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ABSTRACT 

Received: 27 April 2025 

Adequate indoor lighting is essential for ensuring visual comfort, energy efficiency, and Revised: 20 June 2025 

compliance  with  architectural  standards.  This  study  presents  a  novel  smartphone-based Accepted: 24 June 2025 

platform  for  real-time  illuminance  estimation  and  visual  mapping,  that  leverages  a Available online: 30 June 2025 

lightweight  machine  learning  model.  The  application  utilizes  the  smartphone’s  built-in camera to capture images of the scenes and performs illuminance prediction for each patch of  the  image  using  a  trained  regression  model,  offering  a  cost-effective  alternative  to 

 Keywords: 

physical lux meter grid. The mobile application generates a color-coded heat maps that energy  efficiency,  illuminance  estimation, visualize the spatial distribution of illuminance and do the assessment of its compliance indoor  lighting  design,  lighting  compliance, with  an  established  lighting  norm.  The  advantages  of  the  proposed  system  include  its machine  learning  regression,  smartphone affordability, portability, and prediction accuracy enabled by the machine learning model application 

trained  on  image  intensity  features.  Experimental  tests  in  a  controlled  indoor  setting demonstrate high prediction accuracy and low computational requirements, confirming the platform’s  suitability  for  use  in  real-word  applications.  The  tool  enables  effective  and precise analysis of light and is hence usable in architectural diagnostics, energy audits, and spatial  design  optimization.  In  addition,  the  user-friendly  interface  benefits  both professional and non-professional users, facilitating real-time adjustment and optimization of indoor lighting. 


1. INTRODUCTION

feasible for widespread deployment in low-resource settings. 

These limitations emphasize the need for cost-effective, user-The push for smarter and greener buildings has made indoor friendly  solutions  that  offer  spatially-resolved,  real-time lighting  a  central  aspect  of  energy-efficient  architectural feedback  without  relying  on  specialized  instrumentation  or design. According to the international energy agency, lighting trained personnel [3]. 

represents a major component of energy use in residential and Several  recent  studies  have  explored  the  capabilities  of commercial  buildings  account  for  as  much  as  15%  of image processing techniques to overcome the difficulties faced worldwide electricity consumption [1]. Ensuring both efficient by  the  traditional  lux  meter  method.  Kamath  et  al.  [4] 

and comfortable lighting conditions is no longer a matter of presented the analysis of illuminance on work plane prediction convenience;  it  is  a  fundamental  requirement  for from  low  dynamic  range,  raw  image  data.  While  their environmental  sustainability  and  occupant  well-being  [2]. 

methodology demonstrates that images from cameras can be Traditional  illuminance  measurement  methods,  such  as utilized as a stand-in for lux measurements, it is restricted to handheld lux meters or wall-mounted ambient light sensors, controlled  testing  environments  and  lacks  the  ability  to often  fall  short  when  deployed  in  practical,  large-scale produce visual illumination maps. Moreover, Abderraouf et al. 

applications.  First,  these  tools  provide  only  single-point 

[5] designed a vision-based indoor lighting estimation method measurements, failing to capture spatial variability in lighting primarily  geared  toward  daylight  harvesting,  using  image conditions,  which  is  crucial  for  identifying  under-  or  over-processing to classify ambient lighting conditions, However, illuminated zones. This lack of spatial resolution makes them their approach did not integrate predictive modelling or  user impractical for environments like classrooms, offices, or retail feedback  mechanisms,  exhibited  limited  accuracy  in spaces where lighting uniformity directly affects comfort and illuminance  prediction,  and  lacked  the  ability  to  produce productivity.  Second,  the  requirement  of  manual  operation, interpretable illuminance overlays. 

precise  sensor placement, and professional  calibration limits Kruisselbrink et al. [6] proposed a custom-built device for their  accessibility  for  non-expert  users.  Additionally,  high-luminance  distribution  measurement  using  High  Dynamic quality  lux  meters  are  typically  expensive  and  may  not  be Range  (HDR)  imaging  method,  a  widely  used  technique  in 259

photography  which  is  based  on  the  principal  of  capturing  a integration of visual feedback and machine learning inference, wider dynamic range. Their system demonstrated good indoor it facilitates accessible, real-time assessment of indoor lighting, light  estimation  accuracy.  Nonetheless,  it  was  non-portable, offering value to architects, lighting designers, educators, and required  dedicated  hardware,  had  high  computational facility  managers,  this  study  is  guided  by  two  core  research demands, and needed time-consuming calibration by trained questions: 

personnel. Similarly, Bishop and Chase [7], introduced a low-

·What  level  of  accuracy  can  be  achieved  using  different cost  luminance  imaging  device  using  HDR  technique  with machine learning regressors (MLP, Random Forest, Gradient goal of minimizing calibration needs. While economical, this Boosting)  when  predicting  patch-wise  illuminance  from application also relies on external  imaging components, and camera-derived features? 

lacked  the  real-time,  lightweight  capabilities  required  for 

·Can  such  a  system operate  efficiently on mobile  devices mobile usage. 

while  providing  interpretable,  standards-based  feedback In  addition  to  image-processing-based  strategies,  several aligned with lighting guidelines? 

learning-based techniques have demonstrated high potential in These  questions  drive  the  development,  validation,  and indoor illumination estimation. For example, Wang et al. [8] 

deployment of the mobile application described herein. This proposed CGLight, which combines a  ConvMixer backbone paper  proceeds  with  Section  2,  which  details  the  approach with  a  GauGAN-based  image-to-illumination  mapping used for data collection, model development, and application framework, enabling the generation of spatially consistent and workflow. Section 3 presents experimental findings and model realistic  lighting  predictions.  Similarly,  in  their  FHLight evaluations  conducted  under  varying  real-world  lighting model, Wang et  al. [9] introduced enhancements in the  loss scenarios. The paper concludes with key insights and proposed function design  to  improve  model  robustness  across  diverse directions for future work. 

lighting distributions and indoor geometries. Zhao et al. [10] 

presented  SGformer,  a  transformer-based  architecture  that incorporates both global context and local spatial cues through 2. METHODOLOGY

self-attention mechanisms, allowing it to accurately estimate spherical lighting parameters from single RGB images. While The  system  developed  in  this  study  represent  a  real-time these  methods  achieve  state-of-the-art  accuracy  in  complex indoor illuminance estimation tool that utilizes a smartphone's visual scenes, their reliance on deep feature hierarchies, large-onboard  camera  with  a  trained  machine  learning  model. 

scale  annotated  datasets,  and  GPU  acceleration  limits  their Illuminance, or the total luminous flux per unit area falling on practicality for mobile deployment. In contrast, our approach a  surface,  is  quantified  in  lux  (lx).  The  mathematical adopts a lightweight machine learning framework tailored for representation of illuminance is given ass: on-device inference, achieving a favorable trade-off between accuracy,  interpretability,  and  computational  efficiency, 𝛷

(1) 

particularly  suited  for  real-time  illuminance  analysis  on 𝐸 = 𝐴

smartphones. 

