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ABSTRACT 

Received: 27 April 2025 

This  study  introduces  Chebyshev  Metaheuristic  Solver  Approach  (CMSA),  a  new Revised: 12 June 2025 

computational approach, to get approximate solutions with high-accuracy to a vast range Accepted: 20 June 2025 

of  linear  and  non-linear  differential  equations  (DEs).  The  main  idea  is  changing  the Available online: 30 June 2025 

differential  problem into a continuous optimization task. First  the approximate solution was written as a truncated series of Chebyshev polynomials, where they are chosen due to their  numerical  stability  and  optimal  approximation  properties.  The  undetermined 

 Keywords: 

coefficients  of  this  series  turn  into  the  decision  variables  in  an  optimization  task.  The differential 

 equations, 

 metaheuristic 

objective function is derived from the residual of the differential equation, integrated with algorithms,  Chebyshev  polynomials,  flower penalty  terms  to  achieve  initial  or  boundary  conditions  enforcement.  Then  the  Flower pollination algorithm. 

Pollination Algorithm (FPA), a nature-inspired metaheuristic algorithm, is used to find the optimal  polynomial  coefficients  via  the  minimization  of  this  objective  function.  This hybrid approach symbiotically integrates the spectral method’s exponential convergence properties with the metaheuristic’s powerful global search capabilities. The demonstration of the efficiency and robustness of the approach is done through rigorous computational tests on benchmark problems, involving integro-differential and non-linear boundary value problems. A comparison of the computed results with known exact solutions, validates this optimization-driven  spectral  technique,  showing  excellent  accordance.  The  approach  is simple to implement and displays outstanding potential for tackling complex DE systems where traditional methods maybe stick. 

1. INTRODUCTION

functions increases the error decreases exponentially, yielding to solutions with high accuracy, accompanied by a relatively The real-world phenomena can be modelled mathematically small number of degrees of freedom. 

as  differential  equations  (Des).  Analytical  solutions  provide However, the principal challenge in spectral methods is the exactness, but they are can be achieved only for a limited case determination  of  the  basis  expansion’s  coefficients.  In of linear and simple problems [1]. In consequence, researchers classical approaches such as collocation or Galerkin methods run to numerical methods for obtaining approximate solutions. 

the DE is imposed at specific points or in a weighted-integral Classical  numerical  methods,  like  the  Finite  Element sense. This generally yields to complex structured systems of Method  (FEM)  and  Finite  Difference  Method  (FDM),  work algebraic equations, which may become difficult to solve or il-using  the  problem  domain’s  discretization  into  a  mesh  of conditioned, particularly for non-linear DEs. 

points or elements. These techniques are powerful and flexible, Reframing  the  coefficient-getting  problem  as  an but  they  have  local  accuracy,  where  it  is  restricted  by  a optimization task is an alternative paradigm. The aim becomes polynomial  order  of  convergence.  Attaining  high  accuracy to obtain the set of coefficients that minimizes the residual, or often necessitates a prohibitively fine mesh, yielding to wide 

"error”, of the approximate solution among the entire domain. 

systems of equations, that leads to significant computational This technique based on transforming the DE problem into a cost. 

continuous optimization problem, generally high-dimensional. 

To master these limitations, spectral methods have achieved The  power  of  this  technique  lies  in  its  adaptability  and  its eminence as a class of highly accurate numerical approaches capability to handle non-linearities implicitly in the objective 

[2]. Opposed to local methods, spectral methods give global function. 

approximate  solution  utilizing  a  basis  of  smooth,  infinitely Metaheuristic algorithms are powerful gradient-free search differentiable  functions,  like  orthogonal  or  trigonometric strategy,  for  solving  such  optimization  tasks  [3-5].  These polynomials.  This  global  technique  allows  them  to  attain natural-inspired algorithms, utilize a population of candidate 

"spectral"  or  exponential  convergence  for  problems  with solutions  in  the  aim  of  exploring  the  search  space  and smooth  solutions.  This  signifies  as  the  number  of  basis converging  towards  a  global  optimum.  Notable  examples 343

involve: 

approximate  the  solution  utilizing  a  Chebyshev  series,  then, 

•  Genetic Algorithm (GA): Mimicking the Darwinian formulate an objective function relying on the residual error, evolution,  GA  utilizes  selection,  crossover,  and and  finally,  implement  the  Flower  Pollination  Algorithm  to mutation  operators  to  develop  a  population  of obtain the optimal series coefficients. 

solutions over generations [6]. It is considered as high effective method at global exploration. 

