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To solve the Traveling Salesman Problem (TSP), this research compares three swarm-
based optimization algorithms: Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO), and Elephant Herding Optimization (EHO). Finding the shortest path
to visit each city once and return to the starting point is the goal of the traditional
combinatorial optimization problem, TSP. Exact techniques such as Branch and Bound
(BB) and Dynamic Programming (DP) can effectively handle smaller TSP cases, but they
become unfeasible as the number of cities increases. The solutions offered by metaheuristic
algorithms are more scalable. The algorithms' performance is assessed in this study based
on execution time, scalability, and solution quality for a range of city sizes (5 to 150).
Results reveal that EHO surpasses the others in achieving lower optimal costs.

optimization  algorithms,  combinatorial
optimization
1. INTRODUCTION developed at the University of Michigan in the 1960s. John

Since the creation of mortal beings, they have constantly
sought perfection in all aspects of life. One of the most
important trials in the world is to find a stylish result. In reality,
numerous complex problems, similar to transportation,
warehousing, where to vend products, communication
network design, scheduling, and planning, are frequently too
large and complex to be optimally answered in a reasonable
time. Nonetheless, chancing a result is still pivotal, so the
volition is to originally accept a sour result with a respectable
position of delicacy and optimization time [1].

Optimization problems have become so complicated that
they are difficult for traditional programming approaches to
decompose and optimize efficiently. A mass grounded
metaheuristic optimization methods have been developed
recently [2].

The machine learning models, especially ensemble learning
approaches, to show great promise in solving complicated
optimization issues by utilizing a variety of data-driven
strategies to improve decision-making and prediction accuracy
[3]. Used address challenging optimization issues is
represented by swarm intelligence (SI) algorithms. Its goal is
to model the collective behavior of basic agents as they
attempt to accomplish goals like protecting against attacks and
finding food. Even though each agent is one capable of basic
tasks, when the work together and share knowledge, they can
display extraordinary intelligence [4]. SI algorithms were first
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Holland and his associates wrote the first book on the GA in
1960, and it was later developed and published in 1970 and
1983 [5]. Have been extensively used by experimenters to
optimize results and give sufficiently fit results for objective
functions in optimization problems [2]. In similar problems,
the ultimate thing is frequently to maximize or minimize an
objective function, which is used to estimate the quality of the
performing result. These algorithms aim to ameliorate or
minimize the problem's objective function, and the Traveling
Salesman Problem (TSP) is constantly used to test their
effectiveness and estimate their performance. The TSP as it
needs changing the shortest path to visit a set of big cities, the
making it a perfect tool for assessing the effectiveness of
different algorithms. A number of metaheuristic algorithms,
including ACO, PSO, and EHO, are utilized to find a solution
to the TSP, a classic problem in route optimization. Yet, a
thorough comparison of the algorithms based on execution
time, use of resources, and solution quality is still required. It
is seen that (EHO) is quicker than the others, and hence all the
more useful for big instances of (TSP) where repair has to be
executed in a hurry. With emphasis laid on computational
complexity and the quest for finding a balance between
accuracy and efficiency, the present study attempts to evaluate
the performance of these algorithms over various sets of
datasets such that one can offer recommendations towards the
optimal strategy to adopt for use in applications related to
automated manufacturing, smart transportation, and logistics
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optimization.

2. LITERATURE REVIEW

From 2000 till 2024, it has been two decades of research to
implement artificial intelligence (AI) and metaheuristic
algorithms to determine the solution of the Traveling
Salesman Problem (TSP), a popular NP-hard combinatorial
optimization problem. It was all about creating and enhancing
various algorithms like Branch and Bound (BB), Dynamic
Programming (DP), Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), and recently Elephant Herding
Optimization (EHO).

1) Evolution and Trends in TSP Algorithms:

TSP solutions in the early stages were exact in nature like
BB and DP [6, 7], which did not work for large datasets since
they were exponential in terms of memory and time
requirements. Sl techniques like ACO and PSO were
introduced to combat the same. ACO is inspired by ant
foraging behavior [8] and PSO incorporates social
optimization. Both of them were susceptible to premature
convergence and parameter sensitivity [9]. EHO inspired by
elephant herd behavior assisted in improving execution times
and solution quality for large TSP instances [10], and the
strengths and weaknesses of the studies reviewed are
summarized in Table 1.