Some  researchers  have  also  investigated  the  utility  of where,  E is illuminance in lux,  Φ is luminous flux in lumens, smartphone-embedded  ambient  light  sensors  (ALS)  for  lux and  A is area in square meters [12]. Illuminance serves as a estimation and indoor localization tasks [11]. Although such quantitative  metric  for  assessing  the  lighting  adequacy  of  a sensors are useful for low-power applications, they typically surface,  which  is  crucial  for  evaluating  visual  comfort  and provide single-point measurements with limited accuracy. In lighting quality in indoor environments. 

particular, Gutierrez-Martinez et al. [11] reported an absolute The  proposed  system  consists  of  four  components:  (i)  a error when estimating illuminance of close to 10%. In contrast, user-friendly  mobile  application  interface,  (ii)  a  machine our  camera-based  approach,  trained  via  machine  learning learning  illuminance  prediction  model,  (iii)  a  heat  map regressors, achieved a significantly lower error of around 2.4%. 

visualization module to represent spatial light distribution, and Additionally, the use of features extracted from images allows (iv) a  recommendation  algorithm  for  assessing  compliance our method to generate spatially dense lighting maps. 

with recognized lighting standards. The complete workflow of This  paper  introduces  an  innovative  smartphone-based the platform is illustrated in Figure 1. 

mobile application that take advantage of a high performance At the front end, the application enables the user to select a lightweight machine learning model for real-time illuminance specific indoor environment from a predefined list of use cases estimation  and  visualization.  The  app  utilizes  the (e.g.,  residential,  classroom,  retail).  Once  the  analysis  is smartphone’s  built-in  camera  to  capture  indoor  scenes, initiated, the smartphone's rear camera activates and captures segments  them  into  localized  patches,  and  estimates a  frame  of  the  current  scene.  Images  were  captured  using  a illuminance at the patch level using a trained regression model. 

Xiaomi  Redmi  Note  8  smartphone,  equipped  with  a  48MP 

The predictions are then used to create color-coded heat map camera (f/1.8, 1/2.0", 0.8µm) at a 524×324 pixels resolution overlay, which provides intuitive feedback on spatial lighting prior  to  processing  and  model  training.  This  resolution  was distribution.  The  average  illuminance  value  of  the  captured empirically found to offer a balance between spatial detail and scene is then compared with standards set by the Commission computational efficiency and visual aesthetic. 

on  Illumination  (CIE)  and  the  Illuminating  Engineering The captured image is subsequently divided into small 2×2 

Society (IES) to assess whether the current lighting conditions pixel patches, providing a fine-grained assessment of lighting falls under the recommended levels for typical indoor settings distribution  while  maintaining  low  computational  overhead. 

or not. 

Each patch is analyzed based on the mean intensity values of In  contrast  with  the  previous  studies  that  rely  on  static its red, green,  and blue  (RGB) channels,  which serve as the laboratory  conditions,  external  hardware  or  needs  a  high input features for the illuminance prediction model. 

computation power our solution is platform-independent, cost-The  model  selected  in  our  study  was  implemented  using effective, and optimized for practical mobile use. Through the TensorFlow.js that allows machine learning models to make 260
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inference locally on the device without the need for external a fixed and stable position to periodically capture images of a servers which enhances both security and offline accessibility. 

predefined target area within the indoor mock-up environment. 

For  each  patch,  the  model  estimates  the  corresponding  lux The  image  resolution  was  fixed,  and  camera  parameters value.  These  values  are  then  stored  into  a  two-dimensional including  white  balance,  ISO,  exposure,  and  focus  were illuminance  matrix  which  represent  the  predicted  light manually locked to reduce the influence of automatic software intensity across the captured scene. 

enhancements  and  ensure  consistency  and  reproducibility throughout the dataset. 

Figure 1.  Platform architecture and data flow Viridis color map is then used to create a color-coded heat map overlay to depict the spatial distribution of illuminance levels throughout the scene. The overlay is rendered on top of the original image via the use of canvas blending techniques, Figure 2.  Scaled mock-up for data collection process allowing dynamic, intuitive, and real-time visualization. 

Simultaneously,  the  platform  also  computes  the  general Images  were  captured  at  a  resolution  of  524×324  pixels average illuminance value of the whole frame and compares it before  patch  extraction.  Simultaneously,  a  BH1750  ambient against the recommended lux levels defined for the selected light sensor was placed at the center of the imaged scene and indoor setting. Based on this comparison, the application app connected  to  the  Arduino  platform,  the  BH1750  is  a  digital categorizes regions as underlit, adequately lit, or overlit, and light sensor capable of measuring illuminance from 1 to 65535 

delivers contextual lighting recommendations to the user. 

lux  with  an  accuracy  of  ±0.5%,  and  was  chosen  for  its This  methodology  enables  intuitive  interpretation  of reliability  and  ease  of  integration  via  the  I2C  protocol.  The lighting adequacy by non-expert users, removing the need for complete hardware configuration is illustrated in Figure 3. 

specialized  instrumentation  or  technical  knowledge.  The platform's  emphasis  on  accessibility  and  real-time responsiveness  supports  its  applicability  in  diverse  settings, including  education,  healthcare,  office,  and  residential environments. 


2.1 Data collection and labelling 

To develop a robust and accurate predictive model for real-time indoor illuminance estimation using smartphone imagery, a  dedicated  dataset  was  constructed  under  controlled experimental  conditions.  The  objective  was  to  establish  a Figure 3.  Scaled room interior data collection process (a), quantitative  relationship  between  visual  features  extracted custom-built illuminance sensor circuit (b) from  image  patches  and  their  corresponding  ground  truth illuminance  values  (in  lux),  as  measured  by  a  calibrated For  each  captured  image,  a  synchronized  illuminance physical sensor. 

reading was recorded using timestamp alignment, enabling a The  data  acquisition  process  was  carried  out  in  a  scaled precise  one-to-one  mapping  between  each  image  and  its indoor  mock-up  environment  designed  to  replicate  typical respective lux measurement. 

residential and office lighting conditions, as shown in Figure To eliminate the effect of surface reflectance and ensure that 2. The lighting environment consisted of both natural daylight the lux measurements reflected true light intensity, the scene’s whose  intensity  varied  over  time  and  artificial  lighting surface was covered with a uniform layer of neutral gray matte provided by a dimmable 5730 white LED strip. 

material (18% reflectance). This is a widely adopted reference The  artificial  lighting  intensity  modulated  using  a surface in professional photographic and lighting calibration, potentiometer interfaced with an Arduino microcontroller via and it helped minimize bias in RGB values caused by glossy, Pulse Width Modulation (PWM) signals, enabling precise and reflective,  or  dark  absorptive  textures,  while  also  reducing continuous control of the lighting output. This setup facilitated specular noise in the captured images. 

the simulation of diverse real-world lighting scenarios across For each collected image a 2×2 pixel patch was segmented different times of day, enhancing the robustness of the dataset and  extracted,  a  resolution  selected  to  provide  a  trade-off for training and evaluation purposes. 

between spatial granularity and computational efficiency. For To collect paired data points, a smartphone was mounted in each patch, four features extracted and stored for training: 261
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·Mean intensity of the red channel (R_avg). 

continuous output space. The principal objective of this step is 

·Mean intensity of the green channel (G_avg). 

to  construct  predictive  models  capable  of  accurately 

·Mean intensity of the blue channel (B_avg). 

estimating  illuminance  from  low-resolution  2×2  color  pixel 

·The average grayscale intensity (GS_avg). 

patches. To achieve this, three machine learning models were The  grayscale  intensity  was  calculated  using  the  standard selected, trained, and evaluated: 

luminance transformation, defined as follows: 

·Multi-Layer Perceptron (MLP) Regressor. 