2.1 Solution’s approximation via Chebyshev polynomials 

•  Particle  Swarm  Optimization  (PSO):  Created  by 

 

Kennedy  and  Eberhart  [7],  PSO  inspired  by  the Assuming a general differential equation, potentially non-swarm intelligence of birds flocking. Every solution linear, written implicitly within a domain [𝑥0, 𝑥𝑛]: modifies  its  trajectory  depending  on  its  own  best-obtained  position  and  the  best-obtained  position  of 𝑓(𝑥, 𝑦(𝑥), 𝑦′ (𝑥), . . . , 𝑦(𝑘) (𝑥))   =  0 

(1) 

the  entire  swarm,  this  makes  an  effective  balance between individual and social knowledge. 

with  𝑚  initial  or  boundary  conditions  𝐶𝑖(𝑦) = 𝑑𝑖  for  𝑖 =

•  Artificial  Bee  Colony  (ABC):  Developed  by 1, … . . , 𝑚. 

Karaboga [8], mimicking the comportment of ants in The  aim  is  to  obtain  an  approximate  solution 𝑦𝑁(𝑥) that searching food. 

nearby satisfies the Eq. (1) and the conditions 𝐶𝑖. Transform 

•  Firefly Algorithm (FA): Made by Yang [9]. 

this  into  an  optimization  task  by  defining  a  fitness  function The  Flower  Pollination  Algorithm  (FPA),  developed  by (objective  function)  to  be  optimized  (for  this  case  to  be Yang [10], is a newer metaheuristic that imitates the flowers minimized). 

pollination process. It balances global exploration using cross-First,  write  the  approximate  solution  utilizing  a  basis pollination  via  Lévy  flights,  and  local  exploitation  utilizing expansion (detailed in Section 2.2): self-pollination, achieving excellent results for a large range of complex optimization problems. 

𝑁

There are a lots of metaheuristic algorithms that prove their 𝑦(𝑥) ≈ 𝑦𝑁(𝑥) = ∑ 𝑎𝑗𝑇𝑗(𝑥) 

(2) 

efficiency  on  solving  several  problems,  including  Cuckoo 𝑗=0

Search  [11],  Whale  Optimization  Algorithm  [12].  Likewise, recent  ones  such  as  Barnacles  Mating  Optimizer  [13], 𝑇𝑗(𝑥) are Chebyshev first kind polynomials, 𝑁 is the degree Dandelion  Optimizer  [14],  and  Dwarf  Mongoose of approximation, and 𝑎𝑗 are unknown coefficients that aimed Optimization Algorithm [15]. 

to obtain. 

Artificial intelligence, especially deep learning and Physics-The choice of Chebyshev polynomials as basis function is Informed  Neural  Networks  (PINNs)  [16-18],  has  presented for several captivating reasons: 

another  powerful  model  for  solving  DEs.  PINNs  utilize  the o  The  Chebyshev  polynomial  has  the  minimax residual of the DE as part of the loss function for training a property where the polynomial possesses the smallest neural  network  that  directly  constitutes  the  solution.  While maximum deviation from zero on [−1, 1]. 

extremely  powerful,  PINNs  often  necessitate  tuning  a  large This  minimax  property  ensures  the  convergence  to  the number  of  hyperparameters  where  their  theoretical optimal  approximation,  where  the  approximation  error  is convergence properties are still a vibrant field of study. 

dispersed  among  the  domain,  yielding  to  the  best  possible This  work  deliberately  deviates  by  combining  the  well-uniform approximate function for a certain degree 𝑁. 

understood, high-accuracy approach of spectral methods with o  The  nodes  or  roots  of  Chebyshev  polynomials  are the  robust  global  search  of  metaheuristics.  This  framework collected near the endpoints of the interval. Utilizing hybridizes the "best of both worlds" while keeping away from these  points  for  minimizing  error  or  collocation  is the complexities of deep neural network training. 

familiar to reduce the Runge phenomenon, an issue This  paper  presents  the  Chebyshev  Metaheuristic  Solver of  large  oscillations  that  can  arise  in  polynomial Approach (CMSA), an approach that transforms a DE into an interpolation with equally spaced points. This yields optimization  task  to  be  solved  via  Flower  Pollination to superior numerical stability. 

Algorithm. 

o  Chebyshev  polynomials  have  efficient  and  stable The  remainder  of  the  paper  is  structured  as  follows:  In differentiation,  where  their  derivatives  are  also Section  2,  a  description  of  the  proposed  approach  is  given, Chebyshev  series.  So  that  the  coefficients  can  be with an outline of the problem formulation to an optimization calculated  systematically  using  stable  recurrence task (how to use Chebyschev polynomials and FPA) to clarify relations.  This  makes  it  simple  to  evaluate  the its  fundamental  principles  and  mechanisms.  In  section  3, derivatives necessary by the differential equation. 

different problems  are  solved  using  the  method.  The  results The  standard  Chebyshev  polynomials  𝑇

show impressive solutions that underscore the effectiveness of 𝐽(𝑥)  constitute  a 

basis  well-suited  for  function  approximation  on [−1, 1].  A the  proposed  approach  in  dealing  with  various  challenges. 

simple  mapping transformation for 𝑥, can generalized to the Finally, a conclusion and future scope of the work are given, interval [𝑥

where the proposed approach can be extended to a system of 0, 𝑥𝑛]. Their features permit for stable and efficient calculation  of  the  approximation  𝑌

DE’s and with other metaheuristic algorithms. 