2) Thematic Grouping of Literature:

The literature studied can be classified as:

» Algorithmic Efficiency Improvements:

Zhang [11] strengthened often used paths
to improve ACO, speeding up the solution
process.

Emambocus [12] achieved more accurate
results using PSO with genetic algorithms.
Margas et al. [13] improved performance
on huge datasets by optimizing EHO
parameters.

» Handling Large-Scale Datasets:

Robati et al. [14] modified PSO to make
efficient usage feasible in larger instances
of TSP.

Li et al. [15] and Zhang and Gao [16]
confirmed EHO's effectiveness in scaling
across large-dimensional datasets.

» Dynamic and Adaptive Algorithms:

A model of ACO that is capable of
adapting to varying city distances was
introduced by Zhou et al. [17].

3) Relevance to Current Study:

This paper evaluates three popular algorithms ACO, PSO,
and EHO using different dataset sizes. EHO consistently
outperforms ACO in terms of optimal cost, especially as the
number of cities increases. This highlights the increasing use
of swarm-based methods in areas such as dynamic routing,
transportation planning, and intelligent logistics systems. and
presents an EHO framework that decomposes the problem to
enable solution quality and scalability. The framework fills
current research gaps and provides a more flexible method
than TPS in resolving complex and large-size instances.

Table 1. Comparative summary of key studies

Year Algorithm Main Contribution Strengths Weaknesses

2010 ACO Enhanced pheromone-based search High efficiency on small datasets Limited on large datasets
2012 PSO Scalable search behavior Fast for large instances Parameter sensitive

2014 BB Accurate subproblem elimination Optimal for small inputs Impractical for large data
2015 PSO + GA Hybridized PSO for accuracy Improved results Complex implementation
2017 ACO Adaptive to dynamic data Responsive to changes Slower performance

2018 EHO New metaheuristic with fast convergence High quality on big data Less efficient on dynamic data
2019 DP Accurate results with caching Guarantees optimality High memory usage

2020 EHO Parameter-tuned EHO Enhanced efficiency Needs tuning expertise
2021 EHO Contextual performance analysis Versatile across scenarios May require longer time
2022 EHO Accelerated search and precision Better performance Requires high computing power
2023 EHO Large-scale dataset handling Robust output Not adaptive to dynamic input
2024 EHO Practical applications in logistics Real-world relevance May vary in unpredictable settings

3. TRAVELING SALESMAN PROBLEM (TSP)

In 1932, the mathematician Karl Menger first proposed the
TSP. The problem formulation sounds surprisingly simple:
consider a salesman who has to travel between several towns.
He starts in his home town, visits each of the cities on some
list exactly once, and then returns to the starting point.
Reducing the overall distance traveled is the aim. Even while
it seems straightforward, the more cities there are, the more
challenging it becomes to solve this problem optimally.
Mathematicians and scholars have been looking for effective
answers for nearly a century. From its simple definition to the
difficulty of illustrating its solutions is where TSP's beauty lies.
The cities are very often real locations in practical applications,
while travel routes are determined by distances. We will focus
on the TSP instances that represent cities connected with road
networks, where the distances represent the actual driven
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distance by automobiles. Maps will be used to display the
results in order to improve comprehension and show how the
solutions have practical applications. One could initially think
that the issue can be resolved by just figuring out how long
each potential tour is and choosing the shortest one. However,
since the number of alternative tours grows factorially with the
number of cities, this strategy is only practical for extremely
small examples. For example, over 3 billion hours are feasible
in only 14 cities. This "brute force" approach is
computationally impractical for larger instances. Due to this,
more complicated algorithms must be devised to successfully
handle the problem, especially when large input datasets are
involved [18], a classic graph-based optimization problem
where a traveler must visit a given set of cities only once
before returning to the starting point, while minimizing the
total travel cost.

To date, no known polynomial time algorithm can solve



every TSP instance. This means that it is NP-hard. Owing to
this complexity, there have been numerous research regarding
combinatorial optimization. TSP has proved itself as a
benchmark to test any new optimization techniques as it has
broad applications in different fields such as manufacturing,
chip design, and logistics [19-21].