·Random Forest Regressor (RFR). 

𝐺𝑆 = 0.2989 ∗ 𝑅 + 0.5870 ∗ 𝐺 + 0.1140 ∗ 𝐵 

(2) 

·Extreme Gradient Boosting (XGBoost) Regressor. 

These  models  were  chosen  based  on  their  established where,  R,  G, and  B are red, green, and blue channel intensities, success  in  image-based  regression  tasks,  and  their  ability  to respectively. 

model complex nonlinear relationships between input features These four normalized values were normalized to a [0–1] 

and target outputs. 

range  and used  as  input  to  the  regression  models,  while  the corresponding  illuminance  (ILS),  measured  in  lux,  by  the 2.2.1 Multi-Layer Perceptron regressor 

BH1750 sensor, served as the target output label. Although the The  Multi-Layer  Perceptron  (MLP)  is  a  fully  connected lux sensor captures only a single-point reading, the captured feedforward  neural  network  widely  used  for  regression  and scene  was  carefully  composed  and uniformly  illuminated  to classification due to its ability to model nonlinear input-output ensure  that  the  recorded  value  accurately  represented  the relationships. It consists of an input layer, one or more hidden lighting condition of the imaged region. 

layers,  and  an  output  layer,  where  each  neuron  computes  a Data  acquisition  was  performed  at  one-hour  intervals weighted sum of inputs, adds a bias, and applies an activation throughout an entire calendar year, capturing a wide range of function  [13].  The  operation  of  a  single  neuron  can  be lighting  scenarios  from  low-light  conditions  in  the  early expressed as: 

morning  and  high-intensity  illumination  at  midday,  to artificially lit environments during the evening. 

𝑎(𝑙) = 𝛷(∑ 𝜔(𝑙)𝑎(𝑙−1)𝑏(𝑙))

(3) 

The  final  curated  dataset  comprises  2,650  entries,  each 𝑖𝑗

𝑗

𝑖

representing  a  distinct  2×2  patch  under  specific  lighting conditions,  paired  with  a  corresponding  ground-truth where,  a( l) is the activation function of the neuron in layer  l, illuminance value (in lux), measured using a BH1750 digital 𝜔(𝑙) is the weight connecting neuron  j in layer  l-1 to neuron  i 𝑖𝑗

light sensor. Each data entry includes R_avg, G_avg, B_avg, in layer  l, 𝑏(𝑙) is the bias term, and  Φ is the activation function, GS_avg as features and ILS as target output. 

𝑖

typically the rectified linear unit (ReLU) for hidden layers in Illuminance values in the dataset span a wide range, from 0 

modern applications [14]. 

lux to over 1,200 lux, successfully capturing a representative MLPs  are  trained  using  the  backpropagation  algorithm, distribution  of  low,  moderate,  and  high  lighting  conditions which  minimizes  a  loss  function  via  gradient  descent.  For typically encountered in indoor spaces. 

regression tasks, the Mean Squared Error (MSE) is commonly To further analyze the internal coherence of the dataset, a used and is defined as: 

3D  scatter  plot  (Figure  4)  was  generated  to  visualize  the relationship between G_avg, GS_avg, and ILS. The resulting 𝑛

plot reveals a smooth, monotonically increasing surface, with 1

𝑀𝑆𝐸 =

∑(𝑦

(4) 

no  evident  anomalies,  thereby  supporting  the  internal 𝑛

𝑖 − 𝑦

̂𝑖)2

consistency and reliability of the collected dataset. 

𝑖−1

where,  yi is the true illuminance value, 𝑦𝑖̂ is the predicted value, and n is the total number of samples. 

In this study, the MLP consisted of an input layer with four normalized  features  (R_avg,  G_avg,  B_avg,  GS_avg),  two hidden  layers  (200  and  100 neurons)  with  ReLU  activation, and a single output neuron predicting illuminance (lux). Adam optimizer was used for training due to its adaptive learning rate and  efficiency  on  noisy  data  [15].  Figure  5  illustrates  the architecture,  where  features  are  transformed  to  learn  high-level patterns. 

The  final  configuration  of  the  MLP  model  was  obtained through  grid  search  hyperparameter  tuning.  The  optimal parameters are listed in Table 1, and reflect the settings that yielded  the  best  validation  performance  using  k-fold  cross-validation. 

These hyperparameters were selected based on systematic experimentation and validation results. The MLP Regressor, being  a  type  of  feedforward  neural  network,  is  capable  of Figure 4.  3D scatter plot_ G_avg vs GS_avg vs ILS 

learning  complex  nonlinear  relationships  between  input features and target outputs. Its flexibility makes it suitable for 2.2 Model design and training 

a wide range of problems. However, MLPs are sensitive to the choice  of  hyperparameters,  require  more  computational The  indoor  illuminance  estimation  from  image-derived resources  for  training,  and  may  suffer  from  overfitting  with features  constitutes  a  regression  task  characterized  by  a small datasets. 
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This  configuration  allowed  the  model  to  learn  complex patterns present in the dataset while avoiding overfitting. The number of trees was set to 200 to provide a robust ensemble and to avoid a high increase in training time. Minimum sample constraints used to ensure statistical significance at each node, and  by  using  all  four  normalized  input  features  in  model training allowed the model to take advantage of both color and luminance cues in estimating illuminance. 

