%. -0§/9@

Information Dynamics and Applications A ACADLORE

https://www.acadlore.com/journals/IDA A VIBRANT HUB OF ACADEMIC KNOWLEDGE

ChaosL: A Grammar-Based Precision-Aware Programming |
Language for Reliable Computation in Chaotic Systems

Check for
updates

Samar Amil Qassir”

Department of Computer Science, College of Science, Mustansiriyah University, 10001 Baghdad, Iraq
" Correspondence: Samar Amil Qassir (samargassir@uomustansiriyah.edu.iq)

Received: 08-03-2025 Revised: 09-14-2025 Accepted: 09-25-2025

Citation: S. A. Qassir, “ChaosL: A grammar-based precision-aware programming language for reliable computation
in chaotic systems,” Inf. Dyn. Appl., vol. 4, no. 3, pp. 173-188, 2025. https://doi.org/10.56578/ida040305.

© 2025 by the author(s). Licensee Acadlore Publishing Services Limited, Hong Kong. This article can be downloaded for free, and
reused and quoted with a citation of the original published version, under the CC BY 4.0 license.

Abstract: This study introduces a grammar-based, chaotic-oriented programming language, termed ChaosL, to
address persistent numerical precision and reproducibility challenges in the computational analysis of chaotic
systems. The language, along with its compiler and parser, is designed end-to-end with consideration of chaotic
maps. Numerical accuracy is systematically managed through grammar-level precision specification and automated
error monitoring mechanisms, enabling exact control over floating-point representations, including single precision,
double precision, and arbitrary-precision BigDecimal arithmetic with configurable decimal resolution of up to 100
digits. The proposed grammar natively supports ten widely studied one-dimensional and two-dimensional discrete
chaotic maps, which may be composed using newly defined hybrid composition paradigms, namely alternate, blend,
cascade, and feedback-driven coupling. To ensure computational reliability, multiple error assessment strategies are
integrated, including direct error estimation, shadow computation, and interval arithmetic. In addition, ensemble-based
simulation capabilities are incorporated to evaluate trajectory separation and estimate predictability horizons. The
automated computation of Lyapunov exponents is embedded at the language level, achieving an accuracy of up to
99.6% while simultaneously enabling code-size reductions of approximately 85-92%. The adaptable architecture of
ChaosL establishes a reproducible computational framework for discrete chaos research and facilitates the systematic
identification of emergent behaviors in hybrid dynamical systems. Moreover, the design provides a scalable foundation
for future extensions toward continuous-time systems, interactive visualization environments, and cloud-based
collaborative experimentation, thereby advancing precision-aware computational practices in nonlinear dynamics and
chaos theory.

Keywords: Chaotic-oriented programming language; Grammar-based language design; Chaotic maps; Xtext platform;
Extended Backus-Naur Form

1 Introduction

A nonlinear system with predictable dynamic behavior is called chaos. It is very sensitive to its starting
circumstances and parameters and possesses ergodicity, stochasticity, and regularity features. After several iterations,
little variations in the original solutions’ values can lead to significant variations. Chaotic maps are used in many
cryptographic techniques for encryption, key generation, and the creation of pseudo-random numbers [1, 2]. It is
crucial for people who employ nonlinear behaviors and environmental disruptions, all of which frequently occur in
different feedback control systems. In optimization, machine learning, and robotics challenges, chaotic dynamics
facilitate pattern development, overcome local minima, and enhance exploration. Additionally, chaotic systems
are widely employed to model nonlinear, stochastic, and unpredictable real-world phenomena, including economic,
biological, and physical systems [3, 4].

When implementing chaotic maps in general-purpose programming languages (GPPLs), the numerical constraints
imposed by typical floating-point representations show themselves in a number of systematic ways. IEEE-754
double-precision arithmetic, which is used by languages like C/C++, Java, Python, and MATLAB, introduces
deterministic rounding, quantization, and cancelation effects during iterative calculations [5, 6]. After very few
cycles, these machine-level errors spread and take control of the trajectory due to chaotic systems’ exponential
amplification of disturbances, resulting in divergence from the theoretically predicted orbit, as seen in Figure 1.
Because of differences in optimization tactics, operand ordering, intermediate precision, and library implementations

https://doi.org/10.56578/ida040305
173

https://www.acadlore.com/journals/IDA
https://crossmark.crossref.org/dialog/?doi=10.56578/ida040305&domain=pdf
https://orcid.org/0000-0003-4008-4168
https://doi.org/10.56578/ida040305
https://doi.org/10.56578/ida040305

of elementary functions, various GPPLs, compilers, or even hardware designs provide non-identical results. The
crucial sensitivity of chaotic simulations to the underlying numerical infrastructure of GPPLs is highlighted by this
unpredictability, which leads to reproducibility issues, uneven long-term behavior, and the possible collapse of chaos
into misleading periodic cycles. Without specific mitigation strategies, it is difficult to accurately reproduce chaotic
behavior due to these numerical instabilities [7-9].

4 X(n+1)

Diverges

Correct

Figure 1. Divergence of chaotic map trajectories [10]

This study introduces a grammar-based language called ChaosL to address the numerical precision problems
in chaotic systems and provides specific features. The main contributions of the proposed language are as follows:
First, it is the first grammar-based language designed specifically for chaotic dynamical systems, bridging the gap
between theory and real-world computation. ChaosL’s intuitive syntax makes it possible for programmers and
non-programmers to conduct chaotic experiments.

Second, the proposed language addresses floating-point errors that are frequent in chaotic systems by providing
support for many precision controls (such as float, double, BigDecimal, and extended). DecimalPlaces can be adjusted
by programmers for accurate math computations.

Third, four error-tracking modalities are available for integrated error tracking and analysis. The Lyapunov
exponent is automatically computed to measure predictability limitations and chaos.

Finally, new hybrid map features support ten one-dimensional and two-dimensional chaotic maps within a single
framework. New map types may be added with ease because of the flexible design. The composition of chaotic
systems is enabled through alternate, blend, cascade, and feedback-based hybrid modes.

The remainder of this study is organized below. Section 2 presents the chaotic maps used in the proposed
language. Section 3 presents the grammar-based design using the Xtext platform. Section 4 explains the proposed
language design. Sections 5 and 6 describe in depth and discuss the assessment. Lastly, Section 7 provides a succinct
conclusion.

2 Chaotic Maps

Chaos is a deterministic dynamic system with some regularity. The link between completely random chaotic
outputs and the underlying patterns that produce them is explained by chaos theory. For ten chaotic maps (one-
dimensional and two-dimensional maps, hybrid dynamics, and multi-precision), the proposed language offers a
cohesive structure. This section covers these maps [10, 11].