𝑁 (𝑥)  and  its  derivatives. 

′

(𝑘)



The  derivatives  𝑌𝑁(𝑥), … , 𝑌 (𝑥)  can  be  written  as  linear 𝑁



combinations  of  Chebyshev  polynomials  where  their 2. 

CHEBYSHEV 

METAHEURISTIC 

SOLVER 

coefficients are derived from the original 𝑎𝑗 utilizing standard APPROACH (CMSA) 

recurrence relations. This makes calculating the residual 𝑅(𝑥) easy  once  the  coefficients 𝑎𝑗 are evaluated. The select of 𝑁, The  proposed  CMSA  approach  transforms  a  differential the degree of the polynomial expansion, controls the possible problem  into  an  optimization  task  in  three  key  steps:  first, accuracy and the dimensionality of the optimization problem, 344

where it is equal to 𝑁 + 1 variables. 

allows occasional long jumps. 



•  Local or Self Pollination: Imitates self-pollination or 2.2 Optimization problem formulation pollination  between  nearby  flowers,  guided  by factors  like  wind  or  proximity.  This  makes  the Replacing 𝑦𝑁(𝑥) and  its  derivatives  into  Eq.  (1)  leads  a exploitation of promising regions easier. A solution residual function, which is generally different of zero: 𝑎𝑡is  updated  dependent  on  two  solutions 𝑎𝑗 and 𝑎𝑘 



randomly chosen from the same population: 𝑅(𝑥; 𝑎0, … , 𝑎𝑁)



(3) 

= 𝑓(𝑥, 𝑦

′

(𝑘)

𝑎𝑡+1 = 𝑎𝑡 + 𝑈. (𝑎𝑗 − 𝑎𝑘) 

(8) 

𝑁 (𝑥), 𝑦𝑁  𝑁 (𝑥), . . . , 𝑦

𝑁 (𝑥)) 

𝑁





The main objective is to minimize this residual throughout where,  𝑈  is  a  random  number  derived  from  a  uniform the  domain.  We  quantify  this  utilizing  a  discrete distribution. 

approximation of the integrated squared residual. We choose 

•  Switching  Probability:  A  probability  𝑝  usual  set 𝑀  collocation  points  𝑥

around 0.8, decides whether global (Eq. (7)) or local 𝑝  among  [𝑥0 ,     𝑥𝑛]  (like  uniformly spaced points or Chebyshev nodes) and compute the sum of (Eq. (8)) pollination is executed for each solution in squared residuals: 

each iteration. 



The algorithm starts by initializing a population of random 𝑀

candidate  coefficient  vectors,  calculating  their  fitness 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐸𝑟𝑟𝑜𝑟 = ∑[𝑅(𝑥; 𝑎

employing 𝑜𝑏𝑗𝑓, and iteratively implementing the pollination 0, … , 𝑎𝑁)]2 

(4) 

rules and selection, and keeping the best solutions, until a stop 𝑝=1



criterion is met (e.g., satisfactory objective function value or To  guarantee  that  the  boundary/initial  conditions  are maximum  number  of  iterations).  The  final  𝑎𝑏𝑒𝑠𝑡  offers  the satisfied, we add penalty terms into the objective function. For coefficients for the approximate solution 𝑌𝑁(𝑥). 

each condition 𝐶



𝑖(𝑦) = 𝑑𝑖, calculate 𝐶𝑖(𝑌𝑁) and incorporate a weighted penalty depends on the deviation: 2.4 Summary of the proposed CMSA algorithm 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦

1)  The  inputs  are:  the  differential  equation f(. . . ) = 0, 𝑖 = |𝐶𝑖(𝑦𝑁 ) − 𝑑𝑖|2 

(5) 



conditions 𝐶𝑖(𝑦) = 𝑑𝑖,  domain [𝑥0, 𝑥𝑛],  polynomial The  terminal  objective  function  𝑂𝑏𝑗𝑓  integrates  the degree  𝑁 ,  number  of  collocation  points  𝑀 ,  FPA residual error and condition penalties: parameters  such  as  population  size  𝑛𝑝𝑜𝑝 ,  switch probability 𝑝, max iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟. 

𝑂𝑏𝑗𝑓(𝑎0, … , 𝑎𝑁) =  𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐸𝑟𝑟𝑜𝑟

2)  Construct  the  objective  Function  𝑜𝑏𝑗𝑓  Eq.  (6), 𝑚

(6) 

involving the residual calculation Eqs. (3)-(4) using 

+ ∑ 𝑤𝑖. 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑖 

Chebyshev basis polynomials Eq. (2) and condition 𝑖=1

penalties Eq. (5). 