Another perspective on the limitations of Al is the inability
of the conventional AI techniques to scale up with
developments in machine learning and optimization for
information systems possessing big datasets, as well as the
recent expansion in the industry, particularly energy and
pharmaceuticals. Computational intelligence, a field dedicated
to developing intelligent computational models that can
interpret raw numerical data in real time and provide high
reliability and minimal errors for engineering and commercial
applications, has been made possible by this gap [22].

Several heuristic and metaheuristic methods, for example,
PSO, ACO, and EHO, have been developed for seeking an
approximate solution for TSP. Each has its merits in a different
way by trading off the accuracy of the solution against
computing efficiency. For the best answers in smaller TSP
scenarios, precise methods like branch-bound and Dynamic
Programming have also been investigated. However, even
though these exact methods ensure optimality, they are usually
restricted to issues with fewer cities due to their large
computational demands [12-14].

The length of the optimal tour of TSP problems can be
found as shown below [14], can be calculated by Eq. (1).

optimal tour = dpmypey + (Zi1 dp@ypi+n)) (1)
where, p is an ordered list of cities, and p(i) and p(i+1) are
successive locations in the tour, and p(i) and p(i+l) are
consecutive cities, The distance between city p(i) p(i) and city
p (i + 1) p(i+1) is shown by the formula d(p(i), p(i+1)).

TSP Applications

e Logistics and supply chains: By minimizing delivery
vehicle and truck routes, TSP reduces fuel usage and
travel time [23].

e Manufacturing and production: It is used to schedule
machine tasks and reduce travel time in electronics
manufacturing, e.g., factories that manufacture printed
circuit boards (PCBs) [24].

e Communications and networking: It is used to build
wireless and wired networks and enhance data routing
protocols to reduce delay [25].

e Health and medicine: It enables DNA sequencing to
speed up diagnosis and planning of ambulance routes
[26].

e Power and resource management: It conserves
operating costs by allocating work crews and planning
power plant maintenance [27].

e Traffic control and urban planning: It conserves
operating costs and traffic jams by route planning for
trash collection and regulating traffic lights [28].

This overall distance is to be minimized over all city
orderings. Because of its practical relevance as well as its
theoretical importance, TSP remains one of the most studied
optimization problems. It has been applied in network
architecture enhancement, reduction of production costs, and
optimization of delivery routes. Further, the problem
applicability has grown in a number of areas because of novel
variants, which include the Vehicle Routing Problem and the
multiple Traveling Salesman Problem.
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4. CLASSICAL ALGORITHMS TO SOLVE TSP

Different exact algorithms such as BB and DP are used to
solve the TSP.

4.1 Branch and Bound (BB)

General fashion for BB algorithms involves modeling the
result space as a tree and also covering the tree exploring the
most promising subtrees first [29].

This is continued until either there are no subtrees into
which to further break the problem, or we have arrived at a
point where, if we continue, only inferior results will be set up.
can be used to process TSP containing 40—60 cities [18].

4.2 Dynamic Programming (DP)

Dynamic Programming (DP) is a very important fashion for
efficiently calculating recurrences by storing partial results
and reusing them when demanded [30].

It is a system for working on a complex problem by
breaking it down into a collection of simpler sub problems. It
demands veritably elegant expression of the approach and
simple thinking and the rendering part is veritably easy. The
idea is veritably simple if you have answered a problem with
the given input, also save the result for future reference, to
avoid working the same problem again, shortly' Flash back
your history'. Still, in this process, if you observe some over-
lapping sub-problems, the given problem can be broken up
into lower sub-problems and these lower sub-problems are in
turn divided into still-lower bones Also, the optimal results of
the sub-problems contribute to the optimal result of the given
problem (appertained to as the Optimal Substructure Property
[31].

There are two ways of doing this.

1. Top-down launch working the given problem by breaking
it down. However, and also just returns the saved answer, if
you see that the problem has been answered already. However,
break it and save the answer, if it has not been answered. This
is generally easy to suppose and veritably intuitive. This is
appertained to as Memorization.

2. Bottom-Up dissect the problem and see the order, in
which the sub-problems are answered and start working from
the trivial sub-problem, up to the given problem. In this
process, it's guaranteed that the sub-problems are answered
before working on the problem. This is appertained to as
Dynamic Programming.