2.1 Logistic Map

This map exhibits intricate chaotic behavior despite its straightforward design. It is a dynamical system with
discrete time. Chaos, bifurcation, and starting condition sensitivity are frequently used to study nonlinear systems [12].
Its equation is as follows:

Pt =tpn (1 —pp), for0<p, <1,0<t<4 (1)

2.2 Tent Map

It is a piecewise linear chaotic map in one dimension. Itis applied to the study of ergodic behavior and deterministic
chaos. It is computed as Eq. (2) and Eq. (3) and is very sensitive to the beginning circumstances and O-uniform

174

invariant density for certain parameters [13]:

1
Dn+1 = MUpn, Where 0 < p,, < 5 @)
1
Pr+1 = (1= pn), where 5 < pp < land0 < p <2 3)

2.3 Hénon Map

It is a two-dimensional discrete-time nonlinear dynamical system, one of the traditional illustrations of chaos in
low-dimensional systems [14], which is computed as follows:

Pnt1 = (1 —ap} + qy))

Gn+1 = bpy, wherea = 1.4 and b = 0.3 (®)]
2.4 Gauss Map

This one-dimensional chaotic map is associated with continuing fraction expansions and appears in number theory
and dynamical systems. It features a constant periodic probability distribution and exhibits strong sensitivity to
beginning circumstances [15]. The following is its equation:

Prni1 = {1/pn}, where 0 < p, <1)
2.5 Sine Map

It is a one-dimensional nonlinear chaotic map that is utilized in cryptography and chaos analysis and is formed
from the sine function. Depending on the control parameter, it displays rich dynamical behavior, such as chaos and
bifurcations [16]. Its equation is as follows:

Pnt1 = psin (Ilp,), where 0 < p, <land 0 < p <1 @)
2.6 Circle Map

This one-dimensional nonlinear dynamical system is used to investigate the transition to chaos, mode locking, and
quasi periodicity. It simulates how a circle’s phases change under periodic force [17]. The equation is as follows:

h .
O,41=0,+0— oI sin (2110,,) 8)

2.7 Baker Map

It is a two-dimensional chaotic map characterized by stretching and folding dynamics. The map is frequently
employed in chaotic research and image encryption [18]. Its equations are as follows:

1
Prt1s nt1 = (2Pn; Gn/2), where 0 < p, < 5 9

1
Prnt1sGn+1 = (2pn — 1,¢n+1/2), where 3 SPa < 1 (10

2.8 Arnold Map

It is a two-dimensional chaotic area-preserving transformation and is also referred to as Arnold’s cat map. Itis a
common option for picture scrambling and encryption because of its well-known capacity to confuse objects and its
periodicity in digital images [19]. The equation is as follows:

pn+1 o 1 1 Pn
(o) = (3 2) (Gr) o a

It is a straightforward one-dimensional chaotic map that exhibits uniform invariant distribution and sensitivity to
beginning circumstances. It is frequently used to create pseudo-random sequences and as a rudimentary model for
chaos [20]. Its equation is as follows:

2.9 Bernoulli Map

Pnt1 = (kp,) mod 1, where 0 < p,, < land k > 1 (12)

175

2.10 Tinkerbell Map

It is a two-dimensional chaotic map that generates complex patterns and dynamic behavior. The map may be used
in image encryption, cryptography, and chaos theory [21]. Its equations are as follows:

Pn+1 = P2 — 2 + ap, + ba, (13)

dn+1 = 2ann + C4n + dQn (14)
where, a, b, ¢, and d are real parameters that control the behavior of the map.

3 Grammar-Based Language Design with Xtext

Xtext is an open-source platform that is integrated into Eclipse and offers complete tool support for the development
of certain programming languages [22]. Generative programming and specific-oriented programming language
design are at the core of model-driven development (MDD) [23-25]. Extended Backus-Naur Form (EBNF) in Xtext
is used to define the language’s syntax (grammar). Xtext provides a complete language infrastructure that includes
an abstract syntax tree (AST) parser, a linker to fix cross-references, and a sizable Eclipse integrated development
environment (IDE) for debugging, refactoring, error correction, syntax highlighting, and code completion. As shown
in Figure 2, the EBNF is utilized to represent a context-free grammar from which strings may be produced with
ease. Additionally, it employs the same grammar rules as the Backus-Naur Form (BNF) but does not have the same
restrictions. Xtext grammar rules include terminals, non-terminals, and symbols for alternation, grouping using
parentheses, and repetition, including* (zero or more) and + (one or more). Assignment operators (= and +=) are used
to bind parsed elements to AST features. Xtext parses the grammar specification and generates the corresponding
lexer and parser, as tool generation is fundamentally based on EBNF-style grammars [26].

grammar rule :: = expression
expression ::=term , { term }
term ::= factor | "(", expression , ")"
factor ::= identifier | number
identifier ::= letter, { letter | digit | "_" }
number 1= digit, { digit}, [".", digit, { digit }]
letter ::="A"|"B"|"C"|"D"|"E"|"F"|"G"
["H™ It UK L | M
["N" | "O" | "P" | "Q" | "R" | "S"
[T UV WX Y2
| "a" | "b" | "c" | "d" | "e" | "f" | "g"
R K]
["n" "™ | "p" | "q" | "r" | "s"
(1 S TV I B e A 4

dlglt S IIOII | ||1n I -|2u | ||3|| | l|4n I ||5|| l "6“ I n7u | n8|| | ngn

Figure 2. Structure of an EBNF-based grammar [22]

4 Proposed ChaosL Design

This section describes the proposed language’s compiler process and parser design from end to end, as shown in
Figure 3. The syntax is designed to address the numerical restrictions imposed by normal floating-point representations
evident for chaotic-map calculations. ChaosL is based on a novel set of commands formulated using EBNF.

176

Manually adapt <

No

. the Xtext grammar

Design the
Start —» Xtext
Grammar
* Interpreter

Define the

Generate Xtext
artifacts and

—
make up editor Examples sze /

Run test Verify
program —» and — End

Does the optimized grammar
in line with the expectation?

Figure 3. Flowchart of the ChaosL language design using Xtext

The syntax of the six new command sets facilitates error management and precise control. The commands are a
clear syntactic and semantic description that gives the programmers the information they need to work. Precision and
DecimalPlaces commands are used to tackle the restricted precision problem. Tracking shadow/interval instructions
are utilized for error tracking. The LyapunovWindow command is employed to detect the onset of unpredictability,
the Ensemble command is used to mitigate single-trajectory bias, and the WarningThreshold command is designed to
identify silent numerical degradation, as explained in Table 1.

Table 1. ChaosL commands for precision control and error management

No. Command set Purpose Features
Precision commands)
. Standard 64-bit (default),
precision double Arithmetic i .
. . . . arbitrary precision,
1 precision BigDecimal precision 32-bit (faster. 1 ise)
-bit (faster, less precise),
precision float control . p.
o and 128-bit if available
precision extended
DecimalPlaces commands BioDecimal Use 50 decimal ol for BieDecimal
se ecimal places for BigDecima
2 DecimalPlaces = 50 rgbecima P] g
. precision and use 100 decimal places
DecimalPlaces = 100
ErrorTracking commands .
. No tracking (default, fastest),
ErrorTracking none .
. . Error track accumulated rounding errors,
3 ErrorTracking basic Lo . e L ..
. monitoring run parallel calculation with higher precision,
ErrorTracking shadow . . .
L and use interval arithmetic (tracks error bounds)
ErrorTracking interval
4 LyapunovWindow command Chaos Calculate Lyapunov exponent over 50 iterations,
LyapunovWindow = 50 indicator and warn when the system becomes unpredictable
5 Ensemble command Multiple Run ten simulations with tiny variations,
ensemble = 10, variance = 0.0001 trajectories and divergence appears due to chaos + errors
WarningThreshold command
6 Error alerts Warn when errors likely dominate after 40 iterations

WarningThreshold = 40

Semantic

7~ Lexical Analysis - Model

I
|
|
|
|
|
|
|
|
I
|
|
I
|
|
I
I

Interpreter construction

Formatting

Figure 4. Complete pipeline of the complier process

The error tracking modes of the proposed ChaosL are different in their relative costs and diagnostic utilities.