Table 2. The parameters of the RFR model 

Parameters 


Value 

Number of Trees (n_estimators) 

200 

Maximum Tree Depth 

None 

Minimum Samples per Split 

2 

Figure 5.  MLP architecture for illuminance prediction Minimum Samples per Leaf 

1 

Bootstrap Sampling 

Enabled 

Table 1. The parameters of the MLP model 

Splitting Criterion 

MSE 

Parameters 


Value 

2.2.3 XGBoost Regressor 

Hidden Layers 

[200, 100] 

The eXtreme Gradient Boosting (XGBoost) Regressor is an Activation Function 

ReLU 

advanced gradient boosting algorithm which is characterized Solver 

Adam 

by an ameliorated accuracy. It builds an ensemble of decision Learning Rate 

Adaptive 

trees  sequentially  where  each  tree  tries  to  correct  the  errors Alpha (L2 regularization) 

0.001 

made by the previous tree by minimizing a loss function via Loss Function 

MSE 

gradient  descent  this  prediction  process  must  sequentially Batch Size 

32 

traverse  multiple  decision  trees.  Even  during  inference,  this sequential evaluation of hundreds of trees can result in slower 2.2.2 Random Forest Regressor 

prediction  speeds  compared  to  simpler  models.  The  model The  Random  Forest  Regressor  (RFR)  is  an  ensemble predicts  output  as  a  sum  of  functions,  each  corresponding  a learning  method  that  builds  multiple  decision  trees  and decision tree:  

averages  their  outputs,  making  it  effective  for  nonlinear regression. It enhances generalization and reduces overfitting 𝐾

through  bootstrap  sampling  and  random  feature  selection 

∧

𝑦 = ∑ 𝑓

(7) 

during training [16]. Each decision tree is trained on a different 𝑖

𝐾(𝑥𝑖 ), 𝑓𝐾 ∈ 𝛤

𝐾=1

bootstrap sample (i.e., random sampling with replacement) of the training data. During the construction of each tree, only a where,  Γ is the space of regression trees,  xi is the feature vector random  subset  of  features  is  considered  at  each  split  [17], for  instance   K  is  the  number  of  trees.  The  optimization encouraging  decorrelation  between  trees  and  enhancing  the objective consists of a loss function measuring prediction error robustness  of  the  ensemble.  The  overall  prediction  of  the and a regularization term to penalize model complexity: Random Forest is computed as the average of the predictions made by the individual trees: 

𝑛

𝑘

𝐿(𝛷) = ∑ 𝑙(𝑦

(8) 

𝑖 , 𝑦

̂𝑖) + ∑ 𝛺(𝑓𝑘)

𝑇

1

𝑖=1

𝑘=1

𝑦̂ =

∑ 𝑓

(5) 

𝑇

𝑡(𝑥)

𝑡=1

1

𝛺(𝑓) = 𝛾𝑇 + 𝜆‖𝑤‖2

(9) 

2

where, 𝑦̂ is  the  final prediction,  T  is  the  number  of  decision trees, and  ft( x) is the prediction made by the t-th tree made by with  l as the loss function, Ω( f) as the regulation term where  T 

for input [18]. 

is the number of leaves in the tree, 𝑤 are the leaf weights, and Each  tree  predicts  by  recursively  splitting  data  based  on γ,  λ  regularization  parameters,  this  formulation  enables features  to  minimize  node  impurity.  For  regression,  the XGBoost  to  generalize  well  on  unseen  data  by  controlling impurity measure is typically the Mean Squared Error (MSE), overfitting [20]. 

defined for node m as: 

In  this  study,  XGBoost  was  trained  using  the  normalized features  R_avg,  G_avg,  B_avg,  and  GS_avg  as  input,  with 1

illuminance  (ILS)  as  the  output.  Grid  search  and  cross-𝑀𝑆𝐸𝑚 =

∑ (𝑦

𝑁

𝑖 − 𝑦̄)2

(6) 

𝑀

validation were used to identify the optimal hyperparameters, 𝑖∈𝑁𝑚

as shown in Table 3. 

where,  N

Every  tree  in  the  ensemble,  splits  the  input  space  into m is the set of samples reaching node  m,  yi is the target value of sample  i,  y

distinct  subsets  depending  on  the  most  informative  input m is the average target value of the samples in node  m [19]. 

attributes. As trees are added sequentially, the model corrects In this study, the Random Forest model was optimized using its  previous  errors  iteratively,  leading  to  a  robust  predictor grid search and k-fold cross-validation, which result the best with  the  ability  to  effectively  estimate  illuminance  for structure summarized in Table 2. 

different lighting conditions. 
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Table 3. The parameters of the XGboost estimator 

(RMSE) was also used, which is defined as: Parameters 


Value 

𝑛


Number of Trees 

100 

1

(11) 

Maximum Tree Depth 

6 

𝑅𝑀𝑆𝐸 = √ ∑(𝑦

𝑛

𝑖 − 𝑦

̂𝑖)2

Learning Rate 

0.1 

𝑖=1

Loss Function 

MSE 

Regularisation 

L2(λ =1) 

RMSE  retains  MSE’s  sensitivity  to  large  errors  while expressing them in the target variable’s units (lux), enhancing 2.2.4 Training and validation 

interpretability. It effectively highlights significant prediction In this study, a well-structured and systematic strategy was errors,  which  are  crucial  in  lighting-sensitive  settings  like applied  to  carry  out  the  training  and  validation  of  the  three laboratories. 

regression models in order to identify the most effective one To measure the proportion of variance in the target variable for  practical  deployment  in  real-world  lighting  assessment that can be explained by the model, the R² score was used: tasks.  The  primary  objective  was  to  construct  machine learning models capable of predicting illuminance values from 

∑𝑛 (𝑦

𝑖=1

𝑖 − 𝑦

̂𝑖)2

features  extracted  from  smartphone-captured  indoor  images 𝑅2 = 1 −

(12) 

∑𝑛 (𝑦

)2

with  both  high  accuracy  and  strong  generalization 𝑖=1

𝑖 − 𝑦̄

performance. 

where, 𝑦̅ is the mean of the true illuminance values. A perfect Each one of the three models was trained on a preprocessed model  yields   R 2=1,  whereas an   R 2  close  to  0  indicates  poor and  normalized  dataset  comprising  statistical  features model performance.  R 2 provides an intuitive measure of model extracted  from  2×2  image  patches  and  their  corresponding fit  and  is  useful  for  comparing  model  generalization  on illuminance  values  (in  lux).  Training  began  by  randomly validation data. 

splitting  the  dataset  into  80%  training  and  20%  validation subsets, ensuring that models were evaluated on unseen data. 

To ensure a fair and consistent basis for comparative analysis all models utilized the same training-validation split. 

Subsequently,  each  model  underwent  hyperparameter tuning  via  Grid  Search  Cross-Validation  to  identify  the combination of parameters yielding the optimal performance on  the  validation  set.  The  tuned  parameters  for  the  MLP 

Regressor  model,  the  tuned  are  the  hidden  layer  sizes, activation  function,  the  solver,  the  alpha  value,  and  the learning rate. For the RFR model, the tuned parameters were number  of  estimators,  maximum  depth,  minimum  samples split,  and  minimum  samples  leaf.  Finally,  for  XGBoost Regressor  the  hyperparameters  are  the  number  of  trees,  the maximum  tree  depth,  learning  rate,  loss  function,  and  the regularization parameters. 