3)  Generate  an  initial  population  of  𝑛

where, 

𝑝𝑜𝑝  coefficient 

𝑤𝑖 are eighting factors, possibly fixed to 1 or modified vectors  randomly  𝑎(0)  among  predefined  bounds based on scaling. 

[Lb, Ub]  from  Table  1.  Calculate  𝑜𝑏𝑗𝑓  for  every The problem has been transformed from finding the optimal pollen and determine the initial best solution 𝑎

approximate  solution  of  the  DE  to  obtaining  the  vector  of 𝑏𝑒𝑠𝑡 . 

4)  FPA Iteration Loop from t = 1 to MaxIter: coefficients  𝑎 = [𝑎0, … , 𝑎𝑁]𝑇  that  minimizes  𝑂𝑏𝑗𝑓(𝑎) . 

For every solution 

Where,  this  is  an  unconstrained,  continuous  optimization 𝑎𝑡 in the population: 

o  Create a random number 

problem. 

𝑟~𝑈(0; 1). 



o  If 𝑟 < 𝑝: Do global pollination (Eq. (7)) to 2.3  Coefficient  determination  via  flower  pollination obtain a candidate 𝑎𝑐𝑎𝑛𝑑. 

algorithm 

o  Else: Do local pollination (Eq. (8)) to obtain 

 

a candidate 𝑎𝑐𝑎𝑛𝑑. 

The  Flower  Pollination  Algorithm  (FPA)  [19]  is  used  to o  Check  bounds,  if  𝑎𝑐𝑎𝑛𝑑  goes  outside solve the optimization problem introduced by minimizing Eq. 

[Lb, Ub] or not. 

(6).  FPA  is  a  population-based  metaheuristic  where  every o  Calculate 𝑜𝑏𝑗𝑓(𝑎𝑐𝑎𝑛𝑑). 

"pollen  particle"  constitutes  a  possible  solution  vector  𝑎 =

o  If  𝑜𝑏𝑗𝑓(𝑎𝑐𝑎𝑛𝑑)  is  smaller  than  𝑜𝑏𝑗𝑓(𝑎𝑡) replace 

[𝑎

𝑎𝑡 with 𝑎𝑐𝑎𝑛𝑑. 

0, … , 𝑎𝑁 ]𝑇 .  The  algorithm  iteratively  improves  the population  relied  on  rules  mimicking  flower  pollination  in o  Update 𝑎𝑏𝑒𝑠𝑡 if a new general best solution nature: 

is found. 

•  Global  or  Cross  Pollination:  Imitates  pollinators 5)  The output is the final 𝑎𝑏𝑒𝑠𝑡 coefficient vector. 

traveling  long  distances,  usual  modeled  utilizing 6)  The final step is to construct Solution by forming the Lévy flights. This advances exploration of the search approximate  solution  𝑌𝑁(𝑥)  via  Eq.  (2)  with  the space.  At  iteration  𝑡 ,  a  solution  𝑎𝑡  is  updated derived 𝑎𝑏𝑒𝑠𝑡 coefficients. 

dependent on the current best solution 𝑎



𝑏𝑒𝑠𝑡 obtained 

so far: 





3. EXPERIMENTAL RESULTS AND DISCUSSION 

𝑎𝑡+1 = 𝑎𝑡 + 𝐿. (𝑎



𝑏𝑒𝑠𝑡 − 𝑎𝑡) 

(7) 



To  evaluate  the  performance  of  the  proposed  CMSA The fact that 𝐿 is a step size drawn from a Lévy distribution, framework, an implementation was done for two benchmark 345

problems originating from [1]. The algorithm was applied in 𝑦7(𝑥) = −0.257686𝑇0(𝑥) + 0.671156𝑇1(𝑥) MATLAB R2018a on a system with an Intel Core i5 processor 

− 0.17463𝑇2(𝑥) − 0.13963𝑇3(𝑥)

(1.6GHz) and 8GB RAM. For every problem, multiple runs 

+ 0.084822𝑇4(𝑥) − 0.01814𝑇5(𝑥)

(e.g., 10-20) were done to account for the stochastic nature of 

+ 0.00177379𝑇6(𝑥) − 0.000067𝑇7(𝑥) 

FPA, and the best result is stated. 





Figures  1  and  2  make  a  comparison  of  the  approximate 3.1 First problem: integro-Differential equation solutions 𝑌𝑁(𝑥) given using CMSA for N = 5 and N = 7 with the exact solution 𝑦

Supposing the linear integro-differential equation: 𝑒𝑥𝑎𝑐𝑡 . 