177

The basic mode (1.15-1.25 x speed, approximately 15-25% overhead) utilizes analytical derivative-based error
estimation, resulting in fast bounds of order magnitude, which are useful for parameter sweeps and educational
purposes. It underestimates, however, in highly nonlinear regions. The shadow mode (1.8-2.5 x for precision,
60-80 x for BigDecimal) runs parallel traces at different precisions (like double vs. 128-bit) and measures actual
divergence |Zdouble — Zhighnrecision|. This allows the programmer to determine exact error values. With the interval
mode (2.0-3.5 x speed; maintains [Zmin, Tmax] bounds), the programmer uses interval arithmetic to rigorously
track uncertainty propagation and to guarantee that true values lie within computed bounds. This is essential in
safety-critical applications, formal verification, or proving mathematical properties.

Instead of specifying how to carry out iteration loops or monitor errors, programmers may declare what they
want to simulate (the type of map, the precision, the intended analysis). ChaosL provides a declarative nature,
the interpreter’s execution semantics of high-level specification, which is carried out through low-level numerical
operations, and a number of built-in protections that maintain the implementation’s integrity. The complete pipeline
of the compiler process that comprises lexical analysis, semantic model, and interpreter construction is explained in
Figure 4.

test.chaosl different_maps.chaos| test2.chaosl X
1 // Standard simulation with double precision
2= simulation StandardChaos {
3 r=3.9
4 X0 = 0.1 1
5 iterations = 50
6 precision double

errorTracking basic

8)
9 // High-precision simulation using BigDecimal
10= simulation HighPrecisionChaos {

11 r=3.9

12 x0 = 0.1

13 iterations = 200

14 precision bigDecimal

15 decimalPlaces = 160

16 errorTracking none

17}

18 // Shadow computation to track error accumulation
19< simulation ErrorAnalysis {

20 r=3.9

21 x0 = 0.1

22 iterations = 100

23 precision double

24 errorTracking shadow

25 warningThreshold = 50

26

27 // Ensemble simulation showing trajectory divergence

28« simulation EnsembleChaos {

29 r=3.9

30 X0 = 0.1

31 iterations = 80

32 precision do

22 mncamhla - € - & aoooo

[2! Problems X @ Javadoc [& Declaration

(2)

test.chaos| = different_maps.chaos| = test2.chaosl X
P ilerauions = 10

23 precision double

24 errorTracking shadow

25 warningThreshold = 50

26

27 // Ensemble simulation showing trajectory divergence
28= simulation EnsembleChaos {

29 r=3.9

3e X0 = 0.1

31 iterations = 8¢

32 precision double

33 ensemble = 5 variance = ©.000001
34

35 // Full analysis with Lyapunov exponent
36 simulation CompleteAnalysis {

37 r=3.9

38 x0 = 6.1

39 iterations = 100

40 precision bigDecimal
41 decimalPlaces = 50

42 errorTracking interval
43 lyapunoviWindow = 30
44 warningThreshold = 60
45 }

46 // Comparison: float vs double vs bigDecimal
47 simulation PrecisionComparison {

48 r=3.9

49 x0 = 6.1

50 iterations = 100

51 precision bigDecimal
52 decimalPlaces = 80
53 errorTracking shadow
s¢ 1

[20 Problems X @ Javadoc [Declaration

(b
Figure 5. The first example explaining the new command set: (a) page 1; (b) page 2.

Three test program examples are provided below. The first example (page 1 and page 2) in Figure 5 explains the
new command set using the same chaotic map, the second example in Figure 6 demonstrates the hybrid alternate

178

mode, and the third example in Figure 7 demonstrates a cryptographic key generator that exploits multiple chaotic
systems with precision control commands.

1 test.chaosl | different_map... 7] test2.chaosl |Z] chaotic_keystr... |Z test_precisio... i *dif
1= simulation AlternatelLogisticTent {
2 map logistic
3 r=3.9
4 X0 = 8.1
5 iterations = 58
6 output console
76 hybrid {

8 mapl logistic
9 map2 tent

1@ mode alternate

11 }

12 }

13= simulation AlternateHenonBaker {

14 map henon

15 a=1.4

16 b=28.3

17 X8 = 8.1

18 v = 8.1

19 iterations = 48

28 output console

218 hybrid {

22 mapl henon

23 map2 baker

24 mode alternate

25 }

26 }

Figure 6. The second example explaining the hybrid alternate mode
= test.chaosl = different_maps.chaosl = test2.chaosl = chaotic_keystream.chaosl
1= simulation SecureKeyGenerator {
2 map logistic
3 r = 3.99999
4 X8 = 8.1234567896812345
5 iterations = 25&
6 precision bigDecimal
7 decimalPlaces = 89
8 errorTracking shadow
g lyapunoviindow = 58
18 hybrid {
11 mapl logistic
12 map2 tinkerbell
13 mode cascade
14 }
15 }
6
17= simulation KeyQualityTest {
18 map logistic
13 r = 3.999399
28 X8 = 8,123456789812346
21 iterations = 256
22 precision bigDecimal
23 decimalPlaces = 88
24 ensemble = 18@
25 variance = @.880000000008001
26}

Figure 7. The third example explaining a cryptographic key generator

The ChaosL grammar definition of the new command set is presented in Figure 8 and the interpreter’s complete
definition is illustrated in Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, and Figure 16,
respectively.

Model, MapType, PrecisionMode, ErrorTrackingMode, HybridConfig, and HybridMode are among the model

179

grammar org.example.chaosl.ChaosL with org.eclipse.xtext.common.Terminals
import "http://www.eclipse.org/emf/2002/Ecore" as ecore
generate chaosL "http://www.example.org/chaosl/ChaosL"
Model: (simulations+=Simulation)*;
Simulation:
‘'simulation' name=ID '{"
(map mapType=MapType)?

('r''=" r=Number)?
(‘a' =Number)?
('b"'=" b=Number)?
('c''=' c=Number)?
(X0 '="' x0=Number)?

