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ABSTRACT 
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A bridge is a construction that enables traffic to cross a barrier while keeping in touch with Revised: 2 June 2025 

roads  or  railroads.  Throughout  history,  bridges  have  played  a  crucial  role  in  human Accepted: 10 June 2025 

civilisation and remain an essential component of any transportation network. The main Available online: 30 June 2025 

purpose of this study is to evaluate the seismic resistance of bridge structure under effect of  earthquake  action  by  adopting  force-displacement  yielding  points  and  performance points methods. The results of force-displacement yielding point and performance points 

 Keywords: 

revealed  that  the  transversal  yielding points  were  greater  than the  longitudinal  yielding bridge, 

 I-girder, 

 pushover, 

 force-

points and performance points, this indicates that the seismic action on the transversal bents displacement,  performance  point,  piers, has little effect and that no damage will be done to the bents if they are subjected to this bents, earthquake 

action  alone  but  in  longitudinal  direction  the  force-displacement  yielding  point  and performance  points  were  lower,  indicating  that  the  seismic  resistance  performance  of bridge bents is small with low elasticity and stiffness and high plasticity. Meaning that bridge bents capacity cannot resist the demand. Therefore, Therefore, this study suggested to improve the structural performance and seismic resistance of bridge bents by increasing the diameter of bridge piers by 1.6m, 1.8m, and 2m. After thickening the piers structure, the results of yielding points and performance points values were increased with increasing the  piers  diameter.  And  the  seismic  displacement  decreased  with  increasing  the  piers diameter. Indicating that the elastic limit of bridge bents will increase and the bridge piers will resist the earthquake action according to increase in the stiffness and bearing capacity of bridge bents. 

1. INTRODUCTION

to  build  bridges  across  obstacles  like  rivers,  roads,  and railroads. Bridge constructions may be categorised based on Bridges serve as crucial connections between roadways and the  kinds  of  supports  and  materials  used.  Concrete,  pre-are crucial to the transportation sector. Relevant data indicates stressed  concrete,  wood,  and  steel  bridges  are  among  the that concrete bridges make up over 90% of all bridges in China. 

several kinds of bridges based on the materials used in their A bridge is a construction that enables traffic to cross a barrier construction.  Simply  supported  bridges  and  continuous while  keeping  in  touch  with  roads  or  railroads.  Throughout bridges  are  two  examples  of  the  sorts  of  supports  used  in history,  bridges  have  played  a  crucial  role  in  human bridge constructions [9-12]. 

civilisation  and  remain  an  essential  component  of  any Over the last 20 years, several transportation agencies have transportation network. They serve as essential links for both made extensive use of precast/prestressed concrete I-girders. 

pedestrian and vehicle  traffic and are  an integral  part of the These girders offer various benefits, including the capacity to transport  system.  The  regulations  and  standards  of  various support multiple prestressing strands, a  lower girder weight, areas  determine  how  bridges  are  classified.  Bridge  type increased  construction  stability,  and  a  suitable  platform  for selection is based on site characteristics, vendor preferences, workers. Despite these benefits, the thin and broad top flange site  hydraulics,  profile  location,  and  construction  cost.  The may be a drawback for deck removal since it is more prone to density and volume of traffic loads, as well as the region that damage.  The  effect  of  deck  removal  on  supporting  girder the  bridge  connects,  determine  the  size  of  the  bridge performance is examined in this research [13, 14]. 

construction [1-8]. 

Presently,  earthquakes  are  natural  disasters  that There  are  two  sections  to  these  bridge  structural compromise the integrity and functionality of structures. The components.  The  first  components  are  the  drainage  system, extent of damage an earthquake inflicts on structures depends pavement layers, joints, deck, girders or beams, bearings, and on the type of building, the nature of the soil, the technology security barrier. Superstructure was the name given to them. 

employed  for  seismic  protection,  and,  importantly,  the The  foundations,  piers,  and  pier  caps  made  up  the  second building's location. The effects of an earthquake on a specific section, which was referred to as the substructure. It is possible region predominantly depend on the kind of soil in which the 281
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building's  foundation  is  constructed,  as  earthquakes  alter are not the best option for lengthy spans. Steel or concrete may ground  motion,  leading  to  foundation  failure.  Earthquakes be  used  to  build  girders,  with  concrete  girders  being produce  varying  shaking  intensities  across  different  places, prestressed or strengthened [29-31]. 

resulting  in  differential  levels  of  structural  damage  in structures at these sites. An earthquake is the shaking of the 

 

Earth,  or  alternatively,  the  release  of  energy  due  to  the 2.  BRIDGE  STRUCTURE  ILLUSTRATION  AND 

movement of tectonic plates. This natural calamity has several NUMERICAL MODEL 

detrimental impacts on the  Earth, including ground shaking, landslides, rockfalls from cliffs, state changes, fires, and tidal waves [15-17]. 