Table 2 shows the Root Mean Square Error obtained by the approximate solution of the integro-differential Eq. (1), using 𝑥

the Chebyshev Metaheuristic Solver Approach and the general 𝑦′(𝑥) + 2𝑦(𝑥) + 5 ∫ 𝑦(𝑡)𝑑𝑡 = 𝐻(𝑥) 

approach introduced in reference [20]. 

0





conditioned  by  y(0) = 0 ,  with  H(x)  is  the  Heaviside  step function (1 for 𝑥 ≥ 0, 0 for 𝑥 < 0). The interval of solution is 

[0, 𝜋]. 

This  can  be  converted  to  a  second-order  ODE,  after differentiating: 



𝑦′′(𝑥) + 2𝑦′(𝑥) +  5𝑦(𝑥) = 0 

(9) 



y(0) = 0  and  y′(0) = 1  (extracted  from  the  original equation at 𝑥 = 0). 

The exact solution of the proposed problem is: 1

𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) = 𝑒−𝑥 sin(2𝑥) 

2



Implement  the  CMSA  utilizing  the  second-order formulation (Eq. (9)) with conditions y(0) = 0, y′(0) = 1. 

 

The  FPA  parameters  employed  for  approximations  with Figure 1.  Exact solution against CMSA approximation N = 5, 7, 9 are given in Table 1. 

(first problem for N = 5) 

 



Table 1. Parameters utilized in the flower pollination algorithm for solving the benchmark problems 1, 2 



Parameter 

𝑵 = 𝟓 

𝑵 = 𝟕 

𝑵 = 𝟗 

Pop.Size 𝑛𝑝𝑜𝑝 

25 

25 

25 

Max. Iter 

10000 

10000 

10000 

Switch prob 

0.8 

0.8 

0.8 

Lower bound Lb 

-2 

-2 

-2 

Upper Bound Ub 

2 

2 

2 



The  approximate  solutions  given  by  Chebyshev metaheuristic  solver  for  different  range  of  Chebyshev polynomials are: 

In the case of 𝑁 = 5 



𝑦5(𝑥) = −0.0085𝑥5 + 0.0299𝑥4 + 0.1559𝑥3 − 0.7661𝑥2

+ 0.7660𝑥 + 1.4400𝑒 − 05 





 

Or, 

Figure 2.  Exact solution against CMSA approximation (first problem for N = 7) 

𝑦



5(𝑥) = −0.37182𝑇0(𝑥) + 0.87766𝑇1(𝑥) − 0.3681𝑇2(𝑥)

+ 0.036336𝑇

Table 2.  Comparison table of RMSE for the integro 3(𝑥) + 0.0037344𝑇4(𝑥)

− 0.00052904𝑇

differential equation obtained by CMSA and PSO ([20]) 5(𝑥) 





In the case of 𝑁 = 7 

Optimizer 

RMSE 



CMSA 𝑁 = 5 

3.14𝑒 − 02 

CMSA 

𝑦

𝑁 = 7 

1.05𝑒 − 02 

7(𝑥) = −0.0043𝑥7 + 0.0568𝑥6 − 0.2827𝑥5 + 0.5934𝑥4

PSO 

1.805𝑒 − 01 

− 0.1995𝑥3 − 0.9959𝑥2 + 0.9998𝑥



− 7.7900𝑒 − 06 

The results reveal an excellent agreement between the exact and  the  approximate  solutions.  The  approximation  quality Or, 
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enhances visibly as the polynomial degree 𝑁 augments from 5 

Table 3. Comparison table of RMSE for the non-linear to 7,  proving  the  expected  convergence  comportment  of  the Bernoulli equation obtained by SPMS and PSO ([20]) Chebyshev approximation facilitated by the FPA’s coefficient search.  The  approximate  solutions  nearly  trace  the  exact Optimizer 

RMSE 

curve within the entire domain, especially for 𝑁 = 7. 

CMSA 𝑁 = 5 

1.9𝑒 − 03 



CMSA 𝑁 = 7 

1.1𝑒 − 03 

3.2 Second problem; non-Linear Bernoulli boundary value CMSA 𝑁 = 9 

2.8144𝑒 − 04 

problem 

PSO 

3.0503𝑒 − 04 





Now,  tracking  the  non-linear  Bernoulli  equation Table 3 shows the Root Mean Square Error obtained by the represented as a boundary value problem: approximate  solution  of  the  non-linear  Bernoulli  equation (second problem), using the Chebyshev metaheuristic solver and the general approach introduced in reference [20]. 

𝑦′′(𝑥) + (𝑦′(𝑥))2 − 2 𝑒{−𝑦(𝑥)} = 0 





with the boundary conditions y(0) = 0 and y(1) = 0, among the interval [0, 1]. 