Steps followed while enforcing Dynamic Programming 1.
Characterize the recursive structure of an optimal result, define
recursively the value of an optimal result, Cipher, bottom up,
the cost of a result, and construct an optimal result. This
approach is also used to break the traveling salesperson
problem but only for a limited number of metropolises Steps
followed while implementing Dynamic Programming:

i. Characterize the recursive structure of an optimal solution.

ii. Define recursively the value of an optimal solution.

iii. Compute, bottom up, the cost of a solution.

iv. Construct an optimal solution.

This approach is also used to solve the TSP but only for a
limited number of cities [24].

5. HEURISTIC ALGORITHMS TO SOLVE TSP

The different optimization algorithms such as PSO, ACO
and EHO This section describes the methods used to solve the



TSP.
5.1 Ant Colony Optimization (ACO)

Is a metaheuristic search and optimization method inspired
by the "intelligent" foraging behavior of natural ant colonies,
and is widely used to solve (mostly combinatorial)
optimization problems, The basic principle of ACO is that a
colony of artificial ants work together to find the best path in
a graph that represents a possible solution to the target problem,
The way the artificial ants cooperate with each other is
inspired by the way natural ants cooperate to find the shortest
path between two points in a given terrain, such as their nest
and a food source, When an ant constructs a possible solution,
it deposits pheromones proportional to the quality of the
solution in the region of the search space where the solution is
located. Over time, the ants tend to converge on paths that
represent close to optimal solutions in the search space [32].

Initialization
process

Iteration
{maximum
number of
iterations or mini
malimprovement
in solution
quality)

Yas

l

Final Solution

Update
pheromone value

r 8

Preparation of
pattial solution

Figure 1. Flowchart of the ACO algorithm

Steps of the ACO Algorithm for Solving the TSP as shown
in the Figure 1:

1. Parameter Initialization: The number of ants, the
number of cities, the initial pheromone level, and the
algorithm parameters are defined as follows:

e q: pheromone influence
e Distance influence 3
e  Pheromone evaporation rate (p)

2. Solution Construction: Each ant  builds
probabilistically a tour to choose the next city based
on pheromone level. Distances will be calculated by
using the formula expressed in Eq. (2).

B
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Pij =

P;; = probability of moving from city (i) to city (j), T;; =
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Pheromone amount on edge i, j,
ng. = i  attractiveness (inverse of distance d;).
ij

3. Pheromone Update: After all ants complete their
tours, update the pheromone levels on the paths used

by Eq. (3).

Ty =1 —p)*Ty+Xi, A TS 3)

p: Pheromone evaporation rate,
k

ng Pheromone deposited by ant k, Q: constant,
k

Ly length of the tour constructed by ant k.

4. lteration: Repeat the above steps until a stopping
criterion is met (e.g., a maximum number of
iterations or minimal improvement in solution
quality).

5. Final Solution: The best tour found over all
iterations represents the optimal or near-optimal
solution for the TSP.

ACO Pseudocode

Initialize parameters: a, B, p, Q, number of ants, number of cities
Initialize pheromone levels T on all edges to a small constant

For each iteration:
For each ant k (from 1 to number of ants):
Place ant k on a random starting city
For each city in the tour:
Select the next city j to visit based on probability:
P {ij} = [t {ij}ta * n {ij}"p] / Z[t_{ik}%a *
n_{ik}"p] for allowed cities k
Add city j to the ant's tour and move the ant to city j
Complete the tour and return to the starting city
Compute the tour length L_k for ant k

Update pheromones on all edges:
For each edge (i, j):
Evaporate pheromone: t_{ij} = (1 - p) * ©_{ij}
Deposit new pheromone for each ant k that used edge (i,
i)E
t {ij} =t _{ij} + At_{ij}"k where At_{ij}"k=Q/L k

Repeat until stopping condition (e.g., max iterations or no
improvement)

5.2 Particle Swarm Optimization (PSO)

The PSO algorithm was derived from the collective
behavior of birds and fish; in the PSO algorithm, the
population consists of a large number of particles. Each
particle representing a potential solution is a point in the search
space, with a fitness value and velocity. PSO is conceptually
very simple, requiring no derived information about the
optimization function and using only elementary mathematical
operators [33].

Steps of the PSO Algorithm for Solving the TSP as shown
in the Figure 2:

1. Initialization of Particles:
e Each particle represents a solution (order of
visiting cities).
e Each particle is assigned a random position
and velocity.
2. Fitness Evaluation: Fitness = Length of the Tour



(Calculate the total distance between cities in the tour.

The goal is to minimize this length).