Figure 6.  Training and validation process To optimize the models hyperparameter Grid Search with k-fold Cross-Validation was performed this process is a robust Figure  6  illustrates  the  training  and  validation  pipeline technique for evaluating parameter combinations and avoiding employed  in  this  study,  depicting  the  sequential  process  for overfitting.  The  following  hyperparameters  were  tuned  for developing and evaluating the illuminance estimation models. 

each model:

The dataset was first split into training and test sets. Using 

·MLP Regressor: number of hidden layers and their sizes, cross-validation on the training data, hyperparameters for the activation  function,  solver  (optimizer),  L2,  batch  size,  loss MLP, Random Forest, and XGBoost Regressors were tuned to function, and learning rate. 

optimize model fit and generalization. 

·Random Forest Regressor: number of trees (n_estimators), The best models were then retrained on the full training set maximum  tree  depth,  minimum  samples  required  to  split  a and  evaluated  on  the  unseen  test  set.  Performance  was node, and minimum samples per leaf. 

assessed using MAE, RMSE, and R² to measure accuracy and 

·XGBoost Regressor: number of trees, maximum tree depth, generalization. 

learning rate, loss function, and regularization parameter L2. 

The  process  of  evaluating  the  regression  models  requires 2.3 Mobile app functionality 

robust and interpretable evaluation metrics. In this study we employed  three  widely  accepted  indicators  to  assess The lightweight mobile application developed in this study performance: 

is able to make a real-time illuminance analysis using a trained machine learning model to process camera input, generate an 𝑛

1

illuminance  heatmap,  and  provide  actionable  lighting 𝑀𝐴𝐸 =

∑|𝑦

(10) 

recommendation  entirely  on-device,  without  relying  on 𝑛

𝑖 − 𝑦

̂𝑖|

𝑖=1

external computation or connectivity. 

As  shown  in  Algorithm  1,  the  app  captures  an  image, MAE’s reliance on absolute values makes it less sensitive divides  it  into  2×2  patches,  and  extracts  average  R,  G,  B, to  outliers  than  squared-error  measures  like  Mean  Squared channels  and  grayscale  intensity  from  each  patch.  These Error (MSE). In addition to MAE, Root Mean Squared Error normalized inputs are then passed into a TensorFlow.js-based 264

[image: Image 14]

model deployed within the mobile environment, enabling real-The  user  interface  flow  of  the  mobile  application  is time inference for each patch. 

illustrated in Figure 7 and consists of three main screens. The The  results  form  a  color-coded  heatmap  overlay  on  the first  screen  allows  users  select  an  indoor  environment  (e.g., original  image,  while  the  average  illuminance  is  compared living room, classroom, retail), each of which is associated to against standards for the selected indoor environment. 

a recommended illuminance range. 

After selection, the app moves to the second screen, which Algorithm 1. Mobile Application workflow. 

streams live video from the smartphone’s rear camera. 

Input: Live camera feed, selected environment. 

Output:  Illuminance  heat  map,  average  lux,  lighting recommendation. 

1:   User selects environment from dropdown menu. 

2:   Load trained model and initialize rear camera stream. 

3:   Upon user action ("Scene Analysis"), capture image frame. 

4:   Divide captured image into 2×2 pixel patches. 

7:   For each patch: 

8: 

a.  Compute  normalized  R_avg,  G_avg,  B_avg, and GS_avg. 

9: 

b.  Pass  input  vector  [R,  G,  B,  GS]  to  trained model. 

10: 

c. Predict illuminance (in lux) and assign color from heat map. 

11:  Render  overlay  heat  map  and  compute  average illuminance value. 

12: 

Retrieve  recommended  lux  range  for  selected environment. 

Figure 7.  User interface flow of the mobile application 13:  If average_lux < min or > max: 

14:          a. Display warning with diagnostic message. 

Pressing  the  “Scene  Analysis”  button  freezes  the  current frame  and  transitions  to  the  third  screen,  displaying  the 15: 

b. Offer button to show problem areas: 

analysis  overlay  and  modal  recommendations  This 16:                 - Red overlays for over-illuminated patches. 

streamlined flow from environment selection to live preview 17:                 - Blue overlays for under-illuminated patches. 

and  finally  to  interactive  feedback  ensures  an  intuitive  and 18:  Else: 

efficient user experience. 

19: 

a. Display optimal lighting confirmation. 

20:  Allow user to repeat process or return to camera. 


3. RESULTS AND DISCUSSION

To determine whether the measured value falls outside or within  the  acceptable  range  recommended  by  CIE  and  IES 

The primary objective of this study was to develop a robust, associations, Table 4 illustrates the recommended illuminance mobile-based application for real-time illuminance estimation levels for most possible indoor settings. 

and  spatial  mapping  application  using  light-weight  machine learning models. To evaluate the performance and viability of Table 4. Recommended lux level 

the proposed methodology, experiments were conducted on a filtered dataset and through real-world scenario testing using Environment 

Recommended Illuminance (lux) 

the mobile platform. 

This  section  presents  the  training  results  of  the  three Residential (Living Room) 

100 – 250 

Residential (Bedrooms) 

60 – 100 

regression  models  MLP,  RFR,  and  XGBoost  based  on Residential (Kitchen) 

300 – 750 

comprehensive evaluation metrics. Additionally, we evaluate Classroom/office 

300 – 750 

the visual accuracy of the generated illuminance heatmaps, the Laboratory 

200 – 500 

application’s  interactivity,  and  its  responsiveness  under Operating Rooms 

300 – 500 

diverse lighting conditions. 

Conference Rooms 

200 – 500 

Display Areas 

750 – 1500 


3.1 Model evaluation and comparison 

The  app  automatically  provides  lighting  adjustment To evaluate indoor illuminance prediction, three regression recommendations based on the computed average illuminance. 

models  RFR,  XGBoost,  and  MLP  were  trained  using  four When the lighting level falls outside the recommended range, normalized features extracted from each image patch: R_avg, a “Highlight Poorly Illuminated Areas” button appears. 

G_avg,  B_avg,  and  GS_avg.  The  models  were  trained  and Upon activation, the overlay updates to visually mark over-tested on a cleaned dataset with an 80/20 split, with grid search illuminated regions in red and under-illuminated areas in blue, and  5-fold  cross-validation  employed  for  hyperparameter helping users easily identify specific lighting issues. 

tuning. Performance was assessed using Mean Absolute Error (MAE),  Root  Mean  Square  Error  (RMSE),  Coefficient  of 265
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Determination  (R²),  and  inference  time,  as  summarized  in The setup created a continuous illumination gradient from Table 5. 

the window-facing desk (T1) to the farthest desk (T4). Four calibrated digital lux meters were positioned at the center of Table 5. Performance comparison of the regression models 

each  desk  to  establish  reliable  ground  truth  measurements. 

Concurrently, the smartphone app mounted on a fixed tripod Model 

MAE 

RMSE 


R² 

Inference Time (s) 

to  maintain  a  consistent  perspective  and  distance  captured RFR 

21.26  47.03 lx  0.9704 

0.0397 

images of the scene under varying lighting conditions. 