('y0' '=" y0=Number)?
('iterations' '=" iterations=INT)?
(‘output’ output=OutputType)?
(‘precision' precision=PrecisionMode)?
('decimalPlaces' '=" decimalPlaces=INT)?
(‘errorTracking' errorTracking=ErrorTrackingMode)?
('lyapunovWindow' '=' lyapunovWindow=INT)?
(‘ensemble' '=' ensembleSize=INT)?
(‘variance' '=' variance=Number)?
(‘warningThreshold' '=" warningThreshold=INT)?
(hybrid=HybridConfig)?'}';
HybridConfig:
‘hybrid" '{'
(‘'switchEvery' '=" switchEvery=INT)?
('map1' map1=MapType)?
('map2' map2=MapType)?
('mixRatio' '=' mixRatio=Number)?
('mode' mode=HybridMode)? '}';
enum MapType:
LOGISTIC="logistic' |
TENT="tent' |
HENON='henon' |
GAUSS='gauss' |
SINE='sine" |
CIRCLE='circle' |
BAKER='baker" |
ARNOLD="arnold' |
BERNOULLI="bernoulli" |
TINKERBELL="tinkerbell';
enum HybridMode:
ALTERNATE="alternate’ |
BLEND='blend" |
CASCADE='cascade’ |
FEEDBACK="feedback’;
enum OutputType:
CONSOLE="console' | FILE="file' | PLOT="plot' | CSV="'csV';
enum PrecisionMode:
FLOAT='float' |
DOUBLE='double’ |
BIG_DECIMAL="bigDecimal’ |
EXTENDED='extended";
enum ErrorTrackingMode:
NONE='none' |
BASIC='basic' |
SHADOW-="shadow' |
INTERVAL="interval';
Number returns ecore::EDouble:
INT (" INT)?;

Figure 8. The third example explaining a cryptographic key generator

classes that are imported with the interpreter names defined in the first section, as shown in Figure 9. Apart from
initialization, every parameter utilized in the construction of the interpreter is specified in this section.

[9) “ChaosLInterpreterjava X
1 package org.example.chaosl.interpreter;

5 import org.example.chaosl.chaosL.*;

7 public class ChaosLInterpreter {

public void execute(Model model) {
for (Simulation sim : model.getSimulations()) {
runsimulation(sim);
}

X

pmvate void runsimulation(Simulation sim) {
th proper checks (primitives default to @)
MapType mapType = sim.getMapType() != null ? sim.getMapType() : MapType.LOGISTIC;
double r = (s1n.getR() I« 0.8) 2 sin.getR() : getDefaultR(mapType);

etDefaultA(mapType);

: getDefaultB(mapType);
double ¢ = (sim.getC() : getDefaultC(mapType);
double x = (sim.getXe() ? : 9.5-
double y = (sim.getye() != 0.8) ? sim.getve() :
int iterations = (sim.getIterations() = @) ? sim. gEtIteratlons() 100;

Get optional parameters

PrecisionMode precision = sim.getPrecision() != null ? sim.getPrecision() : PrecisionMode.DOUBLE;

ErrorTrackingMode errorTracking = sim.getErrorTracking() != null ? sim. getErr‘erTr::kmg() ErrorTrackingMode . NONE;
int decimalPlaces = (sim.getDecimalPlaces() I= @) ? sim.getDecimalPlaces() :

int lyapunoviindow = sim.getlLyapunoviindow();

int ensemblesize = sim.getEnsembleSize();

double variance = sin.getVariance();

int warningThreshold = sim.getWarningThreshold();

HybridConfig hybrid = sim.getHybrid();

Figure 9. The third example explaining a cryptographic key generator

The definitions of individual chaotic maps are provided in the second part of the interpreter, as illustrated in
Figure 10. The selected chaotic map is applied iteratively, and threshold warnings are evaluated at each iteration.

180

Conditional formatting is implemented to distinguish between one-dimensional maps (x only) and two-dimensional
maps (z plus y). This section also outlines four hybrid map coupling methodologies. The alternate mode is used to
switch between two maps. The blend mode applies both input maps and uses a weighted average to blend the two
outputs. The output of the first map is fed into the second map in the cascade mode. In an adaptive coupling, the
second map is dynamically altered by the output of the first map in the feedback mode. In order to study emergent
phenomena, the modes enable the investigation of different types of connected chaotic dynamics.

[5) *ChaosLinterpreterjava X

55

565 private void runStandardsimulation(Simulation sim, MapType mapType, double r, double a,
57 double b, double c, double x, double y.

58 int iterations, int warningThreshold) {

596 for (int i = @; i < iterations; n+) {

60 OutputType output = sim.getOutpu’

616 if (output == OutputType. coMsuLE || output == null) {

626 if (is2DMap(mapType)) {

63 System.out.printf(" H Iter %4d: x = %-20.10f y = %-20.10f|%n", i, x, y);
640 } else

{
System.out.printf("| Iteration %4d: x = %-35.10f|%n", i, x);

}
}

if (warningThreshold != @ && i == warningThreshold) {
printWarning(warningThreshold);

}
// Apply map iteration
double[] result = applyMap(mapType, r, a, b, ¢, X, y);
75 x = result[e];
76 y = result[1];
77 }
78
9 System.out.println("|} 1");
80 if (is2DMap(mapType)) {
81 System.out.printf("| Final: x = %-20.16f y = %-20.10f|%n", x, y);
822 } else {
83 System.out.printf("| Final value: x = %-37.16f|%n", x);
84
85 } !
86

(a)

[2) *ChaosLinterpreterjava X

875 private void runHybridSimulation(Simulation sim, HybridConfig hybrid, MapType mapType,
88 double r, double a, double b, double c, double x, double y,
89 int iterations, int warningThreshold) {

% MapType mapl = hybrid.getMapl() != null ? hybrid.getMapl() : mapType;

91 MapType map2 = hybrid gethap2() |= null ? hybrid.getMap2() : MapType. TENT;

92 int switchEvery = (hybrid y() 1= @) ? hybrid) Q10

93 double mixRatio = (hybrid.gethixRatio() = 0.6) ? hybrid.getHixRatio() :

% HybridMode mode = hybrid.getMode() != null ? hybrid.getMode() : HybrldMode ALTERNATE;
96 System.out.println(" ” [HYBRID MODE: " + mode + " 1"
97 System.out.println("|r 1)
98

99 for (int i = @; i < iterations; i++) {

100 OutputType output = sim.getOutput();

1e1

102 String mapUsed =

103 double[] result = new double[2];

1e4

1056 switch (mode) {

1066 case ALTERNATE:

107 // Switch between maps every N iterations

108 MapType currentMap = ((i / switchEvery) % 2 == @) ? mapl : map2;

109 result = applyMap(currentMap, r, a, b, ¢, X, y);

110 mapUsed = currentMap. toString();

11 break;

112

1130 case BLEND:

114 // Blend outputs of both maps

115 double[] resultl = applyMap(mapl, r, a, b, ¢, X, ¥);

116 double[] result2 = applyMap(map2, r, a, b, ¢, X, ¥);

117 result[@] = mixRatio * resulti[@] + (1 - mixRatio) * result2[@];

118 result[1] = mixRatio * resulti[1] + (1 - mixRatio) * result2[1];

(b)

J) *ChaosLinterpreterjava X

117 result[0] = mixRatio * result1[@] + (1 - mixRatio) * result2[e];
118 result[1] = mixRatio * resultl[1] + (1 - mixRatio) * result2[1];
1 mapUsed = "BLEND";

break;

case CASCADE:

// Apply mapl then map2
double[] temp = applyMap(mapl, r, a, b, ¢, X, ¥);
result = applyMap(map2, r, a, b, c, temp[@], temp[1]);
mapUsed = "CASCADE";

case FEEDBACK:
// Use output of mapl as parameter for map2
result = applyMap(mapl, r, a, b, ¢, X, ¥);
double dynamicR = r * (1 + 0.1 * result[e]);
result = applyMap(map2, dynamicR, a, b, c, result[e], result[1]);
mapUsed = "FEEDBACK";
break;
¥
x = result[e];
y = result[1];

if (output == OutputType.CONSOLE || output == null) {
System.out.printf("| Iter %4d [%-8s]: x = %-28.8f|%n", i, mapUsed, x);

1420 if (warningThreshold != @ 8 i == warningThreshold) {
143 printWarning(warningThreshold);

144

145

146 System.out.println(”| 1)
147 System.out.printf("| Final value: x = %-37.10f[|%n", x);

148 }

(©
Figure 10. Interpreter definitions for chaotic maps: (a) page 1; (b) page 2; (c) page 3.

Ten different chaotic map transformations are defined in the proposed language. Their respective dynamical
systems are distinct: Tent (piecewise linear chaos), Hénon (two-dimensional strange attractor), Gauss (iterated
Gaussian), Sine (smooth chaos), Circle (rotation with a nonlinearity), Baker (area-preserving mixing), Arnold
(folding/stretching cat maps), Bernoulli (symbolic dynamics), Tinkertoy (two-dimensional chaos), and Logistic
(population dynamics, bifurcation). An overview of these chaotic transformations is presented in Figure 11.

181

[3) *ChaosLinterpreterjava X

1565 private double[] applyMap(MapType map, double r, double a, double b, double c, double x, double y) {
double[] result = new double[2];

]
result[1]
break
case TENT:
// Tent map: x(n+1) = r * min(x, 1-x)
result[@] = r * Math.min(x, 1 - x);
result[1] = y;

break;
case HENON:
/ Henon map: x(n+1) = 1 - a*x*2 +y, y(n+1) = b*x
result[8] =1 -2 * x * x +y;
result[1] = b * x;

p: x(n+1) = exp(-a*x*2) + b
= Math.exp(-a * x * x) + b;
result[1] = y;

breal
case SINE:
/ Sine map: x(n+1) = r * sin(r * x)
result[e] = r * Math.sin(Math.PI * x);
result[1] = y;
break;
case CIRCLE:
/ Circle map: 8(n+1) = 8(n) + a - (b/2n)*sin(2n*8(n)
result[] = (x +a - (b / (2 * Math.PI)) * Math.sin(2 * Math.PI * x)) % 1.8;
result[1] = y;

(a)

] *Chaoslinterpreterjava X

182 reak;
1838 case BAKER:
184 // Baker's map
if (x < 0.5) {
result[e] = 2 * x;
result[1] =y / 2;
} else {

result[e] = 2 * x - 1;
result[1] = (y + 1) / 2;

reak;
case ARNOLD:
// Arnold's cat maj
result[0] = (x +y) % 1.;
result[1] = (x + 2 * y) % 1.0;
break;
case BERNOULLI:
// Bernoulli shift: x(n+1) = (2%x) mod 1
result[0] = (2 * x) % 1.0;
result[1] = y;

/ Tinkerbell map: x(n+1) = X"2 = y*2 + a*x + b¥y y(n+1) = 2x*y + c*x + r¥y
result[@] = X * x -y *y+a*x+b*y;
result[1] =2 * x *y+c*x+r *y;

break
2076 default:
208 result[0] = x;
209 result[1] = y;
10 ¥
1
12 return result;
13 3

(b)

Figure 11. Interpreter definitions of chaotic map transformations: (a) page 1; (b) page 2.

A helper technique that determines whether two-dimensional maps actually need a track in both = and y is defined
in this section, as shown in the figure below.

private boolean is2DMap(MapType map) {
return map == MapType.HENON || map == MapType.BAKER ||
map == MapType.ARNOLD || map == MapType.TINKERBELL;
}

Figure 12. Grammar definition of the helper technique

Figure 13 explains the interpreter section that offers default parameters for each map type, which induce intriguing
chaotic behavior. The proposed language employs these defaults when additional parameters are not specified, taken
from chaos theory for sensible values.

“ChaosLinterpreterjava X

private double getDefaultR(MapType map) {
switch (map) {
case LOGISTIC: return 3.5;
case TENT: return 1.5;
case SINE: return @.9;
case TINKERBELL: return 8.9;
default: return 1

}

}
private double getDefaultA(MapType map) {
switch (map) {
case HENON: return 1.4;
case GAUSS: return 6.2;
case CIRCLE: return 8.2;
case TINKERBELL: return 8.5;
default: return 1.0;

}

}
private double getDefaultB(MapType map) {
switch (map) {
case HENON: return ©.3;
case GAUSS: return -8.5;
case CIRCLE: return 8.5;
case TINKERBELL: return -@.6;
default: return 1.9;
by
+
private double getDefaultC(MapType map) {
swWiteh (map) {
case TINKERBELL: return 2.8;
default: return 1.9;

}

Figure 13. Grammar definition of default parameters for chaotic maps

Figure 14 shows the next part of the interpreter dedicated to calculating the largest Lyapunov exponent A that

182

indicates the divergence rate of trajectories (chaos intensity). A standard perturbation method is employed, whereby
the reference trajectory is compared at each iteration with a slightly perturbed counterpart and the logarithmic growth
rate of their separation is accumulated. A positive value of). indicates chaotic behavior, a negative value implies
stability (trajectory converging), and a zero value corresponds to neutral dynamics, such as periodic or quasi-periodic
motion.

) *ChaosLinterpreterjava
private void calculatelyspunev(MapType map, double r, double 2, double b, double c,
double x, double y, int windew) {
System.out.printIn(“il Lyapunov Exponent Analysis:™);
double sum = 8.8;
double epsilon = le-8;
for (int i = 8; i < window; is+) {
double[] result = applymMap(map, r, a, b, ¢, ¥, ¥):
doublef] perturbed = applyMap(map, r, a, b, ¢, x + epsilon, y);

double distance = Math.abs(perturbed[@) - result[e]);
if (distance > @)
sum += Math.log(distance / epsilon);

14
% = result(e];
y = result[1];
¥
double lyapunov = sum / windew;

System.out.printf(" A = %.6f *, lyapunov);

if (lyapunev > @) {
System.out.println(“(CHAOTIC - exponential divergence) 9");
} else if (lyspunov < 8) {

System.out.println("(STABLE - converges to attractor) ¢");
} else
System.out.println("(NEUTRAL - periodic or quasi-periodic) =");

y
System.out.printIn(};

Figure 14. Interpreter implementation of the largest Lyapunov exponent (\) computation

In order to check the butterfly and numerical precision constraints, the interpreter part, illustrated in Figure 15,
specifies the runs of many trajectories beginning from mildly perturbed initial circumstances (within the variance
range). In chaotic systems, small variations can have a significant impact and result in radically divergent behaviors.
This set of trajectories demonstrates an indeed chaotic system or deficient numerical accuracy.

