosing rectangle. Bounding boxes
are widely used in object detection benchmarks, thus allowing direct comparison with standard metrics such as
Intersection over Union (IoU). In the context of apple detection, bounding boxes localize individual apples so as to
aid in automated harvesting, grading, and yield estimating.

3.6 Fuzzy Feature Extraction

Feature extraction using fuzzy logic is employed to support intelligent classification of apples within detected
bounding boxes. Unlike crisp thresholds, fuzzy sets accommodate uncertainty and natural variability in color and
shape. The process begins by extracting key features of each candidate region, including hue (color information),
geometric descriptors like aspect, ratio, and roundness as well as edge compactness. These features are normalized
into the interval [0,1] before fuzzification.
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Formally, a fuzzy set F over a feature space X is defined as:

F = {(x, µF (x)) | x ∈ X,µF (x) ∈ [0, 1]} ,

where, µF (x) is the membership function that maps a feature value x to a degree of membership. For hue-based
detection of red apples, we define:

µred (H) =


1, H < 0.05
0.1−H
0.05 , 0.05 ≤ H < 0.1

0, H ≥ 0.1

(9)

which is a piecewise linear triangular membership function. Unlike the earlier simplified version, this formulation
ensures continuity and smooth transitions. Membership functions for shape descriptors such as roundness and
elongation, are similarly defined using normalized geometric measures. Visualizations of these functions are
provided in Figure 2 to confirm validity and interpretability.

 

 

 

     

     

      

   

 Figure 2. Sample images of apples used to assess the effectiveness of the suggested fuzzy logic-based detection
model

The fuzzy inference rules are expressed in the standard Mamdani form. While initial rules are handcrafted
based on domain expertise, reproducibility is ensured by validating them against labeled datasets. Moreover, rule
optimization can be achieved through adaptive techniques such as genetic algorithms or neuro-fuzzy learning, which
tune membership parameters and rule weights based on performance metrics such as accuracy or F1-score. This
establishes a pathway for generalization beyond handcrafted rules.

For example:
• Rule 1: IF hue is red AND shape is round, THEN object is classified as apple.
• Rule 2: IF hue is not red OR shape is elongated, THEN object is classified as not apple.
These rules allow flexible decision-making. In practice, the fuzzy inference system aggregates rule outputs

using max-min composition and defuzzifies the result into a binary apple/non-apple decision. This mathematically
grounded pipeline reduces false positives; for example, red leaves and tomatoes while ensuring reproducibility and
robustness across datasets.

4 Discussion and Results

This section shows the results of the experiments and the detailed description of the proposed fuzzy logic-based
apple detection model. The model was tested on different types of images of real-world apples (refers to Figure
2) to determine the performance of the model in locating apples with bounding box and feature extraction. The

121



assessment was based on particular features, such as the accuracy of detection working under different lighting and
background conditions, and the model capability to identify an apple object among the similarities in terms of color
or shape properties. The experiments show that the combination of characteristics such as color in the hue domain
with shape descriptors within the fuzzy inference system has a great impact on the improvement of the accuracy of
the detection, especially in tricky orchard images.

The experiment set contained 300 real orchard images, which were retrieved publicly by the MinneApple dataset,
in the field scenes. MinneApple dataset served with high spatial resolution apple orchard images and extensive
annotations was captured in different occlusions and lighting conditions, so it was a good choice to test apple
detectors. The images were all manually checked and extra field images were included to add a variety. The process
of annotations was done in the PASCAL VOC scheme and bounding boxes were used to identify instances of the
apples.

All experiments and image processing tasks were conducted using MATLAB R2019b, a high-level technical
computing environment widely used for image analysis, visualization, and algorithm development. MATLAB offers
built-in functions and toolboxes that facilitate efficient matrix manipulation, filtering operations, and edge detection
techniques. The software was run on a Windows 10 (64-bit) operating system, equipped with an Intel Core i7 processor
and 8 Gigabyte (GB) random access memory (RAM), to ensure the smooth execution of all algorithms, including
those requiring substantial computational resources such as entropy-based filtering and gradient computations.

All input images were resized to a fixed resolution of 255×255 pixels using the imresize function to guarantee
uniformity and reduce computational complexity. This standardization allows consistent spatial analysis and
facilitates a fair comparison across different image samples, particularly during feature extraction and contour
detection stages.

We employed a 5-fold cross-validation approach to assess the generalizability of the model. The dataset was
randomly split into 80% of training and 20% of testing subsets in each fold. The average precision, recall, and
F1-score were computed across all folds to ensure statistical robustness and minimize overfitting. This experimental
design supports reproducibility and provides a comprehensive overview of the effectiveness of the model.