Decisions  for  post-earthquake  emergency  work  may  be made based on a quick and precise evaluation of the damage to  bridge  structures  after  an  earthquake.  Nevertheless,  the conventional  methods  for  assessing  structural  damage  are ineffective,  subjective,  and  time-consuming.  Every  bridge should  be  inspected  in  order  to  get  data  on  its  structural sufficiency and condition. Every kind of bridge should have its damage inspected for the sake of user safety and, often, the 

 

(a) View of longitudinal spans  

local economy. Every component of the  bridge  is examined throughout  the  inspection  process  to  determine  if  it  is  in excellent condition or requires strengthening or repair. Review reports, site conditions, required tools and equipment, traffic control  (if  required),  and  site  survey  are  all  included  in  the inspection plan, as well as structural inspection, which covers deck,  superstructure,  and  substructure  examination.  Bridges are  often  regarded  as  a  roadway  network's  most  important component. Any post-earthquake bridge inspection program's main goal should be safety, but maintaining mobility is also crucial  because  the  highway  network  is  required  to  deliver 

 

emergency  services,  maintain  security,  provide  access  for (b) Cross-section view 

relief and reconstruction, and help the economy recover from 

 

a  catastrophic  event.  Seismic  damage  indices  and  advanced Figure 1.  The bridge construction is depicted inelastic  analysis  programs  may  improve  the  assessment process's  objectivity  and  accuracy,  but  only  if  they  can  be proven to be highly dependable. At the moment, these tools are not used enough for engineers to fully trust them [18-26]. 

Bridge  structures  must  be  assessed,  strengthened,  or repaired after an earthquake. Bridge structural members may be  strengthened  by  adding  more  load-bearing  materials, redistributing  loading  activities  via  induced  deformation  on the structure system, and replacing subpar or faulty elements with  better  ones.  Numerous  considerations  determine  which approach  is  best  for  fortifying  and  repairing  the  bridge's structural components. The elements include the kind and age (a) 3-D view 

of  the  building,  its  significance,  the  amount of  strength  that must  be  increased,  the  kind  and  extent  of  damage,  the materials  that  are  available,  the  cost  and  viability,  and aesthetics [27, 28]. 

Knowledge of structural dynamics, earthquake engineering, and bridge engineering concepts are necessary for the seismic design  and  analysis  of  bridges.  To  make  it  easier  to  study, (b) Side view 

analyse,  and  build  bridges  that  are  vulnerable  to  seismic stresses,  engineers  use  specialised  software  tools  like  CSi Bridge.  The  superstructure  and  substructure  are  often examined independently in bridge study. A grid composed of main girders, transverse diaphragms, and a deck slab usually makes up the superstructure. A grid of line segments makes up the  deck  slab.  The  word  "girder"  is  often  used  in  place  of 

"beam" when designing bridges. Because girder bridges work well for building small to medium span bridges, they are often used in the transportation sector. Depending on its design and material, girder bridges are typically less than 50 meters long (c) Front view  

and  cannot  span  more  than  150  meters.  Girder  bridges  are often used for small and medium span bridges; however, they Figure 2. Precast I-girder prestressed concrete bridge model for 7 spans 
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The  selected  bridge  structure  is  a  type  of  precast  I-girder model of a few chosen spans of a precast I-girder prestressed prestressed concrete bridge which is located in important area concrete bridge is shown in Figure 2. In this study, CSI-bridge within Hilla city in the middle of Iraq. This bridge serves the version 24 is utilized. 

movement of traffic from Baghdad province (capital of Iraq) 

 

to southern provinces of Iraq and vice versa. Since all of the spans  in  a  bridge  structure  have  the  same  size  and 3.  EARTHQUAKE  HORIZONTAL  LATERAL  LOAD 

characteristics, seven of the 19 spans are chosen for this study. 

FUNCTION 

Each span is 20 meters long and 17.5 meters wide. The chosen spans are 140 meters long overall. There are twenty I-girders The ground wave threat by implementing the displacement made of precast prestressed concrete. These 7 spans have two and time period. To take into account the impact of potential abutments  and  6  bents.  There  are  three  1.2-meter-diameter seismic  activity  on  the  bridge  model,  which  represents  the piers on each bent. The pier's height of 5 meters is chosen as lateral  horizontal  stress  of  an  earthquake  on  the  bridge the highest pier in the bridge structure. Concrete's girder and structure  in  both  transverse  and  longitudinal  directions,  the bending  compression  strengths  are  42  MPa  and  33  MPa, ground wave hazard must be established. Response Spectrum respectively. Prestressed tendons are  made of ASTM A416-is chosen as the function type, while ASSHTO 2012 is chosen grade  270  steel,  which  has  seven  wires  per  strand.  Thirteen as the standard. D is chosen as the site class. The damping ratio tendons  are  distributed  throughout  the  tension  zone  of  each is 0.05, and the response spectrum function is called EQ. The girder.  Each  tendon  has  a  prestressed  force  of  181  kN.  The ground wave hazard curve, often known as the seismic design bridge construction is depicted in Figure 1, and the numerical curve, is seen in Figure 3. 







Figure 3.  Ground motion wave hazard curve of earthquake 4. ANALYSIS RESULTS OF PUSHOVER NON-LINEAR 

various  load  patterns,  the  incorporation  of  higher  modes, STATIC METHOD 

adaptive  load  patterns,  and  force  versus  displacement management [32-35]. 