The exact solution of the suggested problem is: 1 2

3

𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) = ln ((𝑥 − ) + ) 

2

4



The  CMSA  was  implemented  with  N = 5, 7, 9 .  FPA parameters  were  the  same  as  those  employed  in  the  first example  (see  Table  1).  Figures  3-5  compare  the  CMSA approximations  against  the  exact  solution  for N = 5, N = 7, and N = 9, respectively. 



The approximate solutions obtained from using CMSA are: 

 

For N = 5 

Figure 3.  Exact solution against CMSA approximation (second problem for N = 5) 

𝑦5(𝑥) = 2.7085𝑒 − 16𝑥5 − 0.5403𝑥4 + 1.0805𝑥3



+ 0.4798𝑥2 − 1.0200𝑥 − 7.0000𝑒 − 06 



Or, 



𝑦5(𝑥) = 0.03728𝑇0(𝑥) − 0.20964𝑇1(𝑥) − 0.030246𝑇2(𝑥)

+ 0.27013𝑇3(𝑥) − 0.067533𝑇4(𝑥)

+ 1.6928𝑒 − 17𝑇5(𝑥) 



For N = 7 



𝑦7(𝑥) = 0.1304𝑥7 − 0.2878𝑥6 + 0.1077𝑥5 − 0.4096𝑥4

+ 0.9883𝑥3 + 0.4854𝑥2 − 1.0146𝑥 

Or, 







𝑦7(𝑥) = −0.00082011𝑇0(𝑥) − 0.13476𝑇1(𝑥) Figure 4.  Exact solution against CMSA approximation 

− 0.096989𝑇2(𝑥) + 0.32353𝑇3(𝑥)

(second problem for N = 7) 

− 0.10515𝑇4(𝑥) + 0.020998𝑇5(𝑥)



− 0.0089923𝑇6(𝑥) + 0.002038𝑇7(𝑥) 



For N = 9 



𝑦9(𝑥) = −0.2689𝑥9 + 0.5652𝑥8 + 0.3149𝑥7 − 1.3724𝑥6

+ 0.6025𝑥5 − 0.0599𝑥4 + 0.7203𝑥3

+ 0.4990𝑥2 − 1.0010𝑥 − 0.0001 



Or, 



𝑦9(𝑥) = −0.047332𝑇0(𝑥) − 0.044291𝑇1(𝑥)

− 0.17647𝑇2(𝑥) + 0.38347𝑇3(𝑥)

− 0.14118𝑇



4(𝑥) + 0.034289𝑇5(𝑥)

 

− 0.007565𝑇6(𝑥) − 0.0045317𝑇7(𝑥)

Figure 5.  Exact solution against CMSA approximation 

+ 0.0044153𝑇8(𝑥) − 0.0010502𝑇9(𝑥) 

(second problem for N = 9) 
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High degree of agreement is observed for all tested degrees 

[4]  Črepinšek,  M.,  Liu,  S.H.,  Mernik,  M.  (2013). 

𝑁. Even with 𝑁 = 5, the shape of the exact solution has been Exploration and exploitation in evolutionary algorithms: well captured by the approximation. As 𝑁 augments to 7 and A survey. ACM Computing Surveys (CSUR), 45(3): 1-9,  the  approximate  solution  come  to  be  graphically 33. https://doi.org/10.1145/2480741.2480752 

indistinguishable  from  the  exact  solution,  showcasing  the 

[5]  Yang,  X.S.,  Karamanoglu,  M.  (2020).  Nature-inspired method's  ability  to  handle  non-linearities  and  boundary computation  and  swarm  intelligence:  A  state-of-the-art conditions efficiently. The fast convergence suggests that the overview.  Nature-Inspired  Computation  and  Swarm integration of Chebyshev polynomials and FPA optimization Intelligence,  Algorithm  Academic  Press,  3-18. 

navigates  with  success  the  solution  space  to  obtain  highly https://doi.org/10.1016/B978-0-12-819714-1.00010-5 

accurate coefficient sets. 

[6]  Holland, J.H. (1984). Genetic algorithms and adaptation. 



Adaptive  Control  of  Ill-Defined  Systems,  Springer, Boston, MA., 16: 317-333. https://doi.org/10.1007/978-4. CONCLUSION AND FUTURE WORKS 

1-4684-8941-5_21 

 

[7]  Kennedy,  J.,  Eberhart,  R.  (1995).  Particle  swarm This  paper  presented  a  Chebyshev  Metaheuristic  Solver optimization. In Proceedings of The IEEE International Approach  (CMSA),  a  hybrid  computational  strategy  for Conference on Neural Networks, Perth, WA, Australia, solving differential equations. By formulating the approximate pp. 