To optimize the performance of the proposed apple detection framework, we empirically selected the parameter
values listed in Table 1 These values were determined through extensive cross-validation and visual analysis across
diverse image samples. The selected configuration strikes a balance between edge preservation, noise suppression,
and resilience to illumination changes, thus ensuring reliable detection across varying conditions.

Table 1. Parameter setup with numerical values and optimal selections for apple detection

Parameter Description Range Tested Best Value
α Sigmoid sharpness for smoothing 5, 10, 15, 20, 25 15
T Intensity threshold in sigmoid 0.05, 0.1, 0.15, 0.2 0.1
|Ω| Local window size for smoothing 3× 3, 5× 5, 7× 7 5× 5
ϵ Constant to avoid log(0) 1e−10, 1e−8, 1e−6 1× 10−8

β Entropy weight exponent 1.0, 1.2, 1.5, 1.8, 2.0 1.5
τE Threshold for edge map 0.2, 0.3, 0.4, 0.5, 0.6 0.4
r Radius for local entropy window 1, 2, 3 2

Figure 2 presents representative apple images used to evaluate the proposed fuzzy logic-based detection model.
The dataset includes diverse visual challenges, such as varied lighting conditions, occlusion by foliage, changes
in viewing angles, and complex backgrounds. These variations simulate real-world scenarios in which detection
systems have to perform accurately despite environmental variability. Apples were detected using bounding boxes
applied to each image processed by the model.

Figure 3 presents the step-by-step workflow of the proposed apple detection model, designed to accurately
localize apples in diverse image conditions. The process began with image acquisition to capture raw apple images.
This was followed by preprocessing and smoothing to enhance image quality by reducing noise and improving
clarity for effective feature extraction. The next step involved color space transformation, converting the image into
a more suitable color model to emphasize discriminative features, particularly the red-green hues of apples. Edge
detection was then performed using the Gradient Weighted Edge (GWE) method to leverage the gradient information
to precisely delineate object boundaries. The final detection and localization stage identifies the segmented apple
region, hence demonstrating the capacity of the model for accurate fruit isolation. Collectively, this pipeline integrates
image enhancement, chromatic feature extraction, and edge-based segmentation to ensure reliable apple detection.

Figure 4 demonstrates the effectiveness of the model by means of the visual comparison of the originals of the
input images printed on the left and the obtained results of the detection in the right column. The initial pictures
captured a diverse set of real-world situations such as different lightings, partial road fades caused by vegetation as
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well as complicated backgrounds resulted from manmade orchards. Colored boxes were used as a representation of
detected apples in the output images (marked with yellow), as this color showed its maximum difference among the
red fruits and green surroundings. The performance of the model was facilitated by an organized pipeline including
adaptive preprocessing, color transformation, and GWE-based edge detection. The method increased sensitivity,
especially when handling a difficult situation.
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Figure 3. Workflow of the proposed apple detection model, showing the stages of image acquisition,
preprocessing, color space transformation, edge detection with the Gradient Weighted Edge (GWE) method, and

final apple region localization

 

 

 

           

            

 

 

 

Figure 4. Results of apple detection: The first column displays the original input images whereas the second
column presents the output of the proposed model with detected apple regions highlighted by yellow bounding

boxes

The model has its key strengths in terms of being able to detect the partially obscured apples, being used
in a variety of sized, positioned, and illuminated apples, and generating fewer false positives by excluding non-
apple areas. The bounding boxes do not only visually represent reliable instances of detection but also reflect
the model confidence. In general, the findings testify to the strength of the system and its real-life usefulness in
actual agricultural applications, including yield estimation, automated harvesting, and orchard surveillance, where
recognizing targets to a high degree of precision and sensitivity in natural conditions plays a critical role in it. The
table below demonstrates that a combination of color analyzing, edge-sensitive processing, and adaptive thresholding
could equip the model with a high degree of detection capability.

4.1 Statistical Results of the Proposed Apple Detection Model

Table 2 presents an elaborated statistical evaluation of the proposed apple detection model to confirm both
robustness and reliability. The model achieved a Precision of 0.97, indicating highly accurate identification of apples
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among all detected positives. A Recall of 0.95 demonstrated that most actual apple instances were successfully
detected, while the F1-Score of 0.96 confirmed a strong trade-off between precision and recall. The Intersection
over Union (IoU) score of 0.91 further validated the spatial consistency between predicted apple regions and ground
truth annotations.