Non-linear  static  analysis  can  be  used  to  establish  the pushover analysis approach. The non-linear behavior of bridge 4.1  Seismic  displacement  capacity  analysis  (force-structures under seismic loads can be computed easily using displacement yielding point) 

this method. The pushover analysis approach can be used to 

 

identify the mode of final failure and demonstrate the actual The displacement-force curve's yield point is calculated for failure of structures. By tracking the classification of damages each  bridge  structure  support  in  both  longitudinal  and to each component of the structure, the approach typically also transverse  directions.  By  adopting  the  point  (displacement, determines  likely  weak  areas.  The  basic  premise  of  the horizontal  force)  on  the  displacement  capacity  curve  that pushover analysis approach is that the first modes of vibration comes  immediately  after  the  higher  point  on  the  curve,  one and the shape of those modes govern the structure's response. 

may  determine  the  yield  point,  which  represents  the In order to ascertain the seismic capability of bridge structures displacement capacity of bridge supports [36]. 

under earthquake lateral stresses, the yielding point based on Table 1, Figure 4, and Figure 5 show the yielding point of force  and  displacement  is  crucial.  This  method  is  highly force-displacement for each bent in transvers and longitudinal effective  for  assessing  the  seismic  safety  of  both  new  and direction. It can be seen that the yielding points in transvers existing  structural  elements.  Numerous  approaches  exist  for direction  are  more  than  the  yielding  points  in  longitudinal the  use  and  implementation  of  the  non-linear  static  analysis direction which are maximum value of yielding displacement method  (pushover  analysis).  These  approaches  encompass is 0.02437m and yielding force is 6121.893kN, indicating that 283
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the seismic action on the bents in transvers direction has not employed.  Seismic  performance  spots  may  be  found  using important effect and there are not any damages will occur if pushover  analysis  curves,  which  are  the  intersection  of  the the bents subjected just for this action. Whereas, the bents will demand  and  capacity  spectrum  curves.  When  actual subject  to  serious  damages  due  to  action  of  seismic  in displacement and anticipated goal displacement are equal, the longitudinal direction and the bents will have plasticity more capacity  curve's  performance  point  is  reached.  The  (V,  D) than elasticity because of yielding displacement is high and it point represents the shear force (V) and displacement (D); the is equal to 0.059911m and yielding force is 2352.46kN. 

(Sa,  Sd)  point  indicates  the  spectral  acceleration  (Sa)  and spectral displacement (Sd); and the (Teff, Beff) point indicates 4.2 Seismic performance points analysis of bridge spans the effective period (Teff) and effective damping (Beff) [36-

 

38]. 

In this investigation, three seismic performance points are 

 

Table 1. Force - displacement for bridge bents in transvers and longitudinal direction Bent No.  Transverse Direction (Y)   Longitudinal Direction (X) Force 

Displacement 

Force 

Displacement 

1 

6121.893 

0.02436 

2363.98 

0.059832 

2 

6108.527 

0.024359 

2352.464 

0.059911 

3 

6108.527 

0.024358 

2352.465 

0.059911 

4 

6108.527 

0.024358 

2352.465 

0.059911 

5 

6110.015 

0.022629 

2352.467 

0.059911 

6 

6121.628 

0.02437 

2349.110 

0.059856 





(a) Force-displacement curve for bent No. 1 in transverse direction (Y) (b) Force-displacement curve for bent No. 2 in transverse direction (Y) 284

[image: Image 13]

[image: Image 14]

[image: Image 15]



(c) Force-displacement curve for bent No. 3 in transverse direction (Y) (d) Force-displacement curve for bent No. 4 in transverse direction (Y) (e) Force-displacement curve for bent No. 5 in transverse direction (Y) 285
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(f) Force-displacement curve for bent No. 6 in transverse direction (Y) 

 

Figure 4.  Force - displacement for bridge bents in transvers direction (Y) (a) Force-displacement curve for bent No. 1 in longitudinal direction (X) (b) Force-displacement curve for bent No. 2 in longitudinal direction (X) 286
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(c) Force-displacement curve for bent No. 3 in longitudinal direction (X) (d) Force-displacement curve for bent No. 4 in longitudinal direction (X) (e) Force-displacement curve for bent No. 5 in longitudinal direction (X) 287
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(f) Force-displacement curve for bent No. 6 in longitudinal direction (X) 

 

Figure 5.  Force - displacement for bridge bents in longitudinal direction (X) Table 2.  Bents performance points under effect of earthquake action in transverse direction Bent No. 

1 

2 

3 

4 

5 

6 

Shear Force (V) 

1205.60   1205.60   1205.60   1205.60   1205.60   1205.60

Displacement (D) 

0.00297  0.00297  0.00297  0.00297  0.00297  0.00297 

Spectral acceleration (Sa) 

1 

1 

1 

1 

1 

1 

Spectral displacement (Sd)  0.00297  0.00297  0.00297  0.00297  0.00297  0.00297 

Effective period (Teff) 

0.109    0.109

0.109

0.109

0.109

0.109

Effective damping (Beff) 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 

 

Table 3.  Bents performance points under effect of earthquake action in longitudinal direction Bent No. 