3. Velocity Update: The velocity of each particle is
updated based on its personal best position (pBest)
and the global best position of the swarm (gBest) can
be calculated by Eq. (4):

Vi =w* Vi+ ¢y x1 x (pBest; — X;) + ¢, x 1y * @)
(gBest — X;)

w: Inertia weight controls the impact of the previous
velocity,

c1, ¢,: Learning coefficients, with one directing towards
pBest and the other towards gBest,

71, T: Random numbers between (0 and 1).

4. Position Update: The position of the particles (the
order of the cities) is changed based on the velocity
updated in the TSP (this is done by swapping or
adjusting the order of the cities).

5. Update pBest and gBest:

o If the new solution is better than pBest, it is
updated.

o If the new solution is better than gBest, it is
also updated.

6. Iteration: Repeat updating velocity and position
until the specified number of iterations or
convergence is reached.

PSO Pseudocode

Initialize parameters:
num_particles = Number of particles, num_iterations =
Maximum number of iterations
cities = List of cities (coordinates)
w = Inertia weight, c1 = Cognitive coefficient, c2 = Social
coefficient
Initialize particles:
For each particle i from 1 to num_particles:
Initialize position X[i] randomly (random tour of cities)
Initialize velocity V[i] randomly
Initialize pBest[i] = X[i] (best known position of particle)
Calculate fitness(pBest[i]) and set pBestFitness[i] =
fitness(pBest[i])
gBest = Best particle's position in the swarm
gBestFitness = Best fitness value among all particles
For iteration = 1 to num_iterations:
For each particle i from 1 to num_particles:
Update velocity:
V[i]=w * V[i] + c1 * r1 * (pBest[i] - X[i]) + c2 * 2 *
(gBest - X[i])
Update position:
X[i] = UpdatePosition(X[i], V[i])
Calculate fitness(X[i])
Update pBest
If fitness(X[i]) < pBestFitness[i]:
pBest[i] = X[i]
pBestFitness[i] = fitness(X[i])
// Update gBest
If fitness(X[1]) < gBestFitness:
gBest = X[i]
gBestFitness = fitness(X[i])
Return gBest as the best tour found

C St:rt )

Initialize parameters of PSO

i

Evaluate the fitness value

'

Update personal best and global best

'

Update velocity and position of each particle

Termination No

criterion satisfied?

)

Figure 2. Flowchart of the PSO algorithm

5.3 Elephant Herding Optimization (EHO)

EHO are optimization problems that require a swarm-based
metaheuristic search approach, which was defined by Wang
towards the end of 2015, The algorithm simulates how real
elephants in a clan would herd their herds [2, 9].

The following is a summary of the herding behavior:

* The swarms of elephants are divided into several smaller
groups, known as clans, that are made up of several female
elephants and their calves [2, 9].

* A matriarch, or adult female, is in charge of overseeing
every clan 2, 9].

* A male calf in a clan leaves the group when it reaches
adulthood [2, 9].

Steps of the EHO Algorithm for Solving the TSP as shown
in the Figure 3:

1. Initialization: Randomly initialize positions (tours) for
each elephant in clans.
2. Fitness Evaluation:
e Fitness = Total distance of the tour (sum of
distances between cities).
e  Minimize this fitness function.
3. Clan Grouping: Divide elephants into clans (subgroups).
4. Position Update: Update position of each elephant by Eq.

).

Xitj-'—1 = Xlgest,j +ax* (Xl.t] - Xgenter,j) *T (5)

Xi;: position of elephant i, X, ;: Best elephant in the clan,
X Eenm_j: clan center, a: learning rate, r: random value in [0,1].

5. Migration (Separation Operator): Replace worst
elephant (longest tour) with a random tour by Eg. (6).

Xworst = Xnew random (6)



X,orst: 18 the current solution of the worst elephant, i.e., the
elephant with the longest tour, X,., random : 1S @ newly
generated random solution, created by randomly shuffling the
cities to form a new tour.