XGBoost  23.00  50.81 lx  0.9655 

0.0021 

MLP 

43.91  77.02 lx  0.9207 

0.7047 

As  shown  in  Table  5,  the  Random  Forest  Regressor achieved the best balance between accuracy and generalization, with  the  lowest  MAE  and  RMSE  and  an  R² of  0.9704, demonstrating  strong  modeling  of  nonlinear  relationships under  diverse  lighting  conditions.  Although  the  XGBoost model  exhibited  slightly  lower  accuracy,  it  significantly outperformed in terms of inference speed (0.0021 seconds per prediction),  making  it  more  suitable  for  time-critical applications  on  resource-constrained  devices.  The  MLP, despite  its  theoretical  flexibility,  underperformed  in  both accuracy and speed, likely due to the limited input features and small dataset restricting its generalization ability. 

Figure 8 illustrates the predicted versus actual illuminance values for the test set. An ideal model would produce points tightly clustered along the diagonal line. The Random Forest and  XGBoost  models  closely  follow  this  trend,  whereas  the Figure 9.  Experimental setup for the platform’s real-world MLP shows greater variance, with many predictions deviating evaluation 

from the ideal. 

To introduce lighting variations, artificial light levels were adjusted,  and  natural  light  was  controlled  by  opening  or closing  curtains  at  different  times,  enabling  testing  across diverse lighting conditions. For each setup: 

·The smartphone captured an image. 

·The  model  divided  the  image  into  non-overlapping  2×2 

pixel patches. 

·Each  patch’s  illuminance  was  predicted  using  the  RFR 

model. 

·Predictions  at  the  four  desk centers  were  compared  with lux meter readings. 

The  predicted values  were  quantitatively  assessed  against the  ground  truth  using  the  Mean  Absolute  Error  Percentage (MAEP), a metric that indicates average prediction deviation as a percentage of true illuminance, providing intuitive insight Figure 8.  Predicted vs. actual illuminance comparison for the into  visual  accuracy.  The  MAEP  was  computed  using  the three regression models 

following equation: 

These findings justify the selection of the Random Forest 𝑛

1

𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒

Regressor  for  deployment  in  the  mobile  application,  as  its 𝑀𝐸𝐴𝑃 =

∑ | 𝑖

𝑖

| × 100 

(13) 

𝑡𝑟𝑢𝑒

superior  accuracy  and  robustness  outweigh  the  marginal 𝑛

𝑦𝑖

𝑖=1

advantage  in  inference  speed  offered  by  XGBoost.  Such precision  is  critical  in  ensuring  reliable  compliance  with where, 𝑦𝑝𝑟𝑒𝑑  and 𝑦𝑡𝑟𝑢𝑒  represent  the  predicted  and  ground 𝑖

lighting standards and enhancing user comfort in real-world 𝑖

truth  illuminance  values,  respectively,  and   n  is  the  total applications. 

number of measurement points. 

The  experiment  evaluated  multiple  lighting  scenarios 3.2  Illuminance  mapping  accuracy  and  response  time throughout  the  day,  from  sunrise  to  sunset,  by  capturing  a analysis 

realistic  range  of  indoor  illuminance  levels  typical  of  office environments. These conditions produced ground truth values To  assess  the  platform’s  real-world,  an  experiment  was in  the  range  of  100–1100  lux,  consistent  with  the  standard conducted  to  evaluate  the  spatial  accuracy  of  illuminance requirements for office environments. 

mapping  and  the  real-time  responsiveness  of  the  mobile As  illustrated  in  Figure  10,  predicted  illuminance  values application. This study took place in a typical office setting at followed  actual  measurements  closely  across  all  four  desks. 

the Science and Technology Department, Skikda University, The MAEPs for desks T1, T2, T3, and T4 were 2.22%, 2.72%, Algeria,  featuring  four  desks  arranged  progressively  from  a 2.38%, and 2.41%, respectively, resulting in a global average window, creating a natural illumination gradient, as depicted MAEP  of  2.43%.  This  low  prediction  error  highlights  the in Figure 9. 
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system’s  ability  to  generalize  across  spatial  locations  and approximately  1.4  seconds,  confirming  the  application’s under diverse lighting intensities. 

suitability for real-time use. 

To  further  contextualize  the performance of  the  proposed Table 6. Processing time for illuminance mapping 

platform, Table 7 summarizes a comparative analysis of recent studies on indoor illuminance estimation. 


Process 

Processing Time in [s] 

The selected studies include conventional approaches using Capturing image 

0.2 

smartphone  ambient  light  sensors  [11],  image  processing Pre-processing 

0.3 

methods [4], and recent learning-based regressors [8, 9] and Illuminance matrix prediction 

0.7 

[10].  While  each  method  presents  partial  advantage  such  as Uploading results 

0.2 

cost-effectiveness or algorithmic complexity most suffer from Total processing time 

1.4 

significant limitations in accuracy, spatial resolution, or real-time  deployment  capability.  For  example,  the  smartphone In addition to spatial accuracy, the platform's response time Ambient Light Sensors (ALS) method by Gutierrez-Martinez was  evaluated  to  assess  the  feasibility  of  deploying  the et  al.  [11]  reports  a  RMSE  of  76  lx,  but  its  single-point solution on mobile devices. Table 6 summarizes the average measurement nature limits its usability for spatial diagnostics. 

processing  time  for  each  phase  of  the  illuminance  analysis Likewise, the handcrafted image-based method by Kamath et pipeline.  The  end-to-end  process  from  image  capture  to al. [4] achieved an RMSE of 79.6 lx, but it was tested only in illuminance  mapping  and  overlay  generation  required constrained settings using a sophisticated LDR camera sensor and without heatmap generation. 

Figure 10.  Predicted vs. actual illuminance for tables T1–T4 under varying lighting conditions Table 7. Comparative analysis of illuminance estimation approaches 

Study 

Platform Type 


RMSE 

Inference Time (s) 


Notes 

Gutierrez-Martinez et 


Smartphone ALS 

76 lx 

< 0.01 

Single-point, non-spatial; limited in low-light al. [11] 

environments. 

Kamath et al. [4] 

Camera (LDR image) 

79.6 lx 

Not reported 

No visual mapping; tested in controlled conditions only. 

Wang et al. [8] 

Deep CNN (CGLight) 

40.2 lx 

~2.3 

Desktop only; High Latency. 

Wang et al. [9] 

Deep CNN (FHLight) 

32.6 lx 

~1.8 

Requires GPU; not optimized for smartphone deployment. 

Zhao et al. [10] 

Transformer (SGFormer) 

30.8 lx 

~2.5 

Complex; high model size; no spatial heatmap. 

Ours 

Smartphone camera 

77.02 lx 

~0.04 

Real-time, spatial mapping. 