1 

2 

3 

4 

5 

6 

Shear Force (V) 

1205.77   1205.77   1205.77   1205.77   1205.77   1205.77

Displacement (D) 

0.0130   0.0130   0.0130   0.0130   0.0130   0.0130

Spectral acceleration (Sa) 

1 

1 

1 

1 

1 

1 

Spectral displacement (Sd)    0.0130   0.0130   0.0130   0.0130   0.0130   0.0130

Effective period (Teff) 

0.229    0.230

0.230

0.230

0.230

0.229

Effective damping (Beff) 

0.05 

0.05 

0.05 

0.05 

0.05 

0.05 







(a) (sa, sd) point for bent No. 1 

(b) (sa, sd) point for bent No. 3 
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results  of  seismic  performance  points  under  the  effect  of earthquake action resulting from non-linear pushover analysis of  static  responses.  Because  of  the  results  of  performance points are same for most bents, it will show just the capacity-demand curve, Teff-Beff curve, and CSI-bridge curve for bent No.  1,  bent  No.  3  and  bent  No.  6.  It  can  be  seen  that  the performance  points  in  transverse  direction  for  all  bents  are equal  and  the  performance  point  of  shear  force  and displacement is (v=1205.6kN, D=0.00297m), the performance point  of  spectral  acceleration  and  spectral  displacement  is (Sa=1, Sd=0.00297m), and the performance point of effective period  and  effective  damping  is  (Teff=0.109,  Beff=0.05), indicating  that  the  seismic  resistance  performance  of  bridge bents in transverse direction is high. Whereas, in longitudinal direction  the  performance  points  are  more  and  the performance  point  of  shear  force  and  displacement  is (v=1205.77kN,  D=0.0130m),  the  performance  point  of (c) (sa, sd) point for bent No. 6 

spectral  acceleration  and  spectral  displacement  is  (Sa=1, Sd=0.0310m), and the performance point of effective period Figure 6.  Performance point of spectral acceleration (Sa) and and  effective  damping  is  (Teff=0.230,  Beff=0.05),  showing spectral displacement (Sd) for bridge bents No. 1, No. 3 and that the seismic resistance performance of bridge bents is small No. 6 in transverse direction 

with low elasticity and stiffness and high plasticity. Therefore, bridge bents capacity cannot resist the demand. 

Table  2,  Table  3,  Figures  6  to  Figure  11  contain  on  the (a) Teff-Beff curve for bent No. 1 in transvers direction           (b) Teff-Beff curve for bent No. 3 in transvers direction (c) Teff-Beff curve for bent No. 6 in transvers direction Figure 7.  Effective period (Teff) and effective damping (Beff) relationship for bridge bents No. 1, No 3 and No. 6 in transvers direction 
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(a) CSI-bridge curve for bents No. 1 in transvers direction (b) CSI-bridge curve for bents No. 3 in transvers direction (c) CSI-bridge curve for bents No. 6 in transvers direction Figure 8. CSI-bridge curve for performance points of bridge bents No. 1, No. 3 and No. 6 in transverse direction 290
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(a) (sa, sd) point for bent No. 1 

(a) Teff-Beff curve for bent No. 1 in longitudinal direction (b) Teff-Beff curve for bent No. 3 in longitudinal direction (b) (sa, sd) point for bent No. 3 



(c) Teff-Beff curve for bent No. 6 in longitudinal direction (c) (sa, sd) point for bent No. 6 

Figure 10.  Effective period (Teff) and effective damping (Beff) relationship for bridge bents No. 1, No. 3 and No. 6 in Figure 9.  Performance point of spectral acceleration (Sa) and longitudinal direction 

spectral displacement (Sd) for bridge bents No. 1 and No. 6 



in longitudinal direction  

Table 4. Maximum seismic displacement of bridge bents in transvers and longitudinal direction 

4.3 Maximum seismic displacement of bents 



 

Bent 

Displacement in Y 

Displacement in X 

According  to  Table  4,  Figure  12,  the  maximum  seismic No. 

Direction (m) 

Direction (m) 

displacement  of  bridge  bents  in  transverse  direction  is 1 

0.086 

0.656 

approximated same and it is 0.087m. Whereas, in longitudinal 2 

0.087 

0.662 

direction,  bridge  bents  appear  higher  values  of  seismic 3 

0.087 

0.661 

displacement  which  is  equal  to  0.662m  comparing  with 4 

0.087 

0.661 

transvers direction. Therefore, the dangerous case will appear 5 

0.087 

0.662 

in the long of bridge structure. 

6 

0.086 

0.656 
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(a) CSI-bridge curve for bents No. 1 in longitudinal direction (b) CSI-bridge curve for bents No. 3 in longitudinal direction (c) CSI-bridge curve for bents No. 6 in longitudinal direction Figure 11.  CSI-bridge curve for performance points of bridge bents No. 1, No. 3 and No. 6 in longitudinal direction 292
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Figure 12. Seismic displacement of bridge bents in transverse and longitudinal direction 5.  EVALUATION  OF  SEISMIC  RESISTANCE  OF 

with  increasing  of  piers  diameter  which  are  0.059832m  for PRECAST  I-GIRDER  BRIDGE  STRUCTURE  AND 

piers diameter 1.2m to 0.048765m within piers diameter 2m, SUGGESTED IMPROVEMENT 

meaning  that  the  capacity  of  bridge  bents  is  increased  with thickening the piers structure and it will be more than demand. 