6. Update Global Best: If a new best tour is found, update
the global best solution.

7. Iteration: Repeat until
iterations reached.

convergence oOr maximum

EHO Pseudocode

# Initialize parameters

Initialize elephants with random tours

Set number of clans, elephants per clan, and max iterations
Initialize global best (gBest)

# Main loop
For iteration = 1 to max_iterations:
For each clan:
Compute clan center (E_center)
For each elephant:
Update position: X i =
E center) * random_factor
Ensure valid tour and update personal best (pBest)
Update clan’s best (gBest)

X best + o * (X i -

# Migration step
Replace worst elephant with a new random tour
Update gBest if a better solution is found

# Termination
Return best tour (gBest)

[ Initialization |
v

| Fitness evaluation |

| Improve matriarch’s positions with 2-opt |
e
| Implement the clan-updating operator |
v

Implement 2-opt to improve
elephant’s positions

| Implement the separating operator |

[ Evaluation |
[ ]
| Gen=Gen+1 |

No
IRetum the best solutjon|

Figure 3. Flowchart of the EHO algorithm
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6. EXPERIMENT

This section will analyze the results of the proposed
algorithms for solving the TSP by using a number of
performance indicators that came from the implementation of
the following algorithms: ACO, PSO, BB, DP, and EHO. A
number of criteria were used to analyze the performance,
including memory consumption (data space, instruction space,
environment stack space), execution time, CPU consumption,
time and space complexity, and solution quality (optimal cost),
these metrics evaluate the effectiveness and practicality of
different methods for real-world applications in logistics,
transport, and robotics.

e Execution Time: In a real-time scenario,
such as robotics and transport route
optimization, this metric gauges how fast an
algorithm can compute a solution.

e CPU Consumption: It is a measure of
computational efficiency having an impact
on cost in the cloud and the lifespan of the
battery in the embedded device.

e Space and Time Complexity: This
describes scalability—exact algorithms (i.e.,
Branch & Bound) require exponential
memory and time, but metaheuristic
algorithms (ACO, PSO, EHO) offer
effective, low-memory solutions.

e Solution Quality: This analyzes how close
a computed solution is to the optimal one,
also known as the answer, and tradeoffs in
speed and accuracy for scenarios like
network planning and logistics.

The effectiveness of the algorithms (ACO, PSO, EHO) for
solving TSP depends on the parameter values. Tuning the
parameters ensures faster convergence rates and higher-
quality solutions.

Key Parameters' Effect on Performance:

e ACO: (B, p) shape the balance between
exploration and exploitation.

e PSO: (o, c1, c2) Compute the convergence
speed and diversity of searches.

e EHO:(N, a) control exploration and stability.

Optimization Strategies:

e Manual Tuning: Empirically made changes
on the basis of experimental findings.

e Adaptive Tuning: Dynamic parameter
adjustments during execution.

On a laptop computer (HP EliteBook x360 1030 G3) with
an Intel(R) Core (TM) i5-8350U CPU @ 1.70GHz 1.90GHz,
16 GB of RAM, and Microsoft Windows 10 Pro, the code was
run and the results were extracted using MATLAB. The
comparison is shown below.

7. RESULT BASED ON THE NUMBER OF CITIES

In order to have a better understanding of how different
algorithms perform when the number of cities is changed in
the Traveling Salesman Problem (TSP), the findings have been
structured into a formal overview that captures dominant
trends and general observations. Instead of describing each
data point separately, we provide a summary analysis
supported by a Table 2 that shows performance measures.



General Observations:

e BB and DP: These classical algorithms performed
well for small instances (5 or 10 cities), which
returned optimal and correct solutions. However,
with an increasing number of cities, their time
complexity and space complexity soar exponentially,

and hence they are not appropriate for large instances.

e ACO and PSO: These swarm-based techniques
provided a good trade-off between optimal cost and
execution time. ACO was cost-effective while PSO
was quick to execute but both were parameter-
sensitive.