Recent deep learning-based models such as studies [8-10] 

These findings highlight the effectiveness and efficiency of provide enhanced accuracy on synthetic or benchmark datasets; the  proposed  platform  in  delivering  real-time,  spatially however,  their  RMSE  still  range  from  30  lx  to  60  lx  with detailed  illuminance  estimations.  The  combination  of  low inference times unsuitable for mobile applications. In contrast, latency, high spatial fidelity, and minimal error margins makes the proposed Random Forest-based system delivers a MAEP 

the system a viable tool for mobile-based lighting diagnostics. 

of just 2.43%, corresponding to an RMSE of 47.03 lx, while Its applications extend to architectural design, smart lighting running  in  real  time  on  a  smartphone  and  offering  spatial control, energy auditing, and visual comfort evaluation in both illuminance mapping capability. 

residential and professional environments. 
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3.3 Application functionality test 

·Selecting the indoor environment. 

·Activating the live video feed. 

To  validate  the  practicality  of  the  proposed  mobile 

·Capturing a frame of the scene. 

illuminance  assessment  platform,  a  functionality  test  was 

·Generating an illuminance heatmap. 

conducted  in  real-world  classroom  environment.  The Figure 11 presents a sequence of screenshots representing objective was to evaluate the application’s responsiveness to an  optimal  lighting  scenario.  The  application  accurately typical variations in lighting, including changes in both natural detects and maps the indoor light distribution, calculates the daylight and artificial illumination. 

average  illuminance,  and  verifies  its  alignment  with  the The platform was deployed on a standard Android Xiaomi recommended  lux  range  for  classrooms  (300–750  lx).  The Redmi Note 8 smartphone and tested in a spacious university resulting heatmap is uniform and consistent, demonstrating the classroom  at  Skikda  University,  under  a  variety  of  lighting platform's reliability under standard lighting conditions. 

conditions  ranging  from  partial  daylight  to  full  artificial Conversely,  Figure  12  shows  a  contrasting  scenario illumination. For each test session, users executed the entire characterized  by  over-illumination  due  to  excessive  natural application workflow, which included: 

light exposure. 

Figure 11.  Sequence of screenshots for an optimal lighting scenario in classroom setting Figure 12.  Sequence of screenshots for an over illuminating lighting scenario in classroom setting 268

In this case, the application accurately predicted an average non-negligible computational burden. The inference process, illuminance exceeding the upper threshold of the  acceptable which  involves  predicting  illuminance  for  numerous  small range. In response, it generated a recommendation to reduce patches  per  frame,  can  be  computationally  intensive  on the  lighting  level.  Furthermore,  the  user  utilized  the  “Show smartphones  with  limited  processing  capabilities.  This  may poorly illuminated areas” feature to highlight over-illuminated result  in  latency  during  real-time  operation,  particularly  on regions,  which  were  visually  marked  with  red  overlays, low- to mid-range devices, unless further model optimization facilitating easy identification of lighting imbalances. 

or compression techniques are adopted. 

These  two  real-case  demonstrations  confirm  the application's  effectiveness  in  delivering  actionable  feedback through real-time visual analysis, while maintaining consistent 4. CONCLUSIONS

user  interface  behavior  and  responsiveness  under  varying conditions.  Users  noted  smooth  screen  transitions,  intuitive This  study  introduced  a  low-cost,  smartphone-based  tool interaction flows, and minimal latency during image capture capable  of  real-time  indoor  illuminance  estimation  and and processing. Overall, the mobile application exhibits strong mapping,  leveraging  deep  learning  and  classical  machine usability  and  operational  reliability,  even  in  dynamic  and learning  models  to  support  compliance  with  lighting  design fluctuating lighting environments. 

standards. 

The  proposed  mobile  application  enables  users  to  assess 3.4 Limitations 

lighting conditions visually and numerically, eliminating the need  for  costly  lux  meters  or  specialized  instrumentation. 

While  the  proposed  platform  demonstrated  promising Through  a  platformatic  development  pipeline  encompassing performance,  several  limitations  must  be  acknowledged  to data collection, model training, validation, and integration into contextualize its applicability and guide future enhancements. 

a  real-world  application,  we  demonstrated  that  compact First,  the  model’s  predictive  accuracy  is  inherently devices  can  provide  accurate  and  spatially-resolved influenced by the hardware characteristics of the smartphone illuminance feedback. 

used  for  image  acquisition.  Variations  in  sensor  sensitivity, Experimental  results  showed  that  among  the  three  tested lens quality, and onboard image processing algorithms (such models  Multi-Layer  Perceptron,  Random  Forest  Regressor, as  automatic  exposure,  white  balance  correction,  or  HDR 

and  Gradient  Boosting  Regressor;  the  Random  Forest enhancement)  can  introduce  inconsistencies  in  pixel Regressor demonstrated the best trade-off between prediction intensities,  thereby  affecting  the  model's  generalizability accuracy (MAE: 21.25, R²: 0.97)  and inference speed (≈ 40 

across  different  devices.  Since  the  current  implementation ms). Furthermore, Mean Absolute Error Percentage (MAEP) does  not  incorporate  device-specific  calibration  procedures, of  2.43%  across  multiple  desk  locations  in  real-world variations in camera hardware could lead to discrepancies in environments, validated the consistency and spatial reliability illuminance  prediction  when  the  application  is  deployed  on of  the  predicted  illuminance  distribution  under  varied heterogeneous smartphones. 

conditions.  The  complete  application  maintained  a  total Second,  the  experimental  validation  was  limited  to processing time of under one second, rendering it suitable for controlled  indoor  environments  specifically,  an  office  and  a responsive  mobile-based  lighting  analysis.  By  offering  real-classroom  using  a  single  smartphone  model.  While  these time  heatmap  visualizations  and  context-aware  lighting environments are representative of common use cases, they do recommendations  within  a  single  portable  platform,  this not encompass the full range of indoor spatial configurations, application  presents  new  opportunities  for  intuitive  lighting surface  materials,  or  artificial  lighting  technologies diagnostics  in  residential,  educational,  healthcare,  and encountered  in  real-world  applications.  Consequently,  the commercial  spaces.  The  user-friendly  interface  and model’s  scalability  and  robustness  under  more  diverse compatibility  with  consumer-grade  smartphones  further conditions,  such  as  residential,  commercial,  or  industrial enhance its accessibility and scalability. 

settings, remain to be validated. 

However, it is important to acknowledge that the platform Third, the system's performance may degrade under highly was only evaluated in a limited range of indoor environments complex  or  non-uniform  lighting  scenarios.  Conditions using  a  single  smartphone  model.  Broader  deployment involving  strong  backlighting,  mixed  color  temperature scenarios  involving  diverse  room  geometries,  surface sources, intense reflections, or localized glare can compromise reflectance, and device-specific camera characteristics should the  accuracy  of  patch-wise  illuminance  predictions,  as  such be  explored  to  confirm  the  model’s  robustness  and conditions are underrepresented in the current training dataset. 

generalizability. 