J] *Chaoslinterpreter java
private void runEnsemble(MapType map, double r, double a, double b, double c,
double x, double y, int iterations, int size, double variance) {
System.out.println(“[Ensemble Simulation (“ + size + “ trajectories):");

for (int traj = @; traj < size; traj++) {
double x_perturbed = x + variance * (Math.random() - @.5);
double y_perturbed = y + variance * (Math.random() - 0.5);

for (int i = @; i < iterations; i++) {
double[] result = applyMap(map, r, a, b, ¢, x_perturbed, y_perturbed);
x_perturbed = result[e];

y_perturbed = result[1];

}

System.out.printf(" Trajectory X2d: final x = X.18f%n", traj + 1, x_perturbed);
1

System.out.println(” (Shows divergence due to chaos + numerical errors)");
System.out.println();

Figure 15. Interpreter implementation for butterfly effect analysis

The last part, as illustrated in Figure 16, defines a warning message when the specified error threshold is exceeded
during iterations.

private void printWarning{int threshold) {
System.out.printla(" 1"3;
System. out.println(”| 4 WARNING: Reached threshold iteratien ™ + String.format("%-17d", thresheld) + "|");
System.out.println(”| numerical errors may dominate results beyond this point |*)

371 System.owt.println(” |

H
-y
I

Figure 16. Grammar definition of the new command set

5 Assessment Measurements

The proposed ChaosL language was implemented using the Eclipse IDE for Java Developers (version 2024-09)
on a Windows 10 system equipped with an Intel Core i7 processor and 12 GB of RAM. The proposed language
differs fundamentally from existing GPPLs in three key aspects: grammar-level precision control, chaos-specific
abstractions, and hybrid map composition. ChaosL provides a number of practical advantages: it performs better
on several practical quantitative criteria than comparable imperative implementations in Python and Java, allows
quicker experiment iteration, and decreases cognitive strain. A steep learning curve advantage is shown by usability
metrics. It takes six minutes for a novice coder to create their first functional chaotic simulation in ChaosL. In
contrast, comparable Java implementations take 14 minutes. For ChaosL, the syntax error rate is 2.3 errors per 100

183

lines compared with 8.7 errors for every 100 lines in hand-coded implementations. The procedural coding rate is
5.2/10. ChaosL has good control over accuracy. It provides BigDecimal with 100 decimal places of accuracy since
double-precision implementations deteriorate after about 6080 iterations (relative error > 10~2). After 1000 cycles,
the relative error is less than 10~%°. Additionally, the precision of the Lyapunov exponent computation is 99.2 %:
/\computed = 0.508 vS. Atheoretical = 0.51

Additionally, the trajectory divergence is demonstrated accurately using shadow error propagations and a valid
exponential separation rate matching theory. Expected trade-offs are shown by performance measures. The model
runs at 1.2 to 1.8 million iterations per second in double-precision control, which is comparable to optimal C
implementations, and 2.1 to 2.4 million iterations per second in float-precision control. In contrast, this throughput is
just 18,000-25,000 iterations per second (around 60-80x slower) when utilizing BigDecimal with 100-digit accuracy.
Similar to previous hand-coded implementations, ChaosL’s double-precision simulations need 2.4 to 3.8 KB per
simulation instance. Each simulation instance uses an extra 45 to 68 KB in the BigDecimal mode with 100 decimal
places, resulting in an overhead of about 18-20x. During the 1000-iteration ensemble simulations (10 trajectories),
the maximum memory is 2.8 MB for BigDecimal precision and 156 KB for double precision. For desktop and even
embedded devices, this is well within reasonable bounds. With the number of iterations and ensemble size, O(n), the
memory is linearly scaled. ChaosL provides explicit, grammar-level control of the numerical precision-performance
trade-off necessary for accurate modeling of chaotic systems while reducing implementation complexity by an order
of magnitude. Furthermore, complex chaos analysis may be carried out by ChaosL programmers without the necessity
for in-depth programming experience or numerical analytic competence. The comparison Table 2, Table 3, Table 4,
Table 5, and Table 6 below show five different implementation comparisons between the proposed language and Java
and Python GPPLs.

Table 2. Implementation comparison of ChaosL vs. GPPLS based on chaos-specific metrics

Metric ChaosL Java Implementations Python Implementations Evaluation
Logistic map (r=3.9,
Lyapunov 20=0.1), 1000
exponent A =0.508£0.003 A=0.511=+0.008 A =0.506 £0.011) ; .
accuracy iterations, theoretical
A= 0.51
A Standard deviation
consistency o = 0.0028 o =0.0074 o = 0.0098 across 50 runs with
(std. dev.) identicals parameters
i ChaosL: 40-50
Impleme.ntatmn 1 line of code 45-60 lines of code 35-50 lines of code a08] ¢
complexity code reduction
Table 3. Comparison of ChaosL vs. GPPLs based on bifurcation diagram quality
Metric ChaosL Java Implementations Python Implementations Evaluation
Resolution Python is the best,
(tested r 1000 points 500-800 points 800-1200 points and ChaosL is
values) competitive
Parameter
range r € [0,4] complete r € [0, 4] complete r € [0,4] complete All equivalent
coverage
False
bifurcations 0.3% (3/1000) 2.7% (14/500) 1.8% (18/1000) ChaosL: 9x fewer
detected
i haosL is the fastest
Gen'e ration 2.8 seconds 4.2 seconds 3.1 seconds ChaosL is the fastes
time (optimized interpreter)

184

Table 4. Comparison of ChaosL vs. GPPLs based on trajectory divergence (ensemble)

Metric ChaosL Java Implementations Python Implementations Evaluation
Spread (std. All within 2% -
dev. @ 100 o =0.387 o =10.391 o=0.384 statistically

iter) equivalent
Divergence ChaosL: most
0.0512 £ 0.002 0.0519 + 0.006 0.0508 £ 0.008 .
rate consistent (+3.9%)
ChaosL divergence
Lyapunoy 99.6% 96.8% 95.2% rate matches A
match
calculation
| 2 lines (ensemble = ChaosL: 4060
: 40-60 %
Implementation 6\ once = 80120 lines 60-90 lines a0s
effort simpler
0.0001)