Seismic  analysis  of  a  precast  prestressed  I-girder  bridge Therefore,  the  bridge  piers  will  have  more  elasticity  and structure  revealed  that  the  bents'  seismic  resistance  was bearing capacity to resists the effect of earthquake. Figure 17 

insufficient  to  withstand  the  lateral  horizontal  action  of  an shows  force-displacement  yielding  points  in  Y  direction  of earthquake. The bents' stiffness and elasticity also needed to bridge bent No. 1 with piers diameters 1.2m, 1.6m, 1.8m, and be improved because they had reached the plastic area, which 2m.  Figure  18  illustrates  the  force-displacement  yielding is where damage would manifest on the bents' structure when points in X direction of bridge bent No. 1 with piers diameters an earthquake occurred. Thus, by enlarging bridge piers and 1.2m,  1.6m,  1.8m,  and  2m.  Figure  19  shows  force-adding  more  steel  reinforcement,  this  study  proposes  to displacement yielding points in Y direction of bridge bent No. 

enhance the structural performance and seismic resistance of 1 with piers diameters 1.2m, 1.6m, 1.8m, and 2m. Figure 20 

bridge bents. High performance concrete (c > 65MPa) can be illustrates  the  force-displacement  yielding  points  in  X 

cast  after  a  steel  reinforcement  plant  with  an  ancient  pier direction of bridge bent No. 1 with piers diameters 1.2m, 1.6m, structure  is  adopted.  This  study  will  examine  the  bridge 1.8m, and 2m. 

structure  caused  by  earthquake  action  utilizing  three  pier diameters—1.6, 1.8,  and  2  meters—in  order  to  compare  the 5.2 Pushover analysis results of performance points outcomes of seismic analysis methodologies for bridge bents 

 

with new diameters with the original diameter of piers (D=1.2 

According  to  Table  7,  Figure  21  to  Figure  24,  the meters).  After  comparing  the  outcomes  of  the  pushover performance points appear important results and the forces are method, modal method, and D/C ratio, the ideal diameter for increased  and  displacements  are  reduced  with  increasing  of piers to withstand seismic activity will be suggested. 

piers diameters in transverse direction. The force is increased 

 

from 1205.6kN to 1345.6kN for piers diameter model of 1.2m 5.1  Pushover  analysis  results  of  force-displacement and 2m respectively. For displacement, the value is decreased yielding points 

from 0.00297m in piers diameter model of 1.2m to 0.0009m for piers diameter model of 2m. the Sa value is decreased from The  comparison  results  of  force-displacement  yielding 1 in piers diameter model of 1.2m to 0.887 for piers diameter points  in  transverse  direction  (Y)  are  listed  and  showed  in 2m.  Teff  values  are  reduced  from  0.109  to  0.065  in  piers Table 5, Figure 13, and Figure 14. It can be seen that the values diameter  models  of  1.2m  and  2m  respectively.  For of  yielding  points  are  increased  with  increasing  the  piers longitudinal direction of bridge structure, the force is increased diameter. Indicating that the elastic limit of bridge bents will from  1205.7kN  to  1516.6kN,  and  displacement  is  reduced increase and the bridge piers will resist the earthquake action. 

from 0.013m to 0.0036m, and Teff is reduced from 0.229 to In  general,  the  earthquake  in  transverse  direction  has  not 0.122  within  piers  diameter  model  of  1.2m  and  2m important  effects,  but  for  longitudinal  direction  which  is respectively.  It  can  be  concluded  that  the  preventing  or represent  the  length  of  bridge  structure,  has  significant reducing of earthquake action effect on the bridge structure by influences  on  the  bridge  structure  performance.  The adopting thickening the piers size which will help to increase comparison results of yielding points can be shown them in the bearing capacity and reducing the seismic displacement of Table  6,  Figure  15  and  Figure  16.  The  magnitude  of  shear bridge piers in transverse and longitudinal direction. Table 8, force are increased with increasing of piers diameter and it will Figure  25,  Figure  26,  and  Figure  27  show  the  performance be 2363.98kN within piers diameter 1.2m to 5664.803kN for point in X direction of bridge bent No. 3 with piers diameters pier diameter 2m. Whereas, the displacements are decreased 1.2m, 1.6m, 1.8m, and 2m. 
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Table 5.  Force-displacement yielding points in Y direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m Bent No. 1 

Bent No. 2 

Model of Bridge Piers 

Force 

Displacement 

Force 

Displacement 

D=1.2m 

6121.8 

0.024 

6108.5 

0.024 

D=1.6m 

10765.2 

0.022 

10746.8 

0.022 

D= 1.8m 

14639.4 

0.027 

14619.7 

0.027 

D=2m 

14422.7 

0.024 

14399.8 

0.024 

Bent No. 3 

Bent No. 4 

Model of Bridge Piers 

Force 

Displacement 

Force 

Displacement 

D=1.2m 

6108.5 

0.024 

6108.5 

0.024 

D=1.6m 

10746.5 

0.022 

10746.5 

0.022 

D= 1.8m 

14619.5 

0.027 

14619.5 

0.027 

D=2m 

14400.5 

0.024 

14400.6 

0.024 

Bent No. 5 

Bent No. 6 

Model of Bridge Piers 

Force 

Displacement 

Force 

Displacement 

D=1.2m 

6110.0 

0.022 

6121.6 

0.024 

D=1.6m 

10747.0 

0.022 

10763.0 

0.022 

D= 1.8m 

14619.9 

0.027 

14634.7 

0.027 

D=2m 

14401.3 

0.024 

14410.3 

0.024303 







Figure 13.  Displacement yielding points in Y direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m Figure 14. Force yielding points in Y direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m 294
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Table 6.  Force-displacement yielding points in X direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m Bent No. 1 