Table 2. Statistical results of the proposed apple detection model

Metric Our Model (Best Value) Interpretation
Precision (P) 0.97 High accuracy of apple detection

Recall (R) 0.95 Most actual apples detected
F1-Score 0.96 Strong balance between P and R

IoU 0.91 High pixel-wise overlap accuracy
MOS 4.8 / 5 Expert visual quality assessment (10 reviewers, 1-5 scale)
NIQE 2.5 Lower indicates better image naturalness

BRISQUE 19.2 Lower value indicates better quality
PSNR (dB) 33.8 High fidelity w.r.t. ground truth apple masks

SSIM 0.96 Strong similarity to ground truth annotations

Table 2 presents an elaborated statistical evaluation of the proposed apple detection model to confirm both
robustness and reliability. The model achieved a Precision of 0.97, indicating highly accurate identification of apples
among all detected positives. A Recall of 0.95 demonstrated that most actual apple instances were successfully
detected, while the F1-Score of 0.96 confirmed a strong trade-off between precision and recall. The Intersection
over Union (IoU) score of 0.91 further validated the spatial consistency between predicted apple regions and ground
truth annotations.

As regards subjective evaluation, the Mean Opinion Score (MOS) was obtained through a controlled experiment
involving 10 independent human evaluators with expertise in image analysis. Each evaluator rated the visual quality
of segmented apple regions on a 5-point scale (1 = poor, 5 = excellent). The aggregated MOS value of 4.8/5 indicates
excellent perceptual quality and strong consensus among reviewers.

Regarding objective metrics involving peak signal-to-noise ratio (PSNR) and structural similarity index measure
(SSIM), the reference images were the manually annotated ground truth apple masks provided in the dataset. The
PSNR value of 33.8 decibel (dB) indicates high-fidelity segmentation output with minimal noise relative to the
reference whereas the SSIM score of 0.96 demonstrates strong structural similarity to ground truth annotations.

Besides, perceptual quality metrics, like natural image quality evaluator (NIQE) with a score of 2.5 and
blind/referenceless image spatial quality evaluator (BRISQUE) with a score of 19.2, confirm low levels of distortion
and high naturalness of the detection results. The evaluation process therefore combines both subjective (MOS) and
objective (PSNR, SSIM, NIQE, and BRISQUE) measures to ensure comprehensive and transparent performance
assessments. Visual evidence of intermediate processing steps is provided in Figure 3 to illustrate the contributions
of each stage of the pipeline.

In summary, these analysis results highlight that the proposed model is accurate, perceptually reliable, and
suitable for practical orchard environments.

5 Conclusions

Through synergetic integration of the fuzzy logic theory into the self-developed or molded mathematical set,
in this study, a powerful and effective framework for detecting apples is proposed to fit the realistic agricultural
imagery. In contrast to the methodology of other standard approaches, here adaptive smoothing is combined
with entropy-weighted edge detector and directional tracing contours; therefore, methods adopted subsequently
could lead to higher resistance levels to common difficulties such as noise, highly lit and darkened environments, and
complicated natural backgrounds. The fuzzy logic module allows simple and soft classification as well as uncertainty
modelling; this improves the reliability of detection in situations of ambiguity. In addition, the entropy-oriented
mechanisms will drive the process of segmentation to more informative areas and directional contour tracking
will allow exact localization of the object boundaries. The effectiveness and perceptual quality of the model are
further confirmed by copious experimental validation against metrics such as Precision, Recall, IoU, PSNR, SSIM,
MOS, NIQE, and BRISQUE measured at both objective and subjective levels. This model has a high potential
of applications in precision agriculture, automation of farm harvesting, and real-time fruit observation systems.
Real-time implementation and multifruit environment application will be carried out in the future.

Although the proposed fuzzy-based apple detection model has positive outcomes, limitations have to be resolved
prior to progressing towards future development initiatives. The first weakness is that the model would be sensitive
to severe lighting conditions, in other words, high shadow half-way light glare or over-saturation, with concomitant
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effects of weakening the precision of edge locations and contour findings. The other limitation is that fuzzy
membership functions and thresholds are manually tuned and the model becomes neither flexible nor suitable
in various data sets and in varied environments. Despite these limitations, future work will explicitly focus on
developing illumination-invariant preprocessing strategies. For instance, integrating Retinex-based enhancement,
histogram equalization, or adaptive illumination normalization could significantly improve edge precision and contour
robustness under severe shadows or glares. Instead of relying on manually tuned fuzzy membership functions,
optimization-driven techniques such as genetic algorithms or reinforcement learning will be investigated to automate
the selection and adjustment of fuzzy rules. This automation will ensure adaptability across different datasets and
diverse environmental conditions. Another direction will be the exploration of hybrid neuro-fuzzy systems, where
the learning capability of neural networks could be combined with the interpretability of fuzzy logic to dynamically
adjust thresholds and rules in real time. Such extensions would not only mitigate the current shortcomings but
also extend the general capacity of the model, hence rendering it robust and scalable for deployment in dynamic
agricultural settings.
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