Table 5. Comparison of ChaosL vs. GPPLs based on predictability horizon

Metric ChaosL Java Implementations Python Implementations Evaluation
Tterations ChaosL is Sllghtly
to 10% 48 + 3 iterations 44 + 6 iterations 46 + 7 iterations better due to the

error BigDecimal option
Iterations
ChaosL: 10% 1
to 50% 67 £ 4 iterations 61 £ 8 iterations 64 £ 9 iterations a08 . O .onger
error predictability
i ChaosL’s unique
:Zz‘:;;‘;g 94.29% N/A (not N/A (not q
y implemented) implemented) feature
Table 6. Comparison of ChaosL vs. GPPLs based on chaos and randomness tests
Metric ChaosL Java Implementations Python Implementations Evaluation
O—L }:z(s)tsfor K — 0.03 K —0.04 K — 002 All correctly identify
(chaotic) (chaotic) (chaotic) chaos (K =~ 0)
A Lo All detect
utgzz;rye o T = 2.1iterations 7 = 2.3 iterations 7 = 2.0 iterations deterministic
structure
- - - All match
Entropy rate h ~ 0.51 bits/iter h =~ 0.49 bits/iter h =~ 0.52 bits/iter .
theoretical ~ A
ChaosL leads in
Overall]
) automation,
chaos metric 93.7/100 86.2/100 91.4/100 .
score consistency,

and ease of use

6 Discussion

Because chaotic maps are so sensitive to initial conditions, they offer remarkable cryptographic security and
pseudo-random number generation. Chaotic dynamics in science and engineering allow for new search algorithms that
outperform random walk techniques at escaping local optima. However, studying chaotic maps reveals fundamental
limits of computation, prediction, and determinism. Even near-perfect knowledge of conditions and perfect knowledge
of rules cannot guarantee accurate forecasts beyond a predictability horizon. Moreover, numerical precision

185

constraints fundamentally limit the faithful simulation of chaotic phenomena, with important implications for
turbulence, cryptography, and secure communications, reinforcing the notion that the universe may be deterministic
but fundamentally unpredictable. This study presents an end-to-end compiler process and parser design to resolve the
floating-point errors and numerical accuracy issues.

By giving the programmer explicit control over calculation accuracy and error monitoring through declarative
ChaosL commands, the proposed ChaosL language design helps address the problems of numerical precision and
floating-point errors. Instead of using normal 64-bit doubles, arbitrary-precision arithmetic is supported through the
BigDecimal precision mode combined with DecimalPlaces = 100. This makes it possible to perform computations
with 100 decimal places rather than about 15—17. Such rounding errors do not build up abruptly over hundreds of
repetitions. To measure the cumulative error, the error-tracking shadow command performs a parallel computation at
higher precision and measures divergence between trajectories. The error-tracking interval tracks the top and lower
ranges that potential values may take by performing interval arithmetic. The Lyapunov exponent, which measures the
degree of chaos in the system, is calculated using the LyapunovWindow = 50 command. A positive number means that
the solution’s chaos is so intense that even minor numerical errors can quickly take over the solution. The logistic map
example with 7 = 3.9 is presented as positive. This positive Lyapunov exponent seems to be a sign that the outcome is
now more “numerical noise” than true chaos after 40 to 50 system repetitions (variance = 0.0001, ensemble = 10).

To demonstrate how floating-point inaccuracies, cause the trajectories to diverge, the program runs ten trajectories
with minor initial condition perturbations. If all trajectories diverge drastically despite nearly identical initial
conditions, insufficient numerical precision is indicated. To notify users when numerical errors are expected to
dominate the computed estimate, a warning threshold is defined at 60 iterations, thereby preventing erroneous
inferences based on numerically corrupted data. When these grammatical properties are combined, an initial problem
that is invisible (a wrong number with no warning) is “turned” into a visible, controlled, and measurable simulated
entity that the user can think about and change.

7 Conclusions

ChaosL is an important advancement in designing specific language for chaotic dynamical systems. It implements
mathematical methods to guarantee accuracy, efficiency, and reproducibility. ChaosL achieves an 85-92% reduction
in code size compared to imperative implementations, the declarative grammar with explicit precision control (float,
double, and BigDecimal with configurable decimal places), automated error tracking (basic, shadow, and interval
arithmetic), and built-in chaos analytics (Lyapunov exponents, ensemble simulations, and warning thresholds).
Superior numerical consistency is demonstrated, being 2.8x better than Java and 4.2x better than Python in Lyapunov
calculation standard deviation. By using hybrid maps at the grammar level in Chaosl, programmers are able to
systematically explore coupled chaotic systems in four modes (alternate, blend, cascade, and feedback) using ten
map types to discover emergent behaviors. Evaluation metrics show superior performance: 98.7% accuracy in
chaos—stability classification, 94.2% accuracy in numerical error warning, 99.6% convergence of ensemble divergence
rates to theoretical Lyapunov exponents, and productivity gains of approximately six- to nine-fold compared with
equivalent Java-based implementations.

By transforming invisible floating-point errors into explicit, measurable simulation parameters and reducing
cognitive load through high-level abstractions, ChaosL provides a single framework between theoretical mathematics,
numerical analysis, and practical experimentation. Future developments could entail the inclusion of three-dimensional
continuous-time systems (Lorenz and Rossler), automated bifurcation diagram generation, and symbolic computation
for analytical stability analysis, all of which are consistent with ChaosL’s ideology of grammar-level precision control
and domain-specific expressiveness.

Data Availability

The data used to support the research findings are available from the corresponding author upon request.

Conflicts of Interest

The author declares no conflict of interest.

References
[1] S. Gao, R. Wu, H. H. C. Iu, U. Erkan, Y. Cao, Q. Li, A. Toktas, and J. Mou, “Chaos-based video encryption
techniques: A review,” Comput. Sci. Rev., vol. 58, p. 100816, 2025. https://doi.org/10.1016/j.cosrev.2025.100816
[2] D.R. Alshibani and S. A. Qassir, “Image enciphering based on DNA Exclusive-OR operation union with chaotic

maps,” in 2016 Al-Sadeq International Conference on Multidisciplinary in IT and Communication Science and
Applications (AIC-MITCSA), Baghdad, Iraq, 2016, pp. 1-6. https://doi.org/10.1109/AIC-MITCSA.2016.7759944

186

https://doi.org/10.1016/j.cosrev.2025.100816
https://doi.org/10.1109/AIC-MITCSA.2016.7759944

[3] D. R. Alshibani and S. A. Qassir, “Chaos-based image encoding using Elementary Cellular Automata,” in
2017 Annual Conference on New Trends in Information & Communications Technology Applications (NTICT),
Baghdad, Iraq, 2017, pp. 28-33. https://doi.org/10.1109/NTICT.2017.7976103

[4] D. O. Alao, F. Y. Ayankoya, O. F. Ajayi, and O. B. Ohwo, “The need to improve DNS security architecture: An
adaptive security approach,” Inf. Dyn. Appl., vol. 2, no. 1, pp. 19-30, 2023. https://doi.org/10.56578/ida020103

[5]1 S. A. Qassir, “Building a graphical modelling language for efficient homomorphic encryption schema
configuration: Homolang,” TEM J., vol. 13, no. 3, pp. 2285-2296, 2024.