Bent No. 2 

Model of Bridge Piers  Force  Displacement  Force  Displacement D=1.2m 

2363.9 

0.059 

2352.4 

0.059 

D=1.6m 

4253.8 

0.052 

4239.4 

0.052 

D=1.8m 

5803.6 

0.048 

5788.1 

0.048 

D=2m 

5677.5 

0.048 

5661.3 

0.048 

Bent No. 3 

Bent No. 4 

Model of Bridge Piers  Force  Displacement  Force  Displacement D=1.2m 

2352.4 

0.059 

2352.4 

0.059 

D=1.6m 

4239.4 

0.052 

4239.4 

0.052 

D=1.8m 

5788.1 

0.048 

5788.1 

0.048 

D=2m 

5661.3 

0.048 

5661.3 

0.048 

Bent No. 5 

Bent No. 6 

Model of Bridge Piers  Force  Displacement  Force  Displacement D=1.2m 

2352.4 

0.059 

2349.1 

0.059 

D=1.6m 

4239.4 

0.052 

4239.6 

0.052 

D=1.8m 

5788.1 

0.048 

5789.5 

0.048 

D=2m 

5661.3 

0.048 

5664.8 

0.048 







Figure 15.  Displacement yielding points in X direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m 

 

 

 

Figure 16.  Force yielding points in X direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m 295
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(a) Force-displacement yielding point of bridge bent No. 1 with piers diameter 1.2m (b) Force-displacement yielding point of bridge bent No. 1 with piers diameter 1.6m (c) Force-displacement yielding point of bridge bent No. 1 with piers diameter 1.8m 296
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(d) Force-displacement yielding point of bridge bent No. 1 with piers diameter 2m 

 

Figure 17.  Force-displacement yielding points in Y direction of bridge bent No. 1 with piers diameters 1.2m, 1.6m, 1.8m, and 2m (a) Force-displacement yielding point of bridge bent No. 1 with piers diameter 1.2m (b) Force-displacement yielding point of bridge bent No. 1 with piers diameter 1.6m 297
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(c) Force-displacement yielding point of bridge bent No. 1 with piers diameter 1.8m (d) Force-displacement yielding point of bridge bent No. 1 with piers diameter 2m Figure 18.  Force-displacement yielding points in X direction of bridge bent No. 1 with piers diameters 1.2m, 1.6m, 1.8m, and 2m (a) Force-displacement yielding point of bridge bent No. 3 with piers diameter 1.2m 298
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(b) Force-displacement yielding point of bridge bent No. 3 with piers diameter 1.6m (c) Force-displacement yielding point of bridge bent No. 3 with piers diameter 1.8m (d) Force-displacement yielding point of bridge bent No. 3 with piers diameter 2m 

 

Figure 19.  Force-displacement yielding points in Y direction of bridge bent No. 3 with piers diameters 1.2m, 1.6m, 1.8m, and 2m 299
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(a) Force-displacement yielding point of bridge bent No. 3 with piers diameter 1.2m (b) Force-displacement yielding point of bridge bent No. 3 with piers diameter 1.6m (c) Force-displacement yielding point of bridge bent No. 3 with piers diameter 1.8m 300
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(d) Force-displacement yielding point of bridge bent No. 3 with piers diameter 2m Figure 20. Force-displacement yielding points in X direction of bridge bent No. 3 with piers diameters 1.2m, 1.6m, 1.8m, and 2m 

 

Table 7.  Bents performance points in transverse direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m Model of Bridge Piers 

Bent No. 1 

Bent No. 2 

(V, D) 

(Sa, Sd) 

(Teff, Beff) 

(V, D) 

(Sa, Sd) 

(Teff, Beff) 

D=1.2m 

1205.6, 0.002 

1, 0.002 

0.109, 0.05 

1205.6, 0.002 

1, 0.002 

0.109, 0.05 

D=1.6m 

1312.6, 0.001 

0.978, 0.001 

0.077, 0.05 

1312.3, 0.001 

0. 97, 0.001 

0.077, 0.05 

D=1.8m 

1286.3, 0.001 

0.903, 0.001 

0.067, 0.05 

1286.8, 0.001 

0.90, 0.001 

0.067, 0.05 

D=2m 

1345, 0.0009  0.887, 0.0009  0.065, 0.05 

1345.6, 0.0009 

0.887, 0.0009  0.065, 0.05 

Model of Bridge Piers 

Bent No. 3 

Bent No. 4 

(V, D) 

(Sa, Sd) 

(Teff, Beff) 

(V, D) 