Moreover, the system does not currently correct for the non-Future work will focus on addressing the current limitations linear  exposure  behavior  of  smartphone  cameras  in  high-and  enhancing  the  platform's  robustness,  scalability,  and dynamic-range  scenes,  which  may  further  affect  luminance adaptability. A key priority will be the evaluation of system estimation in extreme lighting conditions. 

performance  across  a  broader  range  of  real-world  indoor Additionally,  the  absence of a  cross-device  normalization environments, 

including  residential, 

industrial, 

and 

mechanism  poses  another  limitation.  The  current  approach commercial settings, each with distinct lighting configurations, assumes  a  uniform  camera  response  function,  and  does  not surface  textures,  and  spatial  geometries.  This  expanded explicitly  account  for  the  wide  variability  in  sensor validation  will  help  assess  the  model’s  generalization performance and software tuning across smartphone models. 

capabilities beyond controlled office and classroom scenarios. 

This limits the platform’s ability to deliver consistent results To improve cross-device consistency, future versions may across devices without a prior calibration step. 

incorporate 

device-specific 

calibration 

routines 

or 

Finally, although the application performs all computations normalization  layers  to  account  for  variability  in  camera locally  using  TensorFlow.js  to  preserve  user  privacy  and hardware and built-in image processing algorithms. In parallel, ensure  offline  functionality,  this  design  choice  introduces  a advanced  preprocessing  techniques  such  as  high-dynamic-269

range (HDR) fusion or exposure correction could be explored cost luminance imaging device with minimal equipment to better handle scenes with complex or uneven illumination calibration  procedures  for  absolute  and  relative patterns, including glare, shadows, and mixed lighting sources. 

luminance. 

Buildings, 

13(5): 

1266. 

From a computational standpoint, optimizing the model for https://doi.org/10.3390/buildings13051266  

real-time  inference  on  low-end  and  mid-range  smartphones 

[8] Wang, Y., Song, S., Zhao, L., Xia, H., Yuan, Z., Zhang, will  be  essential.  This  may  involve  quantization,  model Y. (2024).  CGLight:  An  effective  indoor  illumination pruning,  or  knowledge  distillation  to  reduce  memory  and estimation  method  based  on  improved  ConvMixer  and processing  demands  without  compromising  accuracy. 

GauGAN.  Computers  &  Graphics,  125:  104122. 

Furthermore,  the  integration  of  lightweight  edge  computing https://doi.org/10.1016/j.cag.2024.104122

frameworks  could  ensure  smooth  performance  while 

[9] Wang, Y., Wang, A., Song, S., Xie, F., Ma, C., Xu, J., preserving offline functionality. 

Zhao,  L.  (2024).  FHLight:  A  novel  method  of  indoor Finally,  future  iterations  of  the  system  could  incorporate scene  illumination  estimation  using  improved  loss temporal illumination tracking and user feedback mechanisms. 

function.  Image  and  Vision  Computing,  152:  105299. 

These enhancements would enable the platform to learn from https://doi.org/10.1016/j.imavis.2024.105299

environmental patterns and user behavior over time, ultimately 

[10] Zhao, J., Xue, B., Zhang, M. (2024). SGformer: Boosting supporting  intelligent  daylight  harvesting  strategies  and transformers for indoor lighting estimation from a single adaptive lighting control systems that respond dynamically to image.  Computational  Visual  Media,  10(4):  671-686. 

both spatial and temporal context. 
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NOMENCLATURE 

R² 

Coefficient of Determination 

MAEP 

Mean Absolute Error Percentage 

RGB 

Red, Green, Blue channel intensities 

GS 

Grayscale intensity 


Subscripts 

ILS 


Illuminance level in lux 

MAE 

Mean Absolute Error 

pred 

Predicted illuminance 

RMSE 

Root Mean Square Error 

true 

True (measured) illuminance 

lux 

Illuminance in lux units 
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Adequate indoor lighting is essential for ensuring visual comfort, cnergy efficiency, and
compliance with architectural standards. This study presents a novel smartphone-based
platform for real-time illuminance estimation and visual mapping, that leverages a
lightweight machine learning model. The application utilizes the smartphone’s built-in
camera to capture images of the scenes and performs illuminance prediction for cach patch
of the image using a trained regression model, offering a cost-effective alternative to
physical lux meter grid. The mobile application generates a color-coded heat maps that
visualize the spatial distribution of illuminance and do the assessment of its compliance
with an established lighting norm. The advantages of the proposed system include its
affordability, portability, and prediction accuracy enabled by the machine learning model
trained on image intensity features. Experimental tests in a controlled indoor setting
demonstrate high prediction accuracy and low computational requirements, confirming the
platform’s suitability for use in real-word applications. The tool enables effective and
precisc analysis of light and is hence usable in architectural diagnostics, energy audits, and
spatial design optimization. In addition, the user-friendly interface benefits both
professional and non-professional users, facilitating real-time adjustment and optimization

of indoor lighting.

1. INTRODUCTION

The push for smarter and greener buildings has made indoor
lighting a central aspect of energy-efficient architectural
design. According to the international energy agency, lighting
represents a major component of energy use in residential and
commercial buildings account for as much as 15% of
worldwide electricity consumption [1]. Ensuring both efficient
and comfortable lighting conditions is no longer a matter of
convenience; it is a fundamental requirement for
environmental sustainability and occupant well-being [2].
Traditional illuminance measurement methods, such as
handheld lux meters or wall-mounted ambient light sensors,
often fall short when deployed in practical, large-scale
applications. First, these tools provide only single-point
measurements, failing to capture spatial variability in lighting
conditions, which is crucial for identifying under- or over-
illuminated zones. This lack of spatial resolution makes them
impractical for environments like classrooms, offices, or retail
spaces where lighting uniformity directly affects comfort and
productivity. Second, the requirement of manual operation,
precise sensor placement, and professional calibration limits
their accessibility for non-expert users. Additionally, high-
quality lux meters are typically expensive and may not be
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feasible for widespread deployment in low-resource settings.
These limitations emphasize the need for cost-effective, user-
friendly solutions that offer spatially-resolved, real-time
feedback without relying on specialized instrumentation or
trained personnel [3].

Several recent studies have explored the capabilities of
image processing techniques to overcome the difficulties faced
by the traditional lux meter method. Kamath et al. [4]
presented the analysis of illuminance on work plane prediction
from low dynamic range, raw image data. While their
methodology demonstrates that images from cameras can be
utilized as a stand-in for lux measurements, it is restricted to
controlled testing environments and lacks the ability to
produce visual illumination maps. Moreover, Abderraouf et al.
[5] designed a vision-based indoor lighting estimation method
primarily geared toward daylight harvesting, using image
processing to classify ambient lighting conditions, However,
their approach did not integrate predictive modelling or user
feedback mechanisms, exhibited limited accuracy in
illuminance prediction, and lacked the ability to produce
interpretable illuminance overlays.

Kruisselbrink et al. [6] proposed a custom-built device for
luminance distribution measurement using High Dynamic
Range (HDR) imaging method, a widely used technique in
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