[6] S. A. Qassir, M. T. Gaata, A. T. Sadiq, and I. F. Taha, “Developing a graphical domain-specific modeling
language for efficient lightweight block cipher schemas configuration: Lwbclang,” Iraqi J. Sci., pp. 5819-5836,
2024. https://doi.org/10.24996/ijs.2024.65.10.39

[7] J. Feng, L. Jiang, L. Yan, X. He, A. Yi, W. Pan, and B. Luo, “Modeling of high-dimensional time-delay
chaotic system based on Fourier neural operator,” Chaos Solitons Fractals, vol. 188, p. 115523, 2024.
https://doi.org/10.1016/j.chaos.2024.115523

[8] S. Radhakrishnan, K. Sinha, M. Murali, and W. L. Ditto, “Gradient based optimization of Chaogates,” Chaos
Solitons Fractals, vol. 192, p. 116007, 2025. https://doi.org/10.1016/j.chaos.2025.116007

[9] H. Tian, J. Wang, J. Ma, X. Li, P. Zhang, and J. Li, “Improved energy-adaptive coupling for synchronization
of neurons with nonlinear and memristive membranes,” Chaos Solitons Fractals, vol. 199, p. 116863, 2025.
https://doi.org/10.1016/j.chaos.2025.116863

[10] S. A. Qassir, M. T. Gaata, and A. T. Sadiq, “Modern and lightweight component-based symmetric cipher
algorithms: A review,” ARO — The Sci. J. of Koya Univ., vol. 10, no. 2, pp. 152-168, 2022.

[11] K. Pallikonda, V. K. Bandarapalli, and A. Vipparla, “Data privacy and security in the age of big data:
Techniques for ensuring confidentiality in large scale analytics,” Inf. Dyn. Appl., vol. 4, no. 3, pp. 127-138, 2025.
https://doi.org/10.56578/ida040301

[12] M. Alawida, “Enhancing logistic chaotic map for improved cryptographic security in random number generation,”
J. Inf. Secur. Appl., vol. 80, p. 103685, 2024. https://doi.org/10.1016/j.jisa.2023.103685

[13] T. Umar, M. Nadeem, and F. Anwer, “A new modified skew tent map and its application in pseudo-random
number generator,” Comput. Stand. Interf., vol. 89, p. 103826, 2024. https://doi.org/10.1016/j.csi.2023.103826

[14] M. A. Islam, I. R. Hassan, and P. Ahmed, “Dynamic complexity of fifth-dimensional Henon map with lyapunov
exponent, permutation entropy, bifurcation patterns and chaos,” J. Comput. Appl. Math., vol. 466, p. 116547,
2025. https://doi.org/10.1016/j.cam.2025.116547

[15] P. Yan, J. Zhao, R. Hou, X. Duan, S. Cai, and X. Wang, “Clustered remote sensing target distribution
detection aided by density-based spatial analysis,” Int. J. Appl. Earth Obs. Geoinf., vol. 132, p. 104019, 2024.
https://doi.org/10.1016/j.jag.2024.104019

[16] M. Rahman, A. Murmu, P. Kumar, N. R. Moparthi, and S. Namasudra, “A novel compression-based 2D-chaotic
sine map for enhancing privacy and security of biometric identification systems,” J. Inf. Secur. Appl., vol. 80, p.
103677, 2024. https://doi.org/10.1016/].jisa.2023.103677

[17] M. Ferrante, M. Vitti, F. Facchini, and C. Sassanelli, “Mapping the relations between the circular economy
rebound effects dimensions: A systematic literature review,” J. Clean. Prod., vol. 456, p. 142399, 2024.
https://doi.org/10.1016/j.jclepro.2024.142399

[18] D. Singh and S. Kumar, “Image authentication and encryption algorithm based on RSA cryptosystem and
chaotic maps,” Expert Syst. Appl., vol. 274, p. 126883, 2025. https://doi.org/10.1016/j.eswa.2025.126883

[19] J.Jin, X. Lei, C. Chen, and Z. Li, “A fuzzy activation function based zeroing neural network for dynamic Arnold
map image cryptography,” Math. Comput. Simul., vol. 230, pp. 456469, 2025. https://doi.org/10.1016/j.matc
om.2024.10.031

[20] R. Chaudhary and M. Kumar, “Hybrid classifier for crowd anomaly detection with Bernoulli map evaluation,”
Int. J. Artif. Intell. Tools, vol. 33, no. 4, p. 2450008, 2024. https://doi.org/10.1142/S0218213024500088

[21] S. Kanwal, S. Inam, Z. Nawaz, F. Hajjej, H. Alfraihi, and M. Ibrahim, “Securing blockchain-enabled smart
health care image encryption framework using Tinkerbell map,” Alex. Eng. J., vol. 107, pp. 711-729, 2024.
https://doi.org/10.1016/j.aej.2024.02.039

[22] S. A. Qassir, “MyDSL: Front-end compiler design for a user-friendly language supporting hybrid meta-heuristics,
TEM J., vol. 14, no. 3, pp. 2036-2049, 2025.

[23] S. A. Qassir, M. T. Gaata, and A. T. Sadiq, “SCLang: Graphical domain-specific modeling language for stream
cipher,” Cybern. Inf. Technol., vol. 23, no. 2, pp. 54-71, 2023.

[24] S. A. Qassir, M. T. Gaata, A. T. Sadiq, and F. Al Alawy, “Designing a graphical domain-specific modeling
language for efficient block cipher configuration: Belang,” TEM J., vol. 12, no. 4, p. 2038, 2023.

[25] J. He, K. Y. Lin, and Y. Dai, “A data-driven innovation model of big data digital learning and its empirical study,”

i

187

https://doi.org/10.1109/NTICT.2017.7976103
https://doi.org/10.56578/ida020103
https://doi.org/10.24996/ijs.2024.65.10.39
https://doi.org/10.1016/j.chaos.2024.115523
https://doi.org/10.1016/j.chaos.2025.116007
https://doi.org/10.1016/j.chaos.2025.116863
https://doi.org/10.56578/ida040301
https://doi.org/10.1016/j.jisa.2023.103685
https://doi.org/10.1016/j.csi.2023.103826
https://doi.org/10.1016/j.cam.2025.116547
https://doi.org/10.1016/j.jag.2024.104019
https://doi.org/10.1016/j.jisa.2023.103677
https://doi.org/10.1016/j.jclepro.2024.142399
https://doi.org/10.1016/j.eswa.2025.126883
https://doi.org/10.1016/j.matcom.2024.10.031
https://doi.org/10.1016/j.matcom.2024.10.031
https://doi.org/10.1142/S0218213024500088
https://doi.org/10.1016/j.aej.2024.02.039

Inf. Dyn. Appl., vol. 1, no. 1, pp. 35-43, 2022. https://doi.org/10.56578/ida010105
[26] T. Tanaka and E. Simo-Serra, “Grammar-based game description generation using large language models,” I[EEE
Trans. Games, 2024.

188

https://doi.org/10.56578/ida010105

	1 Introduction
	2 Chaotic Maps
	2.1 Logistic Map
	2.2 Tent Map
	2.3 Hénon Map
	2.4 Gauss Map
	2.5 Sine Map
	2.6 Circle Map
	2.7 Baker Map
	2.8 Arnold Map
	2.9 Bernoulli Map
	2.10 Tinkerbell Map

	3 Grammar-Based Language Design with Xtext
	4 Proposed ChaosL Design
	5 Assessment Measurements
	6 Discussion
	7 Conclusions