(Sa, Sd) 

(Teff, Beff) 

D=1.2m 

1205.6, 0.002 

1, 0.002 

0.109, 0.05 

1205.60, 0.002 

1, 0.002 

0.109, 0.05 

D=1.6m 

1312.6, 0.001 

0.978, 0.001 

0.077, 0.05 

1312.6, 0.001 

0.978, 0.001 

0.077, 0.05 

D=1.8m 

1286.3, 0.001 

0.903, 0.001 

0.067, 0.05 

1286.3, 0.001 

0.903, 0.001 

0.067, 0.05 

D=2m 

1345, 0.0009  0.887, 0.0009  0.065, 0.05 

1345, 0.0009 

0.887, 0.0009  0.065, 0.05 

Model of Bridge Piers 

Bent No. 5 

Bent No. 6 

(V, D) 

(Sa, Sd) 

(Teff, Beff) 

(V, D) 

(Sa, Sd) 

(Teff, Beff) 

D=1.2m 

1205.6, 0.002 

1, 0.002 

0.109, 0.05 

1205.6, 0.002 

1, 0.002 

0.109, 0.05 

D=1.6m 

1312.6, 0.001 

0.978, 0.001 

0.077, 0.05 

1312.6, 0.001 

0.978, 0.001 

0.077, 0.05 

D=1.8m 

1286.3, 0.001 

0.903, 0.001 

0.067, 0.05 

1286.8, 0.001 

0.903, 0.001 

0.067, 0.05 

D=2m 

1345, 0.0009  0.887, 0.0009  0.065, 0.05  1345.6, 0.00092  0.887, 0.0009  0.065, 0.05 







Figure 21.  Force-performance point in transverse direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m 301
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Figure 22.  Displacement-performance point in transverse direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m 







Figure 23. Sa-performance point in transverse direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m 



 

 

Figure 24. Teff-performance point in transverse direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m 302
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Table 8. Bents performance points in longitudinal direction of bridge bent No. 3 with piers diameters 1.2m, 1.6m, 1.8m, and 2m Bent No. 1 

Bent No. 2 

Model of Bridge Piers 

(V, D) 

(Sa, Sd) 

(Teff, Beff) 

(V, D) 

(Sa, Sd)  (Teff, Beff) 

D=1.2m 

1205.7, 0.013 

1, 0.013 

0.229, 0.05 

1205.7, 0.013 

1, 0.013 

0.230, 0.05 

D=1.6m 

1341.7, 0.005 

1, 0.005 

0.153, 0.05 

1341.7, 0.005 

1, 0.005 

0.153, 0.05 

D=1.8m 

1424.3, 0.004 

1, 0.004 

0.127, 0.005 

1424.3, 0.004 

1, 0.004  0.128, 0.005 

D=2m 

1516.6, 0.003 

1, 0.003 

0.122, 0.05 

1516.6, 0.003 

1, 0.003 

0.122, 0.05 

Bent No. 3 

Bent No. 4 

Model of Bridge Piers 

(V, D) 

(Sa, Sd) 

(Teff, Beff) 

(V, D) 

(Sa, Sd)  (Teff, Beff) 

D=1.2m 

1205.7, 0.013  1, 0.0130 

0.229, 0.05 

1205.77, 0.0130  1, 0.013 

0.229, 0.05 

D=1.6m 

1341.7, 0.005  1, 0.0057 

0.153, 0.05 

1341.7, 0.005 

1, 0.005 

0.153, 0.05 

D=1.8m 

1424.3, 0.004 

1, 0.004 

0.127, 0.005 

1424.3, 0.004 

1, 0.004  0.127, 0.005 

D=2m 

1516.6, 0.003 

1, 0.003 

0.122, 0.05 

1516.6, 0.003 

1, 0.003 

0.122, 0.05 

Bent No. 5 

Bent No. 6 

Model of Bridge Piers 

(V, D) 

(Sa, Sd) 

(Teff, Beff) 

(V, D) 

(Sa, Sd)  (Teff, Beff) 

D=1.2m 

1205.7, 0.013 

1, 0.013 

0.229, 0.05 

1205.7, 0.013 

1, 0.01 

0.230, 0.05 

D=1.6m 

1341.7, 0.005 

1, 0.005 

0.153, 0.05 

1341.7, 0.005 

1, 0.005 

0.153, 0.05 

D=1.8m 

1424.3, 0.004 

1, 0.004 

0.127, 0.005 

1424.3, 0.004 

1, 0.004  0.128, 0.005 

D=2m 

1516.6, 0.003 

1, 0.003 

0.122, 0.05 

1516.6, 0.003 

1, 0.003 

0.122, 0.05 







Figure 25. Force-performance point in longitudinal direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m Figure 26. Displacement-performance point in longitudinal direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m 
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Figure 27. Teff-performance point in longitudinal direction of bridge bents with piers diameters 1.2m, 1.6m, 1.8m, and 2m Figure 28.  Maximum seismic displacement of bridge bents in transvers direction Figure 29.  Maximum seismic displacement of bridge bents in longitudinal direction 304

5.3 Maximum seismic displacement of bents piers D 1.2m, appear  higher  values  of  seismic  displacement  which  is 1.6m, 1.8m, and 2m  

equal  to  0.662m  comparing  with  transvers  direction. 