Table 2. Excremental results to solve TSP

Cities Algorithm Best Cost Execution Time CPU Time Used Time Complexity
BB 160.6408513 0.0635367 0.015625 120
DP 152.9782251 0.0631584 0 800
5 ACO 265.3240882 0.0966347 0.03125 12500
PSO 259.8042864 0.0748312 0.015625 2500
EHO 24.93147748 0.0765446 0 2500
BB 242.2875741 0.3512854 0.328125 3628800
DP 310.9579789 0.181423 0.125 102400
10 ACO 264.8897796 0.1290255 0.0625 100000
PSO 302.4137614 0.1214331 0.03125 10000
EHO 192.0919305 0.0764755 0.015625 10000
BB 291.6526084 88.3170388 88.328125 87178291200
DP 352.7964137 4.4405244 4.4375 3211264
14 ACO 393.5055628 0.1603183 0.078125 274400
PSO 481.7481027 0.0740104 0.015625 19600
EHO 273.6401486 0.0749235 0 19600
BB Reaching the solution requires an unacceptably high period of time.
DP 426.2904349 267.732404 268.078125 189267968
19 ACO 426.1901479 0.2017091 0.125 685900
PSO 702.5979029 0.0744863 0.015625 36100
EHO 571.0097348 0.0779557 0 36100
BB Reaching the solution requires an unacceptably high period of time.
DP Reaching the solution requires an unacceptably high period of time.
100 ACO 1007.00986 2.009875 1.9375 100000000
PSO 4495.766986 0.0987641 0.03125 1000000
EHO 3924.741041 0.1360135 0.046875 1000000
BB Reaching the solution requires an unacceptably high period of time.
DP Reaching the solution requires an unacceptably high period of time.
150s ACO 1333.117111 3.0940642 3.03125 337500000
PSO 6886.673 0.1309863 0.0625 2250000
EHO 6352.343576 0.1166032 0.03125 2250000

e EHO: This algorithm always provided the optimal
cost in most cases and had low execution time,
especially in big city sets. It was highly scalable and
efficient and thus particularly well-suited for big and
intricate datasets.

Trends:

e For 5 and 10 cities: All algorithms provide solutions
within reasonable execution time. EHO performs
better than others regarding solution quality.

e For 14 and 19 cities: Classical algorithms begin
lagging behind. EHO performs very well; ACO and
PSO scale fairly well.

e For 100 and 150 cities: Swarm-based algorithms
alone (ACO, PSO, EHO) provide solutions within
reasonable time. EHO and ACO perform better than
PSO on cost quality.

8. ANALYSES

We may infer from the data that the meta-heuristic
algorithms (ACO, PSO, and EHO) performed better as the
number of cities rose as compared to the BB and DP
algorithms. EHO came out for providing notably lower
optimal costs than the other algorithms, while ACO and PSO
demonstrated balanced performance between execution time
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and ideal cost. The conventional algorithms (BB and DP) are
less efficient when working with more cities because of their
great temporal and spatial complexity.

Critical Analysis:

Based on the research results, the performance of each
algorithm is highly sensitive to the size and type of problem.
ACO and PSO are suitable for deterministic methods, while
EHO and BB are ideal for small TSP cases.

9. CONCLUSIONS

follows from the analysis in the above discussion that both
as can be seen from the carried-out analysis, execution of TSP
algorithms primarily relies on both dataset size (number of
cities) and time of execution necessary. Traditional algorithms
such as BB and DP executed perfectly with small problem
sizes (e.g., 10 or 5 cities), yielding accurate and efficient
outcomes. However, their lack of computational efficiency
was felt as problems turned increasingly complex. As a
contrast, metaheuristic algorithms, EHO, ACO, and PSO were
found more scalable and flexible with bigger data sets.

Out of the tested algorithms, EHO returned the best costs
with highest quality for all except one instance of the problem
sizes and demonstrated its global search capability and



convergence property. ACO, on the other hand, had a very
good cost-effectiveness/executions time ratio, particularly on
large instances. PSO was also good but demonstrated
variability with parameter settings.

Future directions:

For increasing the convergence rate and solution quality in
the future research on TSP, researcher could focus on hybrid
solutions incorporating local search and swarm intelligence
together with Al-supported learning mechanisms. More
sophisticated variations of TSP such as the Vehicle Routing
Problem and Dynamic TSP can further be augmented by
adaptive and real-time optimization routines. Machine
learning algorithms can further facilitate dynamic adjustment
of parameters such that algorithms may automatically adapt to
evolving problem instances. Additionally, the use of deep
learning frameworks can facilitate faster computation and
increased accuracy in real-world applications like smart
logistics, autonomous navigation, and cooperative robots.
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NOMENCLATURE

ACO Ant Colony Optimization

Al Artificial Intelligence

BB Branch And Bound

DP Dynamic Programming

EHO Elephant Herding Optimization

PSO Particle Swarm Optimization

SI Swarm Intelligence

Greek symbols

B Distance influence

P Pheromone evaporation rate
Q Inertia weight

Subscripts

o Pheromone Influence

k Ant

t Elephant