1942-1948. 

solution using Chebyshev polynomials and using the Flower https://doi.org/10.1109/ICNN.1995.488968 

Pollination  Algorithm  to  approximate  the  coefficients  based 

[8]  Karaboga,  D.  (2010).  Artificial  bee  colony  algorithm. 

on  the  minimization  of  the  equation  residual  and  boundary Scholarpedia, 

5(3): 

6915. 

condition deviations, we instituted a versatile framework valid http://doi.org/10.4249/scholarpedia.6915 

to various DE types. 

[9]  Yang,  X.S.  (2010)  Firefly  algorithm,  an  introduction The  experimental  results  found  for  both  linear  integro-with 

metaheuristic 

applications. 

Engineering 

differential and non-linear boundary value problems prove the Optimization:  An  Introduction  with  Metaheuristic efficiency  and  accuracy  of  the  suggested  approach.  The Applications, 

221-230. 

CMSA leaded with success approximations that converge fast https://doi.org/10.1002/9780470640425.ch17 

towards  the  exact  solutions  as  the  degree  of  the  polynomial 

[10]  Yang,  X.S.  (2010).  Nature-inspired  metaheuristic expansion  augments.  The  approach  integrates  the  power  of algorithms. Luniver Press. 

spectral  approximation  with  the  robust  search  abilities  of 

[11]  Gandomi, A.H., Yang, X.S., Alavi, A.H. (2013). Cuckoo metaheuristics. 

search  algorithm:  A  metaheuristic  approach  to  solve Future studies could be done: 

structural  optimization  problems.  Engineering  with 

•  Applying  the  CMSA  method  to  a  vast  range  of Computers, 

29(2): 

17-35. 

challenging  DEs,  including  systems  of  equations, https://doi.org/10.1007/s00366-011-0241-y partial  differential  equations,  and  problems  with 

[12]  Mirjalili, S., Lewis, A. (2016). The whale optimization complex boundary conditions, would institute more algorithm. Advances in Engineering Software, 95: 51-67. 

its applicability. 

https://doi.org/10.1016/j.advengsoft.2016.01.008 

•  Exploring  the  employ  of  other  metaheuristic 

[13]  Sulaiman, M.H., Mustaffa, Z., Saari, M.M., Daniyal, H. 

algorithms  (like  GA,  PSO,  or  advanced  hybrid (2020). Barnacles mating optimizer: A new bio-inspired variants)  within  this  framework,  could  conduct  to algorithm for solving engineering optimization problems. 

improved effectivity or robustness. 

Engineering  Applications  of  Artificial  Intelligence,  87: 

•  investigating  adaptive  strategies  for  choosing  the 103330. https://doi.org/10.1016/j.engappai.2019.103330 

polynomial  degree 𝑁 or  the  number  of  collocation 

[14]  Zhao, S., Zhang, T., Ma, S., Chen, M. (2022). Dandelion points 𝑀 could  improve  the  approach's  automation Optimizer: A nature-inspired metaheuristic algorithm for and  performance,  could  improve  the  approach's engineering  applications.  Engineering  Applications  of automation and performance. 

Artificial 

Intelligence, 

114: 

105075. 

•  Implementing  the  proposed  method  for  solving https://doi.org/10.1016/j.engappai.2022.105075 

practical  problems  in  science  and  engineering 

[15]  Agushaka,  J.O.,  Ezugwu,  A.E.,  Abualigah,  L.  (2022). 

domains is a promising avenue for future exploration. 

Dwarf  mongoose  optimization  algorithm.  Computer 

 

Methods  in  Applied  Mechanics  and  Engineering,  391: 

 

114570. https://doi.org/10.1016/j.cma.2022.114570 
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𝑤𝑖 

Weighting  factor  for  the 𝑖 -th  condition 

 

penalty 

NOMENCLATURE 

𝑥 

Independent variable 



𝑥0, 𝑥𝑛 

Start  and  end  points  of  the  domain  of 𝑎𝑗 

Vector  of  Chebyshev  polynomial 

interest 

coefficients 

𝑥𝑝 

𝑝-th collocation point 

𝑎𝑏𝑒𝑠𝑡 

Best coefficient vector found by FPA 𝑌𝑁(𝑥) 

Approximate  solution  to  the  differential 𝑎𝑐𝑎𝑛𝑑 

Candidate coefficient vector in FPA 

equation using 𝑁-degree polynomial 

𝑎𝑗, 𝑎𝑘 

Randomly  chosen  coefficient  vectors 𝑦(𝑥) 

General  or  exact  solution  to  the from population in FPA 

differential equation 

𝑎𝑡 

Coefficient vector at FPA iteration 𝑡 

𝑦(𝑘)(𝑥) 

𝑘-th derivative of 𝑦(𝑥) with respect to 𝑥 

𝐶𝑖(𝑦) 

i-th boundary or initial condition operator 𝑦𝑒𝑥𝑎𝑐𝑡(𝑥) 