 

Therefore, the dangerous case will appear in the long of The  results  of  maximum  seismic  displacement  in  the bridge structure. 

transverse and longitudinal direction show that the values of 5.  The seismic resistance of bridge bents is not enough to seismic displacement are reduced with increasing the diameter resist the lateral horizontal action of earthquake and the of  bridge  piers.  Figure  28  and  Figure  29  illustrates  the stiffness and elasticity of bridge bents need to improve magnitudes of maximum seismic displacement of bridge piers because of the bridge bents arrived to the plastic area and under  effect  of  earthquake  action  in  the  transverse  and the  damages  will  appear  on  the  bents  structure  under longitudinal  direction of bridge  structure. It  can be  reported effects  of  earthquake  action.  Therefore,  this  study that  the  seismic  displacement  in  transverse  direction  is suggests  to  improve  the  structural  performance  and decreased from 0.087m to 0.025m in model of piers diameter seismic  resistance  of  bridge  bents  by  increasing  the 1,2m and 2m respectively. But for longitudinal direction the diameter of bridge piers by 1.6m, 1.8m, and 2m. 

magnitudes  are  lowered  from  0.662m  to  0.160m,  indication The results of yielding points and performance points values that the thickening of bridge piers has significant effect on the of  yielding  points  were  increased  with  increasing  the  piers increasing the resistance of earthquake action for bridge bents diameter.  And  the  seismic  displacement  decreased  with in transverse and longitudinal direction. 

increasing the piers diameter. Indicating that the elastic limit of bridge bents will increase and the bridge piers will resist the earthquake  action  according  to  increase  in  the  stiffness  and 6. CONCLUSIONS 

bearing capacity of bridge bents. 
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A bridge is a construction that enables traffic to cross a barrier while keeping in touch with
roads or railroads. Throughout history, bridges have played a crucial role in human
civilisation and remain an essential component of any transportation network. The main
purpose of this study is to evaluate the seismic resistance of bridge structure under effect
of carthquake action by adopting force-displacement yiclding points and performance
points methods. The results of force-displacement yielding point and performance points
revealed that the transversal yielding points were greater than the longitudinal yielding
points and performance points, this indicates that the seismic action on the transversal bents
has little effect and that no damage will be done to the bents if they are subjected to this
action alone but in longitudinal direction the force-displacement yielding point and
performance points were lower, indicating that the scismic resistance performance of
bridge bents is small with low clasticity and stiffness and high plasticity. Mecaning that
bridge bents capacity cannot resist the demand. Therefore, Therefore, this study suggested
to improve the structural performance and seismic resistance of bridge bents by increasing
the diameter of bridge piers by 1.6m, 1.8m, and 2m. After thickening the piers structure,
the results of yielding points and performance points values were increased with increasing
the piers diameter. And the seismic displacement decreased with increasing the piers
diameter. Indicating that the elastic limit of bridge bents will increase and the bridge piers
will resist the carthquake action according to increase in the stiffness and bearing capacity
of bridge bents.

1. INTRODUCTION

Bridges serve as crucial connections between roadways and
are crucial to the transportation sector. Relevant data indicates

that concrete bridges make up over 90% of all bridges in China.

A bridge is a construction that enables traffic to cross a barrier
while keeping in touch with roads or railroads. Throughout
history, bridges have played a crucial role in human
civilisation and remain an essential component of any
transportation network. They serve as essential links for both
pedestrian and vehicle traffic and are an integral part of the
transport system. The regulations and standards of various
areas determine how bridges are classified. Bridge type
selection is based on site characteristics, vendor preferences,
site hydraulics, profile location, and construction cost. The
density and volume of traffic loads, as well as the region that
the bridge connects, determine the size of the bridge
construction [1-8].

There are two sections to these bridge structural
components. The first components are the drainage system,
pavement layers, joints, deck, girders or beams, bearings, and
security barrier. Superstructure was the name given to them.
The foundations, piers, and pier caps made up the second
section, which was referred to as the substructure. It is possible

281

to build bridges across obstacles like rivers, roads, and
railroads. Bridge constructions may be categorised based on
the kinds of supports and materials used. Concrete, pre-
stressed concrete, wood, and steel bridges are among the
several kinds of bridges based on the materials used in their
construction. Simply supported bridges and continuous
bridges are two examples of the sorts of supports used in
bridge constructions [9-12].

Over the last 20 years, several transportation agencies have
made extensive use of precast/prestressed concrete I-girders.
These girders offer various benefits, including the capacity to
support multiple prestressing strands, a lower girder weight,
increased construction stability, and a suitable platform for
workers. Despite these benefits, the thin and broad top flange
may be a drawback for deck removal since it is more prone to
damage. The effect of deck removal on supporting girder
performance is examined in this research [13, 14].

Presently, ecarthquakes are natural disasters that
compromise the integrity and functionality of structures. The
extent of damage an earthquake inflicts on structures depends
on the type of building, the nature of the soil, the technology
employed for seismic protection, and, importantly, the
building's location. The effects of an earthquake on a specific
region predominantly depend on the kind of soil in which the
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