Known  exact  solution  for  benchmark 𝑑𝑖 

Specified  value  for  the 𝑖-th  boundary or problems 

initial condition 





𝑓 

Function  defining  the  differential Subscripts  and 

equation 

Superscripts 

𝐻 

Heaviside step function 



𝑘 

Order  of  the  highest  derivative  in  the 0 

Initial value 

differential equation 

𝑏𝑒𝑠𝑡 

The best solution found so far 

𝐿 

Step  size  in  FPA  global  pollination, 𝑐𝑎𝑛𝑑 

A candidate solution 

drawn from Lévy distribution 

𝑒𝑥𝑎𝑐𝑡 

An exact solution 

𝐿𝑏 

Lower  bound  for  coefficient  values  in 𝑖 

Boundary/initial  conditions  or  general FPA search space 

counting 

𝑀 

Number of collocation points 

𝑗, 𝑘 

Polynomial terms or solutions in FPA 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 

Maximum number of iterations for FPA 𝑁 

Degree of polynomial approximation 

𝑁 

Degree  of  the  Chebyshev  polynomial 𝑛 

Final value 

approximation 

𝑝 

Collocation points 

𝑛𝑝𝑜𝑝 

Population size in FPA 

𝑡 

Iteration number 

𝑜𝑏𝑗𝑓 

Objective function to be minimized 

(𝑘) 

Order of differentiation 

𝑝 

Switching probability in FPA 



𝑅(𝑥; 𝑎𝑖) 

Residual  function  of  the  DE  using  the approximate solution 
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This study introduces Chebyshev Metaheuristic Solver Approach (CMSA), a new
computational approach, to get approximate solutions with high-accuracy to a vast range
of lincar and non-lincar differential equations (DEs). The main idea is changing the
differential problem into a continuous optimization task. First the approximate solution
was written as a truncated series of Chebyshev polynomials, where they are chosen due to
their numerical stability and optimal approximation propertics. The undetermined
coefficients of this series turn into the decision variables in an optimization task. The
objective function is derived from the residual of the differential equation, integrated with
penalty terms to achieve initial or boundary conditions enforcement. Then the Flower
Pollination Algorithm (FPA), a nature-inspired metaheuristic algorithm, is used to find the
optimal polynomial cocfficients via the minimization of this objective function. This
hybrid approach symbiotically integrates the spectral method’s exponential convergence
propertics with the metaheuristic’s powerful global scarch capabilities. The demonstration
of the efficiency and robustness of the approach s done through rigorous computational
tests on benchmark problems, involving integro-differential and non-lincar boundary value
problems. A comparison of the computed results with known exact solutions, validates this
optimization-driven spectral technique, showing excellent accordance. The approach is
simple to implement and displays outstanding potential for tackling complex DE systems

where traditional methods maybe stick.

1. INTRODUCTION

The real-world phenomena can be modelled mathematically
as differential equations (Des). Analytical solutions provide
exactness, but they are can be achieved only for a limited case
of linear and simple problems [1]. In consequence, researchers
run to numerical methods for obtaining approximate solutions.

Classical numerical methods, like the Finite Element
Method (FEM) and Finite Difference Method (FDM), work
using the problem domain’s discretization into a mesh of
points or elements. These techniques are powerful and flexible,
but they have local accuracy, where it is restricted by a
polynomial order of convergence. Attaining high accuracy
often necessitates a prohibitively fine mesh, yielding to wide
systems of equations, that leads to significant computational
cost.

To master these limitations, spectral methods have achieved
eminence as a class of highly accurate numerical approaches
[2]. Opposed to local methods, spectral methods give global
approximate solution utilizing a basis of smooth, infinitely
differentiable functions, like orthogonal or trigonometric
polynomials. This global technique allows them to attain
"spectral" or exponential convergence for problems with
smooth solutions. This signifies as the number of basis
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functions increases the error decreases exponentially, yielding
to solutions with high accuracy, accompanied by a relatively
small number of degrees of freedom.

However, the principal challenge in spectral methods is the
determination of the basis expansion’s coefficients. In
classical approaches such as collocation or Galerkin methods
the DE is imposed at specific points or in a weighted-integral
sense. This generally yields to complex structured systems of
algebraic equations, which may become difficult to solve or il-
conditioned, particularly for non-linear DEs.

Reframing  the coefficient-getting problem as an
optimization task is an alternative paradigm. The aim becomes
to obtain the set of coefficients that minimizes the residual, or
"error”, of the approximate solution among the entire domain.
This technique based on transforming the DE problem into a
continuous optimization problem, generally high-dimensional.
The power of this technique lies in its adaptability and its
capability to handle non-linearities implicitly in the objective
function.

Metaheuristic algorithms are powerful gradient-free search
strategy, for solving such optimization tasks [3-5]. These
natural-inspired algorithms, utilize a population of candidate
solutions in the aim of exploring the search space and
converging towards a global optimum. Notable examples
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